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Contribution of weak localization to nonlocal transport at normal metal/superconductor
double interfaces

R. Mélin
Centre de Recherches sur les Très Basses Températures, CRTBT, CNRS, BP 166, 38042 Grenoble Cedex 9, France

�Received 31 October 2005; revised manuscript received 31 January 2006; published 15 May 2006�

In connection with a recent experiment �Russo et al., Phys. Rev. Lett. 95, 027002 �2005��, we investigate the
effect of weak localization on nonlocal transport in normal metal / insulator/superconductor / insulator / normal
metal �NISIN� trilayers, with extended interfaces. The negative weak localization contribution to the crossed
resistance can exceed in absolute value the positive elastic cotunneling contribution if the normal metal phase
coherence length or the energy are large enough.
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I. INTRODUCTION

The manipulation of correlated pairs of electrons in solid
state devices has aroused considerable interest recently. The
goals of this line of research are the realization of sources of
entangled pairs of electrons for quantum information, and the
realization of fundamental tests of quantum mechanics.1,2

Correlated pairs of electrons can be extracted from a super-
conductor by Andreev reflection, with extended or localized
interfaces between superconductors and normal metals or
ferromagnets,3–9 and in Josephson junctions involving a
double bridge between two superconductors.10

Charge is transported by Andreev reflection at a normal
metal/superconductor �NS� interface: an electron coming
from the normal side is reflected as a hole while a Cooper
pair is transmitted in the superconductor.11 In the supercon-
ductor, Andreev reflection is mediated by an evanescent state
of linear dimension set by the superconducting coherence
length �. In structures in which a superconductor is multiply
connected to normal metal electrodes separated by a distance
of order �,12,13 the Andreev reflected hole in the spin-�−��
band can be transmitted in an electrode different from the
one in which the incoming spin-� electron propagates. This
“nonlocal” transmission in the electron-hole channel is called
“crossed Andreev reflection.” Nonlocal transmission in the
electron-electron channel corresponds to “elastic cotunnel-
ing” by which an electron is transmitted from one electrode
to another while spin is conserved.14

A schematic three-terminal device is represented on Fig.
1, as well as the voltages Va and Vb applied on the normal
electrodes “a” and “b,” respectively. The voltage VS on the
superconductor is chosen as the reference voltage �VS=0�.
Nonlocal transport is characterized by a current Ia�Vb� circu-
lating in electrode “a” in response to a voltage Vb on elec-
trode “b.” It is supposed in addition that Va=0: electrode “a”
is grounded, like in experiments8,9 �see Fig. 1�. The crossed
conductance is defined by Ga,b�Vb�=�Ia /�Vb�Vb�. A crossed
conductance dominated by elastic cotunneling �crossed An-
dreev reflection� is negative �positive�15 because of the op-
posite charges of the outgoing particle in elastic cotunneling
and crossed Andreev reflection. Lowest order perturbation
theory in the tunnel amplitudes leads to Ga,b�Vb�=0 because
the crossed Andreev reflection and elastic cotunneling chan-

nels have in this case an exactly opposite contribution to the
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crossed conductance once the average over disorder16,17 or
over the Fermi oscillations in multichannel ballistic
systems14,18 is taken into account.

Three unexpected experimental features for the crossed
conductance in a normal metal / insulator / superconductor /
insulator / normal metal �NISIN� trilayer have been reported
recently by Russo et al.:9 �i� The crossed conductance does
not average to zero with normal metals, in contradiction to
the above-mentioned prediction of lowest order perturbation
theory in the tunnel amplitudes.14 The order of magnitude of
the experimentally observed crossed signal is far from being
compatible with lowest order perturbation theory. �ii� A mag-
netic field applied parallel to the interfaces suppresses the
nonlocal signal, suggesting a phase coherent process. �iii�
The sign of the crossed resistance15 crosses over from posi-
tive �the sign of elastic cotunneling� to negative �the sign of
crossed Andreev reflection� as the bias voltage Vb increases,
and the crossed signal disappears if the bias voltage exceeds
the Thouless energy in the superconductor.

We show here that weak localization with extended inter-
faces leads to a positive crossed conductance, the sign of
which is opposite to the sign of the dominant elastic cotun-
neling channel for localized interfaces.19 The weak localiza-
tion contribution to the crossed conductance becomes impor-
tant at large bias voltages and for a large phase coherence
length in the normal metals.

The article is organized as follows. Necessary preliminar-
ies are given in Sec. II. The weak localization contribution to
crossed transport is discussed in Sec. III. Concluding re-
marks are given in Sec. IV.

FIG. 1. �Color online� Schematic representation of the tight-
binding model of NISIN trilayer. The insulating layers are not
shown. The aspect ratio is not to the scale of the experiment in Ref.
9 for which d=15, 50, 200 nm, L is of order of 5 �m, and

d��50 nm.
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II. PRELIMINARIES

A. Hamiltonians

The normal metal electrodes are described by the tight
binding Hamiltonian

HN = �
k,�

��k�ck,�
+ ck,�, �1�

where k is the wave vector, �= ↑ ,↓ the projection of the
electron spin on the spin quantization axis, and where ��k�
=−2t0�cos�kxa0�+cos�kya0�+cos�kza0�� is the dispersion re-
lation of free electrons on a cubic lattice, with t0 the bulk
hoping amplitude, a0 the distance between two neighboring
sites, and kx, ky, and kz the projections of the electron wave
vector on the x, y and z axis �see Fig. 1�.

The superconductor is described by the BCS Hamiltonian

HBCS = �
k,�

��k�ck,�
+ ck,� + ��

k
�ck,↑

+ c−k,↓
+ + c−k,↓ck,↑� , �2�

with � the superconducting gap.
Diagonal disorder is included,20 with an elastic mean free

path le
�N� in the normal electrodes of the NISIN trilayer, and

le
�S� in the superconducting electrode. A finite coherence

length l�
�N� in the normal electrodes is accounted for by add-

ing phenomenologically an imaginary part to the energy.
At the extended interface a-�, the tunnel Hamiltonian

connecting the electrodes “a” and “�” take the form

Ŵa,� = �
n,�

− t�can,�
+ c�n,� + c�n,�

+ can,�� , �3�

where the sites an on the normal metal side of the interface
correspond to the sites �n on the superconducting side of the
interface �see Fig. 1�, and a similar expression holds for the
tunnel Hamiltonian at the interface b-	.

B. Green’s functions

The fully dressed advanced and retarded equilibrium

Nambu Green’s function ĜA,R�
� at energy 
 is first deter-
mined by solving the Dyson equation

ĜA,R�
� = ĝA,R�
� + ĝA,R�
� � �̂t � ĜA,R�
� , �4�

where � denotes a summation over the spatial indices, and
ĝA,R�
� are the advanced and retarded Green’s functions of
the disconnected system �i.e., with t=0 in the tunnel Hamil-

tonian given by Eq. �3��. The self-energy �̂t corresponds to
the couplings in the tunnel Hamiltonian given by Eq. �3�.
The Green’s functions are 4�4 matrices in the spin �

Nambu representation. The four components correspond to a
spin-up electron, a spin-down hole, a spin-down electron,
and a spin-up hole. Because of spin rotation invariance, some
elements of the 4�4 Green’s functions are redundant. We
work here in a 2�2 block in the sector Sz=  /2, encoding
the superconducting correlations among a spin-up electron
�Nambu label “1”� and a spin-down hole �Nambu label “2”�.

Once the fully dressed advanced and retarded Green’s

functions have been obtained, the Keldysh Green’s function
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Ĝ+,− is determined by the Dyson-Keldysh equation21–25

Ĝ+,− = �Î + ĜR
� �̂t� � ĝ+,−

� �Î + �̂t � ĜA� , �5�

where ĝ+,− is the Keldysh Green’s function of the isolated
electrodes, and where the energy dependence of the Green’s
functions is omitted.

C. Transport formula

The current through the interface a-� is given by

Ia,� =
2e

h
� d
�

n

Tr��t̂an,�n
Ĝ�n,an

+,− �
� − t̂�n,an
Ĝan,�n

+,− �
���̂3	 ,

�6�
where the trace is a summation over the two components of
the Nambu Green’s function, �̂3 is one of the Pauli matrices,
the diagonal elements of which are �1,−1�, and the sum over
n runs over all sites at the interface a-�. As shown in Fig. 1,
the symbols an and �n in Eq. �6� label two corresponding
sites at the interface, in the normal electrode “a” and in the
superconductor, respectively. The two spin orientations are
taken into account in the prefactor of Eq. �6�.

The local conductance of a NIN interface is equal to
�e2 /h�T per channel, where T=2�2t2�N

2 is the dimensionless
transmission coefficient in the tunnel limit, with �N the nor-
mal density of states.21

The nonperturbative transport formula for the local cur-
rent at a localized NIN interface was obtained in Ref. 21, and
generalized in Ref. 25 to a localized NIS interface, and in
Ref. 19 to nonlocal transport at a double ferromagnet / su-
perconductor interface. We deduce from these references the
exact expressions of the local conductance GNIN�V� of a
single NIN interface, of the Andreev conductance GNIS�V� of
a single NIS interface, and of the crossed conductance
Ga,b�Vb� of a NISIN trilayer with extended interfaces:

GNIN�V� = 8�2e2

h
t4�

j,k,l
�ai,aj

N G�j,	k

A,1,1�eV��bk,bl

N G	l,�i

R,1,1�eV� �7�

GNIS�V� = 16�2e2

h
t4�

j,k,l
�ai,aj

N G�j,	k

A,1,2�eV��bk,bl

N G	l,�i

R,2,1�eV�

�8�

Ga,b�Vb� = − 8�2e2

h
t4

��
j,k,l

Tr��̂ai,aj

N �̂3Ĝ�j,	k

A �eVb��̂bk,bl

N �̂3Ĝ	l,�i

R �eVb�	 ,

�9�
valid to all orders in the hopping amplitude. The crossed
conductance Ga,b�Vb� is per conduction channel through the
junction of area L�L, with a superconducting layer of thick-
ness d �see Fig. 1�. The summations in Eqs. �8� and �9� run
over all pairs of sites at the interfaces, and the overline de-
notes disorder averaging. The density of states �̂ai,aj

N = �ĝai,aj

A

− ĝR � /2i� connects the sites a and a in electrode “a,” and
ai,aj i j
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a similar definition holds for �̂bi,bj

N . The site aj �bl� in elec-
trode “a” �“b”� is connected by the tunnel Hamiltonian to the
site � j �	l� in the superconductor �see Fig. 3 for the NISIN
interface�. In the case of the local conductance of a NIN
junction, � j, 	k, 	l, and �i belong to an insulating layer that
has been inserted in between the two normal metals. The
tunnel amplitude t in Eq. �7� connects in this case the normal
metal to the insulator, while t in Eqs. �8� and �9� connects the
normal metal to the superconductor.

The fully dressed advanced and retarded equilibrium

Nambu Green’s functions Ĝ�j,	k

A �
� and Ĝ	l,�i

R �
� at energy

 in Eqs. �7�–�9� are expanded by using the Dyson equation
given by Eq. �5�. We deduce from the exact Keldysh trans-
port formula given by Eqs. �7�–�9� that the diagrams are
connected, and that the propagators for the density of states
are directly connected to at least one tunneling vertex. The
other extremity of the density of states propagators is con-
nected either to a tunneling vertex, or to a disorder scattering
vertex. The density of states, represented by wavy lines on
the diagrams, connects to one advanced and one retarded
Green’s function as in Eqs. �7�–�9�.

A crossed conductance dominated by elastic cotunneling
�crossed Andreev reflection� is negative �positive�.15 This can
be seen most simply by making the Nambu labels explicit in
Eq. �9� and taking into account the signs in the �̂3 matrices,
and the global sign.

The crossed conductance is expanded perturbatively in T2,
where the normal local transmission coefficient T has already
been defined, and is also expanded in the number of nonlocal
processes crossing the superconductor since d��.14

D. Weak localization in a superconductor

Weak localization in a superconductor was already inves-
tigated in Ref. 26 in connection with the determination of the
number density of superconducting electrons. A weak local-
ization diagram in a bulk normal metal is shown in Fig. 2�a�.
In this case the two points r1 and r2 are within the elastic
mean free path le

�N�. In a bulk superconductor �see Fig. 2�b��,
the two points r1 and r2 are within the coherence length �
since the disorder average g�,	

A g�,	
A of two advanced Green’s

functions between the two sites � and 	 at r1 and r2 in a
superconductor is limited by �, not by l . Similar diagrams

FIG. 2. �Color online� A weak localization diagram in a normal m
in a superconductor for which r1 and r2 are within �. �c� The same d
case on �c� r1 and r2 are within � and r1, r2 are within le

�N� from th
correlation length. “A” and “R” stand for advanced and retarded.
e
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for the conductance are introduced at a NISIN double inter-
face in Sec. III. In this case the points r1and r2 are separated
by the superconductor thickness, of order � �see Fig. 2�c��. At
a NIN interface, the two points r1 and r2 on different inter-
faces can be separated by a distance equal to the thickness of
the insulator, comparable to the decay length induced by the
charge gap of the insulator.

III. NONLOCAL TRANSPORT IN A NISIN TRILAYER

A. Crossed conductance to order T2

Now we evaluate the lowest order diagrams appearing in
the crossed conductance of a NISIN trilayer. The crossed
conductance due to the diagram of order T2 �see Fig. 3�a��
vanishes because the contributions of the elastic cotunneling
and crossed Andreev reflection channels are exactly
opposite.14,16,18,19 This can be seen also by evaluating the
summation over the Nambu labels in the diagram in Fig. 3
and using g�,	

1,1 g	,�
1,1 =g�,	

1,2 g	,�
2,1 , where � and 	 are two points in

the superconductor at a distance of order �.

for which r1 and r2 are within the elastic mean free path le �a�, and
m at a NISIN double interface, equivalent to Fig. 3�c�. In the NISIN
terfaces. In the NIN case on �c�, r1 and r2 are within the insulator

FIG. 3. �Color online� The lowest order diagrams contributing to
crossed transport. We show �a� the vanishing diagram of order T2,
�b� the vanishing weak localization diagram of order T4, �c� the first
nonvanishing diagram of order T4, and �d� the weak localization
diagram of order T6. The wavy lines correspond to the insertion of

ˆ

etal
iagra
e in
the normal metal density of states, and of a �3 matrix.
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B. Crossed conductance to order T4

The first weak localization diagram of order T4 involving
four Green’s functions in the superconductor is shown in
Fig. 3�b�. The corresponding crossed conductance vanishes,
as for the diagram of order T2 discussed in Sec. III A.

The diagram of order T4 in Fig. 3�c� takes a finite value,
and is evaluated explicitly by summing over all possible
Nambu labels, and over the different possibilities of inserting
the density of states and the �̂3 matrices �represented by the
wavy lines on the diagrams�. This leads to the crossed con-
ductance

Ga,b�Vb� = 4�2t8�N
6 �

	

�g�,	
1,1,A�eVb�g	,�

2,2,R�eVb�

− g�,	
1,2,A�eVb�g	,�

1,2,R�eVb� � �2

�2 − �eVb�2 , �10�

where19

g�,	
1,1 �
�g	,�

2,2 �
� =
�2�S

2

2
��R�exp
−

2R

��
�
�2
2 − �2

�2 − 
2 ,

g�,	
1,2 �
�g	,�

1,2 �
� =
�2�S

2

2
��R�exp
−

2R

��
�
� �2

�2 − 
2 ,

with R the distance between the sites � and 	, and with
��R�= �kFR�2 in the ballistic limit, and ��R�=kF

2Rle
�S� in the

diffusive limit. The resulting term of order T4 in the crossed
conductance is given by

Ga,b
�ec��Vb� = −

e2

h
T4 �

le
�S�

�2

�2 − �eVb�2 exp�− 
2d

�
� , �11�

in agreement with the expansion to order T4 of the crossed
conductance obtained for highly transparent localized
interfaces.19 A summation over the pairs of sites � and 	 at
the two interfaces was carried out, giving rise to the prefactor
� / le

�S� in Eq. �11�.

C. Weak localization diagram of order T6

1. Contribution of local excursions

We consider now the weak localization diagram of order
T6 in Fig. 3�d�, merging the features of the two diagrams of
order T4 in Figs. 3�b� and 3�c�, and shown in more detail in
Fig. 4. The long range propagation in the normal electrodes
involves the diffusons g�,	

A,1,1g�,	
R,1,1 and g�,	

A,2,2g�,	
R,2,2 in the

particle-particle or hole-hole channel �where � and 	 belong
to the normal electrode�, as opposed to the diffuson
g�,	

A,1,1g�,	
A,2,2 in the particle-hole channel for local Andreev re-

flection at a single NIS interface27,28 below the related Thou-
less energy.

We first evaluate the part of the diagram on Fig. 4 involv-
ing local excursions at the NIS interfaces �see Fig. 5�. Enu-
merating these diagrams shows that the two local excursions
are attached to the same nonlocal propagation in the super-
conductor. We use the notation X��,����

A,A �X��,����
A,R � for the part
of the diagram in Fig. 5 with two advanced �one advanced
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and one retarded� propagators in the superconductor, and the
Nambu labels �� ,�� and ��� ,��� at the extremities in the two
normal electrodes. We find

X11,11
A,A = X11,22

A,A = −
8�2�N

6

��R�

2�2

��2 − 
2�2 , �12�

X11,11
A,R = − X11,22

A,R =
2�2�N

6

��R�
�2

�2 − 
2 . �13�

We recover Eq. �11� for the nonvanishing diagram of order
T4 in Fig. 3�c�, proportional to −�X11,11

A,R −X11,22
A,R �. The global

minus sign in this expression can be found in Eq. �9�, and the
opposite signs for X11,11

A,R and X11,22
A,R are due to the matrices �̂3

in Eq. �9�. The diagrams with local excursions attached to the
disorder average of two advanced or two retarded Green’s
functions in the superconductor lead to a vanishingly small
crossed conductance, as it can be seen from the identity
−�X11,11

A,A −X11,22
A,A �=0, deduced from Eq. �12�.

FIG. 4. �Color online� Details of the insertion of the densities of
states and of the �̂3 matrices in the weak localization diagram in
Fig. 3�d�. “A” and “R” stand for advanced and retarded. The diffu-
sons are calculated in the ladder approximation. The rungs of the
ladders represented by the red lines represent schematically the dif-
fuson in the ladder approximation.

FIG. 5. �Color online� Representation of the part of the diagram
of order T6 �see Fig. 3� with local excursions. “1” and “2” corre-
spond to the Nambu labels. �a�, �b�, �c�, and �d� contribute, respec-
tively, to X11,11

A,A , X11,22
A,R , X11,11

A,A , and X11,22
A,R . The diagrams having the

topology of �e� and �f� lead to a vanishingly small crossed conduc-
tance because of the matrices �̂3 and the trace over the Nambu

labels.
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D. Weak localization crossed conductance

The weak localization contribution to the crossed conduc-
tance corresponding to the diagram in Fig. 4 is given by

Ga,b
�wl��eVb� = − Ga,b

�ec��Vb�F
d

�
,
Vb

�
,
l�
�N�

le
�N�� , �14�

where Ga,b
�ec��Vb� is given by Eq. �11� and

F
d

�
,
Vb

�
,
l�
�N�

le
�N�� =

1

4
T2
 l�

�N�

le
�N��4
 �

le
�S�� �2

�2 − �eVb�2

�exp�− 
2d

�
� . �15�

The sign of Ga,b
�wl��eVb� given by Eq. �14� is positive, as for

crossed Andreev reflection. The factor �l�
�N� / le

�N��4 is due to a
factor �l�

�N� / le
�N��2 associated to the diffusons in each of the

quasi-two-dimensional normal layers �see Eq. �A5�� in the
limit q=0. The constraint q=0 originates from the conserva-
tion of the component of the wave-vector parallel to the in-
terface, due to the symmetry by translation parallel to the
interfaces �see Appendix B�.

It can be shown that the two diagrams of order T6 involv-
ing a single diffuson in the superconductor and long range
propagation in the normal metals are negligible because of
the sum over the Nambu labels in one diagram, and because
of the factor �l�

�N� / le
�N��2 in the other diagram, much smaller

than �l�
�N� / le

�N��4 for the weak localization diagram.
The weak localization crossed conductance can be ex-

panded systematically in powers of �l� / le
�N��2:

Ga,b�eVb = 0� =
e2

h
�

n

An�T�
 l�

le
�N��2n

. �16�

The coefficients An�T� are evaluated to leading order in T
because of the small interface transparencies. Estimating the
higher order weak localization diagrams leads to A3�−T8,
A4=0, A5�T10, A6=0, A7�−T12, . . . . The order of magni-
tude of the sum of the higher order contributions can be
obtained from summing the corresponding geometric series
for T�l� / le

�N��2�1: �n�3An�T��l� / le
�N��2n is of order

T2�l� / le
�N��4, much smaller than A2�T��l� / le

�N��4, therefore jus-
tifying why we based our discussion on the first two terms
A0�T��T4 and A2�T��T6.

E. Relation to experiments

1. Determination of the parameters

The number of channels Nch for a contact with a three-
dimensional metal is Nch=S /�F

2 , where S is the junction area
and �F the Fermi wavelength. The normal layers have a di-
mension L�L�d�, with L�5 �m and a thickness d�
�50 nm �see Fig. 1�. The number of channels in the quasi-
two-dimensional geometry is obtained be neglecting disorder
�the elastic mean free path in the experiment is limited by
scattering on the normal film boundaries�, and by evaluating
the area of the Fermi surface with discrete wave-vectors in

the direction perpendicular to the interface, leading to Nch

174512
=Ld� /�F
2 �6�105. The normal transparency T can be ob-

tained from the local conductance in the normal state RN
�loc�

�2 �:

1

RN
�loc� � 2NchT

e2

h
, �17�

leading to T�10−2. These values T�10−2 and Nch�6
�105 are compatible with the local Andreev resistance at
zero bias of about 100 �, being an upper bound to the zero
temperature Andreev resistance RA

�loc� given by 1/RA
�loc�

=2�e2 /h�T2Nch. Russo et al.9 estimate T�10−5 from Nch

=S /�F
2 for a three-dimensional metal. The possible depen-

dence of Nch on d� that we consider here can be probed
experimentally by determining how the crossed resistance
depends on the thickness of the normal layers.

2. Crossed resistance

The crossed resistance matrix measured experimentally9

is the inverse of the crossed conductance matrix. The off-
diagonal element of the crossed resistance matrix is given by

Ra,b
�tot��Vb� = −

Ga,b
�tot��Vb�

Ga,a
�tot��Vb�Gb,b

�tot��Vb� − Ga,b
�tot��Vb�Gb,a

�tot��Vb�
,

�18�

where Ga,a
�tot��Vb�=Gb,b

�tot��Vb�=Gloc
�tot��Vb� is the local Andreev

conductance.
The elastic cotunneling crossed resistance corresponding

solely to the contribution of Eq. �11� is thus of order

Ra,b
�ec��Vb = 0� =

1

4Nch

h

e2
 �

le
�S��
�2 − �eVb�2

�2 �exp�− 2d/�� ,

�19�

having an order of magnitude compatible with the
experiment.9 The elastic cotunneling crossed resistance is in-
dependent on T for tunnel interfaces. The elastic cotunneling
crossed resistance Ra,b

�ec��Vb=0� being inversely proportional
to Nch, with Nch proportional to d� �see Sec. III E 1�, it is
expected that the crossed resistance would decrease if the
normal metal layer thickness d� increases, as anticipated in
Sec. III E 1.

Now, the weak localization crossed resistance is equal to

Ra,b
�wl� = − Ra,b

�ec�F
d

�
,
Vb

�
,
l�
�N�

le
�N�� . �20�

The voltage dependence of the total crossed resistance
Ra,b�Vb�=Ra,b

�ec��Vb�+Ra,b
�wl��Vb� is shown in Fig. 6 for differ-

ent values of l�
�N� / le

�N�. We obtain a change of sign from a
positive �elastic cotunneling dominated� to a negative �weak
localization dominated� crossed resistance as the voltage in-
creases �see Fig. 6�. For sufficiently large values of the phase
coherence length, we have F�d /� ,0 , l�

�N� / le
�N���1 as dis-

cussed earlier, so that the crossed resistance is negative for
all values of the bias voltage.

The perturbative crossed resistance in Fig. 6 tends to a

finite value in the limit eVb=�. The determination of the
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crossed conductance around eVb=� is examined in Ref. 19
for localized interfaces with arbitrary interface transparen-
cies. The nonperturbative crossed conductance tends to zero
for eVb=�, but the cross-over occurs within an energy win-
dow that becomes very small for tunnel interfaces. A crossed
current related to out-of-equilibrium quasiparticle popula-
tions �not described here� is expected for eVb��.

As it is visible in Fig. 6, the characteristic voltage scale in
the bias voltage dependence of the crossed resistance is the
superconducting gap, not the normal state superconductor
Thouless energy obtained in experiments. At the present
stage, we do not find a plausible explanation of this experi-
mental observation.

F. Magnetic field dependence

The experimental crossed signal is suppressed by a mag-
netic field parallel to the layers.9 The theoretical weak local-
ization crossed signal is also suppressed by a magnetic field
because the corresponding diagram dephases in an applied
magnetic field. The cross-over magnetic field B* for the sup-
pression of the weak localization crossed conductance corre-
sponds to one superconducting flux quantum �0 enclosed in
the area of the diagram, compatible with experiments.9 How-
ever, in experiments, the crossed resistance is suppressed by
a magnetic field in the entire voltage range. The present
model does not explain the dephasing of the elastic cotun-
neling contribution.

IV. CONCLUSIONS

We have calculated the weak localization contribution to
nonlocal transport in NISIN trilayers with extended inter-
faces and a sufficient phase coherence length in the normal
electrodes. We find a change of sign in the crossed resistance
between elastic cotunneling at low voltages and weak local-
ization at higher voltages. The weak localization contribution
can dominate for all voltages if the phase coherence length is

FIG. 6. �Color online� Voltage dependence of the crossed resis-
tance �in ohms�, given by Eq. �18�, in which the crossed conduc-
tance is the sum of the elastic cotunneling �see Eq. �11�� and weak
localization �see Eq. �14�� contributions. We used the parameters
d=20 nm, �=15 nm, le

�N�=50 nm, le
�S�=3 nm, T=10−2, Nch=6

�105. The values of l�
�N� are, from top to bottom: l�

�N�=0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1 �m. The points are theoretical, and the lines are a
guide to the eye.
large enough. The weak localization crossed conductance

174512
dephases in an applied magnetic field, but not the elastic
cotunneling contribution. The appearance of a voltage scale
related to the superconductor Thouless energy is left as an
important open question.
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APPENDIX A: DIFFUSION PROBABILITIES
IN A NORMAL METAL

Diffusion in the electron-electron channel

We first discuss briefly the normal metal diffuson in the
ladder approximation. In the Born approximation, the elastic
scattering time �1,1 in the “11” Green’s function given by

g1,1
A,R�k,
� =

1


 − �k � i/�1,1
, �A1�

is defined by kF
3�1,1v2 / �4��F�=1, with �1,1=�0�1+
 / �2�F��,

where �0 is the elastic scattering time at the Fermi level, v is
the amplitude of the microscopic impurity scattering poten-
tial, kF is the Fermi wave-vector, and �F the Fermi energy.

Using contour integration, and the identity

� dk

�2��3 f�k� =
1

8�2�
−�

+�

k2dk�
−1

1

duf�k,u�eikRu, �A2�

with k= ± �k� and f�k� a function of k, we obtain easily

� dk

�2��3gN
1,1�k�gN

1,1�k + q� =
kF

3�1,1

4��F

1 −

D�0

4
�q2 + �l�

�N��−2�� ,

�A3�

where D is the diffusion constant. The Fourier transform
PN�q� of the diffusion probability PN�r�, given by

PN�q� = t0
2� dk

�2�/a0�3G1,1
A �k,
�G1,1

R �k + q,
� , �A4�

where the overline is a disorder averaging and t0 is the bulk
hopping integral �see Eq. �1��, is obtained by summing the
ladder series, leading to

PN�q� =
4

D�0

1

q2 + �l�
�N��−2 . �A5�

In this expression PN�q� has no dimension. Its Fourier trans-
form PN�R� is such that PN�R�dR has no dimension, as ex-
pected for a probability.

APPENDIX B: DOUBLE NS INTERFACE

We provide now explanations to the factor �l�
�N� / le

�N��4 ap-
pearing in Eq. �15� for quasi-two-dimensional normal elec-
-6
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trodes. Because of the conservation of the component of the
wave-vector parallel to the interface at each tunneling vertex,
and because of the form of the diagram, the diagram in Fig.
4 is evaluated at q� =0, where q� is the projection of q �see
Appendix A� on a plane parallel to the interfaces. By mo-
mentum conservation, a finite value of q� is transformed in
−q� after traversing the entire diagram, so that q� =−q� =0.
The resulting crossed conductance is thus proportional to
�PN�q� =0��2, where the square is due to the correlated diffu-
sion in the two normal electrodes, and where the diffusion
probability PN�q�� is given by Eq. �A5�. This lead to the
factor ��l�

�N� / le
�N��4 since the normal metals are quasi-two-

dimensional so that q�=0, where q� is the projection of q on
the normal to the interfaces.

APPENDIX C: BALLISTIC NISIN TRILAYER
WITH ATOMIC THICKNESS

We consider in this appendix a ballistic NISIN trilayer
29,30
with atomic thickness in which the three electrodes are

255 �2001�.
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two-dimensional, and find a factor �l�
�N� / le

�N��3, similar to the
factor �l�

�N� / le
�N��4 factor discussed previously in the diffusive

limit.
The transport formula given by Eq. �9� is Fourier trans-

formed, to obtain

Ga,b�Vb� = − 8�2e2

h
t4� d2k

�2��2

� Tr��̂a,a
N �k��̂3Ĝ�,	

A �k,eVb��̂b,b
N �̂3Ĝ	,�

R �k,eVb�	 ,

�C1�

and the Dyson equations for ĜA,R�k� are also Fourier trans-
formed. The normal metal ballistic Green’s function is given
by ga,a

1,1�k ,
�=1/ �
−�+ i��, where � is the kinetic energy
with respect to the Fermi level, and where the broadening
parameter � is given by �= vFl�

�N�. Equation �C1� is then
expanded diagrammatically. A diagram similar to the one on
Fig. 4 leads to a factor �−3= �v l�N��3.
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