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Finite-size effects on the thermal resistivity of 4He in the quasi-two-dimensional geometry
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The thermal resistivity and its scaling function in quasi-two-dimensional �2D� 4He systems are studied by
Monte Carlo and spin-dynamics simulations. We use the classical 3D XY model on L�L�H lattices with
L�H, applying open boundary conditions along the H direction and periodic boundary conditions along the L
directions. A hybrid Monte Carlo algorithm is adopted to efficiently deal with the critical slowing down and to
produce initial states for time integration. The fourth-order Suzuki-Trotter decomposition method of exponen-
tial operators is used to solve numerically the coupled equations of motion for each spin. The thermal con-
ductivity is calculated by a dynamic current-current correlation function. Our results show that �i� the simula-
tional data collapse onto a single curve for several values of H and temperature, thus supporting the concept of
finite-size scaling theory and �ii� the calculated scaling function agrees well with the available experimental
results for slabs using two free fitting parameters.
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I. INTRODUCTION

High-resolution measurements of various properties of
4He confined in restricted geometries near the bulk super-
fluid transition temperature T� have been extensively carried
out for over three decades.1–14 The measurements approach
so close to T� that the correlation length becomes macro-
scopic in size. As a result, the whole fluid acts in a correlated
way and the values of global properties are changed. This
offers an opportunity for testing the finite-size scaling theory,
which describes the effect of confinement in a finite geom-
etry near a critical point.

Physical systems which exhibit a second-order phase tran-
sition and which are confined in a finite geometry �e.g., a
film, a pore, or a box� are thought to be well described by the
finite-size scaling theory15 at temperatures close to the criti-
cal temperature T�. The finite-size scaling theory is based on
the idea that the finite-size effects can be observed when the
correlation length � becomes of the order of the finite system
size �i.e., the side of the cube, the thickness of the film, or the
diameter of the pore�. For a physical quantity O, this state-
ment can be expressed as follows:16

O��,H�
O��,H = � �

= f�x� , �1�

where

� =
�T − T��

T�

and x =
H

���,H = � �
.

Here H denotes the relevant confining length and ��� ,H
= � � is the correlation length of the bulk system. f�x� is a
universal function which does not depend on the microscopic
details of the system. It does, however, depend on the ob-
servable O, the geometry of the system, and boundary con-
ditions imposed on the system.

Liquid helium 4He has been widely used to examine the
validity of the finite-size scaling theory of critical phenom-
ena; sophisticated experimental studies can be carried out in
a microgravity environment, for example, Lipa et al.17 mea-
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sured the specific heat of helium confined in a parallel plate
geometry with a spectacular nanokelvin resolution, and the
shape of the confining geometry, such as film, pore, and box,
can be designed with such a precision that the relevant con-
fining length is well defined.

For superfluid 4He, the scaling of static properties has
been studied experimentally, analytically, and numerically.
For example, the specific heat near the superfluid transition
of 4He has been measured for confinements which vary by a
factor of over 1000, and the data to a large extent can be
collapsed upon a unique function when properly reduced.1–4

Field-theoretical calculations for the standard Landau-
Ginzburg free energy functional in different geometries with
Dirichlet boundary conditions have been carried out5–7 and
the results agree with the specific heat measurements.8,9

Schultka and Manousakis calculated the superfluid density
and the specific heat of 4He in film and pore geometries
using Monte-Carlo simulation, and they demonstrated the
validity of the finite-size scaling theory.10–12

Besides static properties, the finite-size scaling theory can
also be understood by studying dynamical properties near the
critical point. Among them, the thermal conductivity � of
4He is a good candidate, because it is a measurable property
and its bulk transition has been carefully studied both
experimentally18–20 and theoretically.21 Murphy et al.22 and
Genio et al.23 measured the thermal conductivity of liquid
4He confined in a “microchannel plates” of thickness 2 mm
with holes 0.5 and 1 �m in diameter, and their data are con-
sistent with a universal scaling function. Nho and
Manousakis14 studied the thermal conductivity � of 4He con-
fined in a porelike geometry and the results of their simula-
tions agree well with experiments. Rather recently, Jerebets
et al. measured the thermal conductivity of liquid 4He con-
fined in a film geometry.24 In this paper we will study the
thermal conductivity � of confined helium using Monte
Carlo and spin-dynamics methods, calculate the scaling
function associated with � for a film geometry, and compare
it with the experimental results.

The remainder of the paper is organized as follows: In

Sec. II, we will present the model, the simulation methods,
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and the method for extracting the thermal conductivity. In
Sec. III, we will examine the finite-size scaling theory for the
thermal resistivity and compare our calculated scaling func-
tion with experimental results. We summarize our results in
the last section.

II. MODEL AND SIMULATION METHOD

In this section, we will briefly describe the model and
simulation methods used to study the properties of superfluid
4He and show how the thermal conductivity is computed in
our model. Matsubara and Matsuda25 have proposed a lattice
model to explain the properties of liquid helium. In the
model, the liquid is regarded as a lattice composed of atoms
and holes. In terms of operators which create or annihilate an
atom at each lattice point, it was proven that the lattice
model is equivalent to the spin system. Both systems are
classified as model F �or E in the absence of an external
field� in the classification of dynamical models and are in the
same universality class with the XY model, so we can use the
XY model to study the properties of liquid 4He.26,27

The Hamiltonian of the XY model on a lattice takes the
following form:

H = − J�
�ij�

�Si
xSj

x + Si
ySj

y� , �2�

where J sets the energy scale, �ij� denotes a nearest neighbor
pair of spins on a simple lattice in three dimensions, and the
summation is over all nearest neighbors. In this model, each

spin is a classical spin with three components, Si
�

= �Si
x ,Si

y ,Si
z�.

In our calculations, we use a film geometry, i.e., a L�L
�H lattice with L�H, in order to mimic the experiment.
Open boundary conditions are imposed along the confining
dimension �the H direction�. In our model the spins at the
open boundary have no neighbors outside the confining
space. Periodic boundary conditions are used along the large
planar dimensions �L direction�, because they better approxi-
mate the limit L→�.

The thermal conductivity � of liquid 4He at a given tem-
perature T can be calculated using the dynamic current-
current correlation function28,29

� � �
0

�

dt�
i

�j0
z�0�ji

z�t�� , �3�

where the z component ji
z of the current density ji

� associated
with the lattice point i is defined by

ji
z = J�Si

ySi+ez

x − Si
xSi+ez

y � , �4�

where the notation i+ez denotes the nearest neighbor of the
lattice site i in the z lattice direction.

The thermal conductivity calculated from the above equa-
tions strongly depends on the initial configuration of the sys-
tem. The thermal conductivity at a given temperature T is an
average value for all possible initial configurations. There-
fore, a sequence of uncorrelated equilibrium configurations
is needed to provide starting points for the spin dynamics.
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These configurations are obtained from a Monte Carlo
simulation using the Hamiltonian given by Eq. �2�. We use a
hybrid Monte Carlo procedure,28 which consists of ten up-
dates �MCCMOCMCCO�, where M is a Metropolis update,30

C is a cluster update31 and O is an over-relaxation update.32

Using this hybrid algorithm, we generate approximately
2000 uncorrelated configurations from the equilibrium ca-
nonical ensemble at a given temperature. From each configu-
ration we do dynamic simulations according to the equations
of motion for the XY model, which are given as follows:26,28

d

dt
Si
� =

�H

�Si
�

� Si
� . �5�

Starting from a particular initial spin configuration, we per-
form a numerical integration of these equations of motion
using a recently developed decomposition method,33 which
guarantees exact energy conservation and conservation of

spin length �Sk
� � =1 and conserves Mz=�iSi

z within its nu-
merical truncation errors. The integration is carried out to a
maximum time tmax �typically of the order of tmax=200� with
time step 	t=0.1 to make sure that we determine the real-
time history of every configuration within a sufficiently long
interval of time �0
 t
 tmax�. Fourth-order integrators are
used, which are more accurate than a second-order method
for the same time step. Finally, we compute the average of a
time-dependent observable �such as the current-current cor-
relation function� over all results relative to all the indepen-
dent initial equilibrium configurations generated via the hy-
brid Monte Carlo procedure. All error bars for the thermal
resistivity correspond to one standard deviation.

III. RESULTS

In this section, we calculate the thermal resistivity, exam-
ine its scaling behavior with respect to H, and compare the
scaling function with the experimental results. For a film
geometry L�L�H, it is better to keep H finite and let L
→� such that the system cannot feel the effect of L for any
temperature. In other words, we wish the correlation length
to be larger than H, but always less than L for any tempera-
ture. We can realize this by performing extrapolation to the
infinite limit from the results on finite L. However, we do not
have to do this, because we find that by applying periodic
boundary conditions along the directions of L, the finite-size
effects due to L are already insignificant as long as L�5H
�see Fig. 1�. Figure 1 shows the thermal resisitivity R�� ,H�
=1/��� ,H� for film lattices as a function of L /H at the criti-
cal temperature, where the correlation length is infinite.
From Fig. 1, we can see that within error bars, the results of
thermal resistivity are the same for L /H�5.

Figure 2 shows some of our results of the thermal resis-
tivity R�T ,H� as a function of temperature T for various
lattice sizes H. The bulk transition temperature T�

=1.5518�2� is obtained from Monte Carlo simulations.27

Near T�, the data show strong effects of confinement. The
smallest size shows the greatest rounding of transition and
the thermal resistivity is biggest for the smallest size at the

critical temperature. At high temperature, the thermal resis-
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tivity for different H has no obvious difference within error
bars, because �����H.

Now we would like to check the finite-size scaling hy-
pothesis for the thermal resistivity and to compare our results
with the existing experimental results.24 The dependence
upon � of the bulk thermal resistivity can be described by a
power law

R��� = R0�
, �6�

where 
 is an effective critical exponent of the thermal re-
sistivity. The dependence upon � of the correlation length
can be described by a power law

���� = �0�−�, �7�

where � is the critical exponent of the correlation length.
Using Eq. �1�, the finite-size scaling expression for the ther-
mal resistivity R�� ,H� is given by

R��,H�H
/� = g��H1/�� , �8�

where g�x� is a universal function.
In this paper, we use the critical exponent of the correla-

tion length �=0.6705 as determined by Goldner and

FIG. 1. The thermal resistivity with a fixed H=6 at T� as a
function of L /H.

FIG. 2. Thermal resistivity R�T ,H� versus temperature for film
geometry with sizes that correspond to H=4, 6, 10 and L=5H. The

bulk critical temperature T�=1.5518 is also shown.

174508
Ahlers.34 For 
, the dynamic scaling theory35 predicted an
asymptotic value 
=� /2. However, Ahlers used the experi-
mental data to determine an effective critical exponent 

=0.4397 at saturated vapor pressure using the power-law fit-
ting �see Eq. �6�	 for 3�10−6
�
2�10−4, and in this fit-
ting, there is no systematical deviation from the power-law
fitting, i.e., no need for the correction terms.36 Furthermore,
renormalization group calculations21 agree with the experi-
mental data of Ahlers, but not with the dynamic scaling pre-
diction. The recent renormalization group calculations22,37

have yielded results for ��� ,H�, and the slope of the curve of
log10��� vs log10�1/H� at �=0 gives an effective exponent
which is very close to the experimental value of Ahlers.

Figure 3 shows a scaling plot of the thermal resistivity
scaling function g�x�=R�� ,H�H
/� versus the scaled reduced
temperature parameter x=�H1/� with 
=0.4397, where the
reduced temperature is taken relative to the bulk transition
temperature T�. From Fig. 3, we can find that our simula-
tional data collapse onto one single curve for a wide range of
values of H and �, thus supporting the concept of the finite-
size scaling theory over a factor of 3.5 in H. However, if we
use 
=� /2 instead of 
=0.4397, our simulational data are
not along one single curve.

The experimental data obtained by Jerebets et al. are also
shown in Fig. 3 �the solid line�. To compare the results of
simulation and experiment, we applied two free-parameter
adjustments to the simulational data. The two parameter fit-
ting does not change the shape of the scaling function. Figure
3 shows that the agreement between simulation and experi-
ment is quite good except for x�−0.4�10−5. The difference
for x�−0.4�10−5 may suggest a breakdown of finite-size
scaling in the superfluid phase as in the experiment36 in
quasi-one-dimensional.

The geometry is one of the important factors which, in
principle, can determine the scaling function. In Fig. 4, we
compare the scaling functions for films and pores as deter-

FIG. 3. The universal function g�x� obtained for film geometry.
The solid line represents the available experimental results for film
geometry �Ref. 24�. R is measured in units of cm K/W and H is
measured in units of �m. To compare the results of the simulation
and experiment, we applied two free-parameter adjustment to the
simulation results.
mined from computer simulations. From Fig. 4 we can find
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that near T� the scaling function for films and pores are dif-
ferent although their shapes are similar. Compared with the
scaling function for films, the scaling function for pores
shifts to the left, further away from the bulk behavior. This is
expected; since in comparison with the film geometry, the

FIG. 4. Comparison of the finite-size scaling functions g�x� for
films and pores as determined from computer simulations. The units
of R and H are the same as in Fig. 3.
pore geometry restricts the dimensionality of the system

Phys. 113, 849 �1998�.
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more, thereby further limiting critical fluctuations. As a con-
sequence, the thermal resistivity for pore geometry is higher
at T� and decreases to 0 at a lower temperature.

IV. SUMMARY

We have calculated the thermal resistivity R�� ,H� of liq-
uid 4He in a film geometry �on a L�L�H lattice� using the
XY model, which belongs to the same universality class as
liquid 4He. We applied periodic boundary conditions along L
directions and open boundary conditions in the H direction.
We obtained the thermal resistivity scaling function g�x� us-
ing known values for the critical exponents. We find a good
agreement for scaling functions between the results of the
simulation and experiment for x�−0.4�10−5 using the tem-
perature scale and the thermal resistivity scale as free param-
eters. We also compared our calculated scaling function for a
film geometry with that for a pore geometry and found a
systematic shift.
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