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We discuss ground state properties of a mixture of two fermion species which can bind to form a molecular
boson. When the densities of the fermions are unbalanced, one or more Fermi surfaces can appear: we describe
the constraints placed by Luttinger’s theorem on the volumes enclosed by these surfaces in such Bose-Fermi
mixtures. We also discuss the nature of the quantum phase transitions involving changes in the number of
Fermi surfaces.
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I. INTRODUCTION

Recent experiments1,2 on trapped ultracold atoms have re-
focused theoretical attention on the pairing between distinct
fermion species, in situations in which the densities of the
two species are unequal. In these experiments unequal num-
bers of two hyperfine states of fermionic 6Li atoms were
mixed and scanned across a Feshbach resonance. On one
side of the resonance the fermions bind to form a bosonic
molecule which can condense into a Bose-Einstein conden-
sate �BEC�, while on the other side they experience a weak
attractive interaction which leads to formation of Cooper
pairs in a Bardeen-Cooper-Schrieffer �BCS� state. When the
densities of the hyperfine species are unbalanced, some fer-
mions are unpaired, and this raises the possibility of coexist-
ence of a bosonic condensate and one or more Fermi surfaces
in the ground state.

This paper will describe the constraints that Luttinger’s
theorem places on the volumes enclosed by Fermi surfaces
under such conditions. Such constraints are distinct in differ-
ent phases, and we will also describe the quantum phase
transitions across which the statement of Luttinger’s theorem
changes. We note that these Fermi surface volume con-
straints are exact, and apply even in strongly interacting re-
gimes where the fermions fluctuate into bosonic molecular
states at short scales. In such situations short-range spectro-
scopic observables may indicate that fermions exist in mol-
ecules, but the true ground state will nevertheless have the
undiminished Fermi surface volume�s�, albeit with a reduced
quasiparticle residue at the Fermi surface. Our results indi-
cate that the volumes of the Fermi surfaces are sensitive to
the presence or absence of a Bose condensate of the mol-
ecules; thus they can also be used to probe superfluidity or
pair coherence. In principle the Fermi surface volumes can
be measured from the momentum distributions of the atoms.
Such a measurement was recently performed in a gas of 40K
across a Feshbach resonance.3 In this experiment the effect
of the trap on the momentum distribution appears to be quite
strong, such that the discontinuity in momentum distribution
gets wiped out even for noninteracting fermions. We hope
that by manipulating the form of the trap potential, its effect
can be minimized so that discontinuities in momentum dis-
tribution associated with Fermi surfaces can be detected in
future experiments; this would probably require a trap poten-

tial that is flat inside the trap and rises very fast near the
boundary.

We note that Luttinger’s theorem for Bose-Fermi mixtures
has also been investigated in recent work4,5 in which a boson
and a fermion bind to form a fermionic molecular state. Here
we will show that these results can be straightforwardly ex-
tended to the case of interest to the recent atomic experi-
ments: two fermions binding to form a bosonic molecular
state. We also use nonperturbative arguments similar to those
of Yamanaka, Oshikawa, and Affleck6 to establish analogous
results in one dimension.

II. HAMILTONIAN AND PHASE DIAGRAM

Our results are rather general, and apply to a wide class of
Hamiltonians of the form

H = Hf + Hb + �
k,k�

�Vk,k�f↑,k
† f↓,k�

† b−k−k� + H . c . �

− �
k
„�� + h�f↑,k

† f↑,k + �� − h�f↓,k
† f↓,k + �2� − ��bk

†bk… ,

�1�

where f↑,↓ are annihilation operators of the two fermion spe-
cies, b is the annihilation operator of the bosonic molecule,
Hf and Hb involve fermionic and bosonic operators only
�which contain their kinetic energies and may also include
additional interactions�. The fermion species are at chemical
potentials � f↑=�+h and � f↓=�−h, while the boson is at
chemical potential �b=2�−�. Here h is the “field” which
unbalances the fermion densities, and � is the “detuning”
across the Feshbach resonance which scans between the BCS
and BEC limits.

It is useful to frame our discussion using a ground state
phase diagram as a function of � and h. Such a phase dia-
gram has been studied in a number of recent works,7–12 and it
is not our purpose here to critique these results. Rather we
find it useful to work with the schematic phase diagram
shown in Fig. 1, which omits instabilities towards phase
separation and broken translational invariance. As we will
discuss later, our results are easily extended to modulated
phases like the Fulde-Ferrell-Larkin-Ovchinnikov �FFLO�
state.13,14
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It is easiest to first understand the phases at small and
large h in Fig. 1. At small h we have the conventional paired
fermion state with equal fermion densities, N↑=N↓, where
N↑=�kf↑,k

† f↑,k and similarly for N↓; this interpolates from the
BEC to the BCS limits with increasing �. At very large h, we
have conventional Fermi liquid states with no BEC, �b�=0;
these can have a single Fermi surface of f↑ alone with
N↓=0, or two Fermi surfaces with one each for f↑ and f↓, and
both N↑, N↓ nonzero.

At intermediate h, we have the possibility of phases with
coexistence of the BEC and Fermi surface�s�. These can be
understood most simply by adding a nonzero �b� to the ef-
fective Hamiltonian for the large h Fermi liquid states. The
2FS+BEC phase is known as the Sarma15 or “breached
pair”16 state. This intermediate h region is most likely to be
susceptible to further instabilities towards phase separation17

and modulated phases �which we will note later� in the weak
coupling �large positive �� regime. There is numerical evi-
dence suggesting it may become stable in the intermediate
and strong coupling regimes.18

III. LUTTINGER’S THEOREM

For the decoupled Hamiltonian Hf +Hb, the numbers of
the two fermion species are separately conserved, and the
original version of the Luttinger’s theorem states that there
are two Fermi surfaces that correspond to the two fermion
species, whose volumes are determined by the numbers of
each fermion species. Here we extend the Luttinger’s theo-
rem to include the full H, which mixes fermions with bosons
and break the conservation of the fermion number for indi-
vidual fermion species. We find that the two Fermi surfaces
remain to have separately conserved volumes as long as
there is no Bose condensate �or no broken U�1� symmetry�.
In the presence of a Bose condensate, the volumes of indi-

vidual Fermi surfaces are no longer conserved, but we will
now show that the difference of the volumes of the two
Fermi surfaces remains conserved, and this difference is de-
termined by the density or number difference in ↑ and ↓
fermions �which commutes with H�:

�N = N↑ − N↓ = �
k

�f↑,k
† f↑,k − f↓,k

† f↓,k� . �2�

As we noted earlier, closely related results were obtained on
a different model of Bose-Fermi mixture.4

We introduce the 2�2 Green’s function matrix for fermi-
ons in the usual manner to allow for pairing and appearance
of an anomalous Green’s function:

ĜF�x,t� = − i�T�f↑�x,t�, f↓
†�x,t��T�f↑

†�0,0�, f↓�0,0��� . �3�

�N is related to the Green’s function matrix in the following
manner:

�
k

�f↑k
† f↑k + f↓kf↓k

† � = N0 + �N

=
− iA

�2��d+1 � d�ddk ei�0+
trĜF��,k� ,

�4�

where N0=�k1 is the total number of single particle states
within a high momentum cutoff or a band within which the
model is defined, A is the system volume, and d is dimen-
sionality. Using the Dyson’s equation for fermion self-energy
�including anomalous self-energy that is off-diagonal�

�̂F��,k� = � − �̂k − ĜF
−1��,k� , �5�

where �̂k is the �diagonal� kinetic energy matrix for ↑ fer-
mion and ↓ hole �each measured from the chemical poten-
tial�, one may rewrite Eq. �4� as follows:

N0 + �N =
iA

�2��d+1 � d�ddk ei�0+
tr

�	 �

��
log ĜF��,k�
 − 	ĜF��,k�

�

��
�̂F��,k�
 .

�6�

The proof of Luttinger’s theorem relies on the existence
of a Luttinger-Ward �LW� functional 	LW�G��, whose func-
tional derivative gives the exact self-energy when evaluated
at the exact Green’s function:19


	LW�G��

G�

�G�=G = � . �7�

Recently it has been shown20 the LW functional can be con-
structed nonperturbatively under very general situations, in-
cluding cases with spontaneously broken symmetry. This is
particularly important in the latter cases, as the broken sym-
metry states are not smoothly connected to noninteracting
systems, and the Green’s functions may contain “anomalous”
terms. In the present case the LW functional is a functional
of both fermion and boson Green’s functions, and the con-
servation of �N guarantees that

FIG. 1. Schematic zero temperature phase diagram as a function
of the field h and the detuning �. The phases labeled BEC have
�b��0, and include regions where the pairing is more properly
considered to be of the BCS type. States labeled nFS have n Fermi
surfaces. Only homogeneous, translationally invariant states are
shown, and possible instabilities to phase separation and modulated
FFLO states have been omitted. Two Luttinger theorems, in Eq.
�13�, apply in the phases without the BEC. The phases with the
BEC have only one Luttinger theorem, specified in Eq. �12�.
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	LW�ĜF���,k�,GB���,k�� = 	LW�ĜF��� + �,k�,GB���,k��;
�8�

this is a consequence of the invariance of

	LW�ĜF��� ,k� ,GB��� ,k�� under the gauge transformation
f↑→ f↑e

i
 ; f↓→ f↓e
−i
.20 It leads to

�	LW�ĜF� ,GB��
��

=� d�ddk tr	 
	LW


ĜF�

�ĜF�

�� 
 = 0. �9�

Now use the exact Green’s functions as the argument of 	LW
in the equation above, and generalize Eq. �7� to the matrix
form:


	LW�ĜF� ,GB��


ĜF�
�Ĝ�=Ĝ = �̂F, �10�

one can show the last term in Eq. �6� vanishes by combining
Eqs. �10� and �9�. The manipulation of the remaining term

�that involve ĜF only� is straightforward and standard;19,21

one may, for example, diagonalize ĜF to perform the trace.
This leads to

N0 + �N =
A

�2��d � ddk��„− e↑„k…… + �„− e↓�k�…� , �11�

where e↑,↓�k� are the eigenvalues of −Ĝ−1��=0,k�. In the
absence of interactions e↑,↓�k� are simply the single particle
excitation energies, and the ks at which they vanish define
the Fermi surfaces. In the presence of interactions there is a
self-energy contribution to e↑,↓�k�, which in general contains
an imaginary part. However, for the quasiparticles to be well-
defined in the low-energy limit, the imaginary part of the
self-energy must vanish for �=0, so that the quasiparticles
are long lived. As a consequence e↑,↓�k� are real, and are the
�interaction-renormalized� quasiparticle excitation energies,
and the ks at which they vanish define the location of the
Fermi surfaces in the presence of interactions. Thus the two
terms on the right-hand side of Eq. �11� are the volumes of
the two Fermi seas for ↑ particlelike quasiparticles and ↓
holelike quasiparticles; this is because e↑�k� is an increasing
function of �k�, while e↓�k� is a decreasing one. To express
results in terms of particlelike Fermi seas, we rewrite Eq.
�11� as follows:

�N = − N0 +
A

�2��d � ddk��„− e↑�k�… + 1 − �„e↓�k�…�

=
A

�2��d � ddk��„− e↑�k�… − �„e↓�k�…�

=
A

�2��d �↑ − ↓� , �12�

where we used the fact that N0= A

�2��d �ddk. We have thus

related the fermion number difference �N to the Fermi sur-
face volumes ↑, ↓ in a form analogous to the Luttinger’s
theorem.21 The statement in Eq. �12� applies in all the phases

of Fig. 1. The BEC phase has no Fermi surface, and so in this
phase we must have N↑=N↓.

In the absence of Bose condensation, �̂ �and therefore

ĜF� is diagonal in the original basis of f↑,↓; in this case one
can interpret the two Fermi surfaces as those for the ↑ ,↓
fermions, respectively. By using the fact that bosonic excita-
tions are gapped in the absence of a Bose condensate,4 one
can further prove that their volumes are fixed individually, so
that

N↑ + NB =
A

�2��d↑; N↓ + NB =
A

�2��d↓, �13�

where NB=�kbk
†bk. The result �13� applies in all phases of

Fig. 1 without a BEC. Among these, the 1FS phase only has
a Fermi surface for the ↑ fermions, and so Eq. �13� implies
that in this phase we must have N↓=0 and NB=0. Note that
N↑,↓ and NB are not individually conserved, but the combi-
nations on the left-hand sides of Eq. �13� are conserved in
the absence of a Bose condensate. The proof of Eq. �13�
parallels the analogous one in Ref. 4.

In our discussion so far we have assumed the system to be
uniform. Our results, however, can be generalized to cases
with spontaneously broken translational symmetry. An im-
portant example of this case is the FFLO superfluid state,13,14

in which the Bose condensate has a periodic spatial structure.
In such cases, the Fermi surface volumes are well-defined
modulo the Brillouin zone volume B; as a consequence all
of our statements on the constraints on Fermi surface vol-
umes are modulo B. The situation is identical to electrons
moving in a periodic potential considered by Luttinger
originally.21 We note in passing that the possible realization
of the FFLO state in CeCoIn5 �Refs. 24 and 25� is currently
being investigated experimentally.

IV. ONE-DIMENSIONAL SYSTEMS

We now turn our discussion to one-dimensional �1D� sys-
tems, where there are no well-defined quasiparticles, but
there can still be well-defined Fermi wave vectors and a cor-
responding Luttinger’s theorem.6 In the following we con-
sider a 1D lattice version of H:

H1D = − tf�
i,�

�f�i
† f�i+1 + H . c . � − tb�

i

�bi
†bi+1 + H . c . �

− g�
i

�f↑i
† f↓i

† bi + H . c . � + Hint, �14�

where i is the site index and Hint involves fermion or boson
number operators only. Such models have been considered
recently22,23 in the context of mixture and coherence between
fermionic atoms and bosonic molecules in 1D. Here we con-
sider the most generic case that N↑−N↓�0 and the particle
fillings are incommensurate with the lattice, so that neither
spin nor charge gap is possible; the generalizations to com-
mensurate cases are straightforward. In the absence of the
bosonic degrees of freedom, Eq. �14� describes a Luttinger
liquid with two �charge and spin� linearly dispersing gapless
modes, and there are two Fermi wave vectors associated with

FERMI SURFACES AND LUTTINGER’S THEOREM IN¼ PHYSICAL REVIEW B 73, 174504 �2006�

174504-3



↑ and ↓ fermions, whose magnitudes are determined indi-
vidually by N↑ and N↑, which are separately conserved.6 In
the presence of bosonic degrees of freedom and the Bose-
Fermi mixture as described by H1D in Eq. �14�, it was
pointed out recently22 that a new gapless mode may appear
due to the condensation �or formation of an additional Lut-
tinger liquid� of the bosons. This “decoupled spin-gapless
phase”22 is the 1D analog of the high-D phases with a Bose
condensate discussed earlier. We show below that there exist
1D versions of Luttinger’s theorem that completely deter-
mine the Fermi wave vectors in the absence of this new
gapless mode, while in the presence of it �or in the decoupled
spin-gapless phase� the Luttinger theorem only gives a con-
straint on the Fermi wave vectors in a manner analogous to
the high D cases discussed earlier.

Following Ref. 6, we consider a system with linear size L
and impose a periodic boundary condition. We introduce
twist operators that are appropriate to H1D in Eq. �14�, in spin
and charge sectors, respectively:

Us = exp	i
2�

L �
j

j�nj↑ − nj↓�
 , �15�

Uc = exp	i
2�

L �
j

j�nj↑ + nj↓ + 2njb�
 . �16�

It is straightforward to show that Us,c �0� generates states
with momenta

ks =
2�

L
�N↑ − N↓� =

2�

L
Ns, �17�

kc =
2�

L
�N↑ + N↓ + 2NB� =

2�

L
Nc, �18�

whose energies vanish as 1/L in the limit L→�. These gap-
less excitations at finite wave vectors correspond to combi-
nations of 2kF excitations in Luttinger liquids.6

In the absence of the new gapless mode due to the bosons,
there is one spin mode and one charge mode that is gapless,
and the two Fermi wave vectors can be uniquely determined
by �17� and �18�:

2kF� = �kc + �ks�/2 = ��/L��Nc + �Ns� , �19�

where �= ±1 for ↑ /↓. On the other hand when there is a new
gapless mode due to the bosons, there is one spin mode and
two charge modes that are gapless; in this case there is an
additional Fermi wave vector associated with this new
charge mode �which may be interpreted as the Fermi wave
vector of the condensed bosons�. In this case Eqs. �17� and
�18� can no longer determine all the Fermi wave vectors
uniquely. However Eq. �17� still poses a constraint for the
Fermi wave vectors that correspond to the fermions:

2�kF↑ − kF↓� = ks = �2�/L�Ns. �20�

These results are completely analogous to those obtained for
high D systems.

It has been shown26 recently that correlations in trapped
1D cold atom systems can be probed through interference

experiments. In particular, it was found that the intensity of
interference patterns can be used to directly measure the
square of the equal time single particle Green’s function.26

For fermions, the Green’s function is oscillatory with the
characteristic wave vector kF. As a result kF can be extracted
from such experiments, and our results above on the 1D
systems with a Bose-Fermi mixture can be tested directly.

V. QUANTUM PHASE TRANSITIONS

We conclude this paper by presenting the field theories
controlling the various quantum phase transitions and multi-
critical points in Fig. 1 in the following subsections. Some
aspects of these theories were also discussed in Ref. 4.

A. 2FS/1FS

We begin with the transition between the 2FS and 1FS
phases at large h. Here a Fermi surface gradually shrinks to
zero volume, in the absence of any bosonic condensate. De-
noting the fermionic quasiparticle excitations of this small
Fermi surface by �, and following the analysis of the dilute
Fermi gas critical point in Chapter 11 of Ref. 27, we initially
guess that the critical theory is given by the free fermion
form

S� =� ddxd��† �

��
−

1

2m�

�2 + s�� , �21�

where � is imaginary time, and s is the parameter which
tunes across the transition. In this case, the quantum critical
point is at s=0, and the small Fermi surface is present for
s�0. The simplest four Fermi interaction must involve two
gradients because of the Pauli principle, and is of the form
���†���2. A scaling analysis with dynamic exponent z=227

shows that the dimension of this term is −d, and so such
interactions are always irrelevant. However, here we have a
second large Fermi surface present, and we have to allow for
long-range interactions induced by the fluctuations of this
Fermi surface. The oscillations of this second Fermi surface
will couple to �†�, and integrating these out following
Hertz28 we obtain the following long-range interaction �for
d�1�:

��
k,�

��†��k,�

���
k

��†��−k,−�. �22�

Power counting with z=2 shows that � has a scaling dimen-
sion 1−d, and so is irrelevant. The d=1 case requires special
treatment, and we will not consider it here.

B. 2FS+BEC/1FS+BEC

This is just like the 2FS/1FS transition above, except that
a background Bose condensate is present. Fluctuations in the
superflow of this condensate induce long-range interactions,
which could be important at the critical point. With � being
the phase of the condensate, the coupling to the � excitations
of the current-current type:8 �i���†�i�−�i�

†��. Integrating
out the �, we now generate the interaction
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�
k1,k2,q,�1,�2,�

�†�k1 + q,�1 + ����k1,�1�

�
�k1 · q��k2 · q�

q2 �†�k2 − q,�2 − ����k2,�2� . �23�

Again, simple power counting shows that this term has a
scaling dimension −d, and so it is irrelevant. So the critical
theory remains the free fermion theory S�.

C. BEC/1FS+BEC

The considerations for this are identical to the 2FS
+BEC/1FS+BEC transition above, as both involve the dis-
appearance of a Fermi surface in the presence of a bosonic
condensate.

D. BEC/2FS+BEC

This is a novel transition involving the simultaneous ap-
pearance of two Fermi surfaces at a spherical minimum in
the fermionic quasiparticle dispersion. This was considered
in a separate paper11 for the case of nonsingular �or short-
range� fermionic interactions. The superflow fluctuations will
also introduce here an interaction between the fermions of
the form in Eq. �23�. Because we are now interested in fer-
mions at a large momentum Fermi surface, the k1,2 in Eq.
�23� will be replaced by k0n, where k0 is the minimum of the
fermion dispersion �that forms a sphere; it also becomes the
Fermi wave vector once fermions start to populate these
modes�, and n is its normal direction. This changes the
power counting in the scaling dimension of this coupling. We
discuss the renormalization group �RG� flow of such aniso-
tropic, long-range interactions below.

As discussed in Ref. 11, the relevant fermionic modes
near the critical point are those within a thin spherical shell
in momentum space: k0−�� �k � �k0+�, where ��k0 is a
cutoff scale. Phase space restriction thus divide the possible
scattering processes into two classes, which need to be
treated separately:

�i� The Cooper channel, in which k1�−k2, and the mo-
mentum transfer q can be as large as O�k0�. In this channel
the interaction of Eq. �23� simply reduces to those studied in
Ref. 11, and the results there can be applied directly to the
present case.

�ii� The forward scattering channel, in which �k1+k2 �
��, and the magnitude of the momentum transfer is con-
strained to be �q � ��. In the absence of long-range interac-
tions, we can then take the limit �q � →0, and assume that
there is no further dependence on its orientation q / �q�. How-
ever, with the anisotropic long-range interactions induced by
the superflow fluctuations in Eq. �23�, the limit of vanishing
�q� can be taken, but there remains a residual dependence on
q / �q�. Here we perform an RG analysis of the most general
interaction of fermions on the Fermi surface dependent upon
q / �q�, and for simplicity focus on two-dimensional �2D� sys-
tems; the situation in three-dimensions �3D� is expected to be
similar qualitatively. Such an interaction takes the following
form in 2D:

V�k1,k2,q� = �
n

Vn���cos�n�q� , �24�

where � is the angle between k1 and k2, and �q is the angle
between q and k1+k2. For short-range interactions only the
n=0 term exists, and this case was analyzed in Ref. 11. The
interaction in Eq. �23� generates a term with n=2. We now
perform a one-loop RG analysis11 of the interactions in Eq.
�24�, and obtain the following flow equation:

dVn���
d log s

= 
n,0�0�V� , �25�

where s is the cutoff rescaling factor and

�0�V� =
− 2m*

�2�sin ���−1

1 ��n
Vn���cos�n��t���2

1 + t2 dt , �26�

in which ��t�=arctan��t−cos �� / sin ��−� /2, and m* is a pa-
rameter that parametrizes the fermion dispersion near the
minimum: ��k�= �k−k0�2 / �2m*�. It is clear from Eq. �25� that
only V0 gets renormalized under RG transformations, while
interactions with n�0 remains marginal. Physically this is
because the renomalization is due to multiple virtual scatter-
ing processes whose momentum transfers are of the order of
the cutoff �, resulting in renomalization that is not sensitive
to the net momentum transfer much smaller than � at low-
energy. Thus the n�0 quasiparticle interactions remain at
their bare values, and are finite and nonuniversal in the low-
energy limit. For the case of the quantum phase transition of
interest in this subsection, the n=2 interaction in Eq. �23�
therefore acquires no loop corrections. Furthermore, in the
presence of Vn�0, V0 will always be driven negative and flow
away, even if it is initially positive �or repulsive�. The situa-
tion was very different when only the short-range interaction
V0 was present; in that case it was found11 that for repulsive
interactions, it flows to zero logarithmically, which leads to
an effective quasiparticle interaction that takes a universal
form in the low-energy limit due to this renormalization.
Here, we observe from Eq. �26� that the n=2 interactions
leads to a runaway flow of V0 that has no fixed point. Physi-
cally, this suggests that either the transition from BEC to
2FS+BEC is of first order, or that the instability of the BEC
in this case is toward a state with other symmetry properties,
like the FFLO state. We note that related observations were
made in Ref. 8 based on quite different considerations.

E. 1FS/1FS+BEC

This involves the appearance of a BEC in the presence of
the Fermi surface. The BEC onset is described by the dilute
Bose gas theory discussed in Chapter 11 of Ref. 27, and in
Ref. 29. The action is

Sb =� ddx� d�	b†�b

��
−

1

2mb
b†�2b + s�b�2 +

u

2
�b�4
 ,

�27�

where s is again the tuning parameter, and the quantum criti-
cal point is at s=0. The scaling dimension of the quartic
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coupling u is �2−d�, and so is formally irrelevant for d�2.
However, this coupling is dangerously irrelevant, because a
u�0 is required to stabilize the system for s�0. Couplings
to Fermi surface fluctuations will induce a long-range inter-
action analogous to Eq. �22� among the bosons

��
k,�

��b�2�k,�

���
k

��b�2�−k,−�. �28�

Just as in Eq. �22� however, power counting near a z=2
transition shows that this coupling has a scaling dimension
1−d, and so is irrelevant.

F. 2FS/2FS+BEC

The considerations for this are nearly identical to the
1FS/1FS+BEC transition discussed above. Here, we also
have to consider the decay of a boson into two fermions, one
each on the respective Fermi surfaces. However, this is a low
energy process only at finite wave vectors which connect the
two Fermi surfaces. Consequently it can be safely neglected
for the low momentum b critical theory.

G. Multicritical point M

The theory for this point is essentially the direct sum of
the theories for the two transition lines which intersect at M.
There is a bosonic critical mode, b, described by Sb, and a
fermionic critical mode �, described by S�. These two criti-
cal modes can interact with each other via the contact term

g� ddxd��b�2�†� , �29�

and g has dimension �2−d�. So it will have appreciable ef-
fects in d=2 which can be computed along the lines of Ref.
29. The coupling g will also be very important in d=1.

H. Multicritical point L

This is a “Lifshitz” point, which was considered in Ref. 8,
albeit with a different perspective. This is the point where the
fermionic dispersion minimum moves from k=0 to a non-
zero k. Consequently, the dispersion at small k is �k4, and
the multicritical theory has z=4:

S�,L =� ddxd��† �

��
+ �4�� . �30�

The simplest four Fermi interaction is again ���†���2, and
a scaling analysis with z=4 shows that this has scaling di-
mension �2−d�. The superflow fluctuations will also induce a
long-range interaction as in Eq. �23�, and this again has the
scaling dimension �2−d�. So these interactions are irrelevant
for d�2, while a detailed analysis of logarithmic corrections
is necessary in d=2. We do not present this here, but it can
be carried out as in Ref. 29.
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