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We study vortex state transitions of mesoscopic superconducting disks using the Bogolubov-de Gennes
equations. A vortex charge associated spin-orbit interaction is considered. This interaction induces an addi-
tional geometric phase and an intrinsic energy barrier for state transition of a different angular quantum
number, leading to metastablility. This provides possible interpretations for experimental observations of the
noninteger flux quanta and negative flux jump in mesoscopic superconductors �Geim et al., Nature �London�
407, 55 �2000��.
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I. INTRODUCTION

The flux carried by vortices differing from an integer mul-
tiple of flux quanta �0�hc /2e and the “negative vortex”
whose penetration leads to the expulsion of magnetic field
have been experimentally1 shown for mesoscopic supercon-
ductors with the size comparable to the superconducting co-
herence length � and/or the magnetic field penetration depth
�. The phenomenological Ginzburg-Landau theory has been
used extensively to describe the unusual phenomena.2–8 The
surface barrier2,5,6 based on Bean-Livingston �BL� model9 is
supposed to be responsible for the experimental findings. Ac-
cording to the BL model, a surface barrier exists due to the
competition between the vortex attraction by its mirror im-
age �outside of the sample� and its repulsion by the near-edge
screening currents. Vortices can then initially penetrate only
at a finite distance from the edge, and the amount of flux
varies on their distance from the sample edge and can be
smaller than �0, as first pointed out by Bardeen10 and
Ginzburg.11 It is, however, obvious that this argument seems
not so sound for the negative flux jump. In addition, the BL
model is essentially based on the London theory, which is
then valid only for the vortex motion far from the sample
boundary that is inconsistent with the mesoscopic case. We
will show that these abnormalities would be closely related
to how the charged vortices distribute and their dynamics as
well.15–22 Khomskii and Freimuth16 suggested that the vortex
core should be charged up due to the chemical potential in
the superconducting state breaking the particle-hole symme-
try different from that in the normal state. In addition, Ha-
yashi et al.18 showed that vortices are intrinsically charged
up in superconductors having a small value of kF�. This vor-
tex charge together with the screening effect12 determines the
microscopic electron structure and the dynamics of the
vortex.20,21 The charged vortices induce an electrostatic field,
which in turn generates a spin-orbit �SO� term that becomes
appreciably larger for mesoscopic superconductors due to the
quantum size effect. It is, therefore, essential to include the
vortex charging induced electrostatic field in order to account
for experimental findings.1

In this work, we perform studies for the BdG equations14

invoking the charge redistribution associated SO coupling
contribution. We find that the SO interaction can give rise to
an additional Aharonov-Casher �AC�-like22 phase to the

wave function of electrons �holes�. A noninteger flux quanta
is then expected since wave function phase must be quan-
tized. In addition, we show that the spin-orbit term can in-
duce a barrier that depresses the presumably first-order tran-
sition between the giant vortex states of different angular
quantum numbers, resulting in metastability that closely ties
to the negative flux jump as state transition occurs with in-
creasing field.

II. THE MODEL

A type-II superconductor in the mixed state can be treated
as a system with two electronic subsystems, one of which is
superconducting, the other with the core size in the order of
coherence length � remains the normal.23 The transition of a
system to a superconducting state leads to a chemical poten-
tial change ���r�� for the electrons �holes� of these sub-
systems, which makes charge redistribution and vortices
charging up.16 The position-dependent chemical potential
change requires an electrostatic potential �es�r�� so that the
electrochemical potential �for electrons in a metal� �el=�0
+���r��+e�es�r�� is spatially constant, which then induces an

electric field defined as E� =−grad��es�. Here, the electrostatic
potential expressed in terms of the normalized order param-

eters �̃�� /�0 as15 �es= �̃0��̃ · �̃*−1� with �̃0� c̃�	� /2
2e,
�	�=�2 /4m�2 and c̃��1–10�. The dimensionless wave func-
tion of the particle of charge 2e, e.g., a Cooper pair, is asso-

ciated with the pair potential ��r�� by14 �̃
= �8.392ñ /8
2kB

2TC
2 �1/2��r�� /�0, whereas �0

2= ñ /4 with ñ the
total electron number per cubic centimeter. Hence, the elec-
tric field reads

E� =
1

e

�2

m�2

8.392

8
2kB
2TC

2 ���grad����� . �1�

�We have chosen c̃=10.� This induced field acts on the qua-
siparticle of spin � , mass m, and charge e adding a spin-orbit

coupling term Ĥso�−e� /4m2c2̂ ·E� � �−i��−e /cA� � to the
Hamiltonian of the system. The Bogolubov-de Gennes
equations14 then read

�iui = �He + U + Hso�ui + �vi
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�ivi = − �He
* + U + Hso

* �vi + �*ui, �2�

where the single electron energy measured from Fermi level

EF is He� p̂2 /2m−EF=1/2m�−i��−e /cA� �2−EF. The index
i denotes all quantum numbers. Note that the effective crys-
tal potential U�r� is an integral involving all states below the
Fermi level and is nearly independent of temperature. By
neglecting its details, the effective potential can be treated as
a constant for a homogenous sample and it is assumed to be
null for simplicity. The pair potential and the current density
expressed in terms of the solutions of Eq. �2� as

��r�� = V 	
Ei���D

ui�r��vi
*�r���1 − 2f��i�� , �3�

j��r�� =
e�

2mi
	

i

 f��i�ui

*��−
ie

�c
A��ui

+ �1 − f��i��vi��−
ie

�c
A��vi

* − H.c. , �4�

where g�N�0�V is the coupling constant that describes the
electron-electron attractive interaction, �D is the Debye fre-
quency, and f�E� is the Fermi distribution. The vector poten-

tial A� is related to the current density j� by Maxwell’s equa-
tion

� � � � A� =
4


c
j�, �5�

and the boundary conditions are: ����A� ��s=H� ext, and

��n���−ie /�cA� ���r����s=0. A self-consistent solution is ob-

tained by repeatedly solving Eq. �2� and calculating � and A�

using Eqs. �3�–�5�. The parameters used in our computations
are EF�2m�0

2
2�0
2�0� /4�2�103 meV, g=0.166, �D

=35 meV, and Tc=1.25 K, �0�0��0.345 meV, �0=210 nm
for an Al superconductor.14

III. RESULTS AND DISCUSSIONS

A. The ac-like phase due to the spin-orbit interaction

We consider first the giant vortex state case where the
system is expected invariant under rotations about the z axis,
that is, the symmetric axis of the thin disc. We use the cy-
lindrical coordinates �r ,� ,z�. For a thin disc of thickness h
�0.1�0, the pair potential may be thought uniform along the
z axis. Hence, only the radial component of electric field Er
and the angular component of the vector potential A�, and
thereby the third component of the spin-orbit contribution is
necessary to be involved. The SO term reduces to Hso=

−e� /4m2c2z ·E� r�−i��−e /cA� �� with z= � 1 0
0 −1

�. We then
have,


 p̂2

2m
+

e�Er

4m2c2zp̂�un + ��r��vn = �nun,

− 
 p̂2

2m
+

e�Er

4m2c2zp̂�vn + �*�r��un = �nvn, �6a�

which break up into two independent matrix equations due to
the spin-orbit coupling, one for the spin-up electron and

spin-down hole quasiparticle wave function �̂↑��u↑ ,v↓�T,

whereas another one �̂↓��u↓ ,v↑�T for the spin-down elec-
tron and spin-up hole quasiparticle wave function. Each ma-

trix equation has the same form, and we consider the �̂↑
��u↑ ,v↓�T.

�
p̂2

2m
+

e�Er

4m2c2 p̂� − EF �

�* − � p̂2

2m
−

e�Er

4m2c2 p̂��*

− EF
��u↑

v↓
�

= ��u↑

v↓
� . �6b�

Therefore, one can rewrite the kinematical momentum of the

quasiparticle as p̂±�q�ẑ�E� r� /c with �q=e� /4mc for the

spin-up electron or the spin-down hole. Denote A� �

=A� � ��q /e��ẑ�E� r� and EF� =EF− �Er�q /c�2. Above kine-

matical momentum reduces to −i��� − �e /c�A� � that has a for-
mal analogy with the kinematical momentum of a particle of
charge e and mass m circulating around the magnetic field

h� =��A� �, and Eq. �6� then analog with the standard BdG
equations. For convenience, we drop the superscript prime
notation in the following discussions.

We introduce then the gauge-invariant theorem. Suppose
that �n is an eigenvalue and �un vn�T is the eigenfunction set

for Eq. �6� with A� and pair potential �. Then,
�un exp�ie� /�c� vn exp�−ie� /�c��T is an eigenfunction set

corresponding to the eigenvalue �n for Eq. �6� with A� →A�

+���r�� and �→� exp�2ie� /�c� for a nonsingular scalar
function �.24

We choose A� +���r��=0 to eliminate the potential vector
from Eq. �6�. The total magnetic flux �� is then given by

�� = �
l�=r�̂

A� · dl� + ��q/e� �
l�=r�̂

�E� r � dl��ẑ � ��r� + �SO�r� ,

�7a�

where ��r� stands for the magnetic flux penetrating in the
sample when r→a−, whereas

�SO�r� � ��q/e� �
l�=r�̂

�E� r � dl��ẑ = ��q/e� � �
s=
r2

� · E� rds

�7b�

is the flux due to the SO interaction. It follows from the
gauge-invariant theorem that �u v� changes by a phase to
�ue+i�e/c���� ve−i�e/c�����, and � to � exp�2ie�� /�c�, as the
local electron coordinates r� goes one turn around the sample.
Clearly, the phase shift consists of two parts. One of them is
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the Aharonov-Bohm �AB�-like31 phase that describes the ef-

fect of a charged particle in the magnetic field ��A� . The
other is the ac-like phase that comes from the SO interaction,
i.e., as a result of a coupling of the spin current to an effec-
tive tensor gauge potential that is directly proportional to the

electric field E� along the path of the particle. We choose

�̂n,��r ,��= �un,�,k�r�ei��+nq/2��vn,�,k�r�ei��−nq/2���T. The single-

valued �̂�,k�r ,�� then requires that

�� ± nq/2� · 2
 ± e������r/c� = 2
n , �8�

where n is an integer that is defined as the total angular
quantum number of quasiparticles. � is half and odd inte-
gers, whereas the integer nq represents the angular quantum
number for the mass center of the paired quasiparticles with
wave function �u v�, and the integer k the radial quantum
number. Therefore, the AB-like magnetic flux ���r���r→a− is
quantized �in units of �0� when the SO contribution �SO is
negligible, whereas a sufficiency large contribution from the
SO interaction would lead to a noninteger magnetic flux
���r���r→a−. An approximate expression of the SO term for

state nq with quantum number �� ,k ;nq� may be derived by
rearranging Eq. �6� as

�2

2m
�pr

2 +
1

r2 l+
2 + 2�Er

1

r
l+ − kF

2�u�,k�r� + ���r����,k�r�

= �u�,k�r� −
�2

2m
�pr

2 +
1

r2 l−
2 − 2�Er

1

r
l− − kF

2���,k�r�

+ ���r��u�,k�r� = �v�,k�r� , �9�

where l±=�± �� /�0+2nq� /2, �=e� /4mc2, and p̂r
2

� d
rdr

�r d
dr

�. Let us first consider the eigenvalue problem as r
→a−, that is, quasiparticles are confined onto a ringlike re-
gion of radius a, and the radial motion can be neglected. The
excitation spectrum is given by

�n =
�n

+ − �n
−

2
± 
� �n

+ + �n
−

2
�2

+ ���21/2

, �10�

with �n
±� �2

2ma2 ��n± �nq+� /2�0+�aEr�a���2− ��aEr�a��2

−nF
2� and ��2�2 /2ma2��n2−nf

2�= ±��D. Therefore, the aver-
age energy spectrum of electrons holes at or close to the
Fermi level varies with � like

�2

2ma2 ��nq + �/2�0 + �aEr�a��2 − ��aEr�a��2� , �11�

leading to ��so���,k,nq���aEr�Mod��0��. An estimation base
on the self-consistent solutions on the SO contribution will
be presented in the next section.

B. Magnetic flux associated with the spin-orbit interaction

1. Self-consistent solutions for giant vortex states

We are dealing with a disk of radius a. The BdG Eqs. �6�
can be solved separately in each subspace of fixed angular
momentum �.25 Let l±�� ,nq�=�± 1

2nq. We use the normal-
ized Bessel function �lk�r�=�2Jl�	l,kr /a� /aJl+1�	l,k� to ex-

pand the radial functions: un�r�=	kcnk�l−��,nq�,k�r� and
vn�r�=	kdnk�l+��,nq�,k�r�. Here 	l,k is the k-th zero of Jl�x�,
and the integer k=1, . . . ,N�N=50–80�. This reduces Eq. �6�
to a 2N�2N matrix eigenvalue problem. �Note that the
Fermi wave number or nF is calculated from,
��2 /2ma2�	0,nF

2 =EF. We then have nF=439 for EF

�103 meV, and a=4�0.� The states are classified in terms of
their energy eigenvalues. The states that have energy eigen-
value less than �0�maxr���r ,T ,H�� for given T and H are
known as bound states, whereas those that have energy larger
than �0 are named as scattering states. The quasiparticle am-
plitude of bound states is strongly localized in the vortex
core. Figure 1�a� shows the quasiparticle amplitudes u�r� and
v�r� corresponding to the lowest eigenvalue �1/2 ��=1/2,
nq=1� at temperature T=0.08 K�Tc. They oscillate with a
period of the order of the Fermi wavelength, and their enve-
lope has a maximum at a distance of the order of r�� /kF.
Beyond that distance it decays exponentially. The scattering
states become important only at distances larger than the
coherence length. Figure 1�b� shows current densities for the
lowest energy bound state and the scattering state of �
=15/2, which have opposite signs. The total current density
then can be decomposed in terms of contributions of the
bound states and scattering states. Close to the vortex core,
the current density originating from the bound states is para-
magnetic, whereas scattering states contribute a diamagnetic
term for r��. At distances larger than the penetration depth
�, the paramagnetic and diamagnetic parts essentially cancel,
resulting in exponential decay of current density like e−r/�.

2. The magnetic flux due to spin-orbit interaction

The pair potentials calculated at temperature 0.8K�Tc
and at 0.08 K are shown in Fig. 1�c�. The effective coherence
length � and penetration depth � are then found self-
consistently. At high temperatures close to Tc, most bound
states are thermally activated, and the bound and scattering
states contributions to the pair potential become comparable
near by the vortex core, resulting in a slow variation of
���r��. The coherence length �1 derived by fitting the pair
potential to the expression of ��r ;T�=�0�T�tanh�r /��T�� ap-
proximates to the �GL� coherence length �0. The SO contri-
bution is then found to be negligible. At low temperatures,
e.g., T=0.08 K, a very sharp rise of the pair potential in the
vicinity of the vortex core is indicated, which is essentially
due to the occupation of the low-lying bound states. The pair
potential amplitude reaches a value comparable to �0�0�
�0.345 meV=1.268�10−5�a.u.� over a distance of the order
of 0.1�0=397�a.u.�. Thus, a second expression for coherence
length �2 should be defined as ���r��core=�0�0�r /�2, leading
to �2–0.1�0. This rapid variation of the pair potential is remi-
niscent of a conjecture by Kramer and Pesch.26 The spatial
derivative of pair potential then approximates to

���/�x�core � ����r1=0.1�0
− ���r0=0�/�r1 − r0� = 10 · �0/�0

� 3.185 � 10−7�a.u.� .

The induced electric field strength calculated from expres-

sion �1� is E� �0.17�10−6�a.u.�. �Note added: The vortex
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charge density qv �in units of a single electron charge� com-

puted from −4
qv=� ·E� is 0.342�10−9 �a.u.�=0.23
�10−5 nm−3, and a brief discussion about the feasibility of
the experimental observations of the charging effect was pre-
sented in Sec. IV� Hence, the SO interaction induced flux �in
units of �0� is about ��aEr�T→0K�0.3665�10−7 for a given
state �l ,k ;nq�.

Besides temperature and applied magnetic field, the SO
contribution to magnetic flux �SO varies with the winding
quantum number l�� ,nq� and the radial quantum number k
of quasiparticles, since the vortex electric field does. The
states involved are those that favor to the pairing, that is,
those with the quantum number satisfying the inequality
�	l,k

2 �2 /2ma2−EF����D. Hence, an upper bound for l is set
by 	l,1

2 �2 /2ma2=EF+��D, leading to a maximum of lmax
�1578.0 for the Fermi level EF�103 meV and ��D
=35 meV, and a=4�0. In addition, for a fixed angular mo-
mentum of the quasiparticles, e.g., lnf �nF=439, the radial
quantum number can span the range of k�lnf�±75 with
k�lnf�=243, that is, about 150 states for the lnf. The total flux
induced by the SO interaction is then a sum running over all
favored states, which reads approximately

�SO � 2 · �	
l.k

�aEr�
T→0K

= 2 � 1578 � 150 � 0.3665

� 10−7 � 0.10735, �12�

from which one can expect a fractional flux quantum � since
the total flux ��+�SO� must, as indicated by the necessary
condition �8�, be quantized in units of �0. Notice that the
prefactor in expression �12� comes from the contributions of
both l and −l states.

C. The metastable states and saddle states

In type-II superconductors of body, a giant vortex state n
that carries flux n ·�0 is energetically unfavorable in com-
parison with the triangle vortex lattice �the Abrikosov lattice�
consisting of n vortices that has �0 each. In a finite system,
however, a metastable giant vortex is expected. A general
solution of the system is a superposition of an infinitivly
large number of the giant vortex states that form a complete
set for the eigenvalue problem �2�. For simplicity, we con-
sider only the coupling between states nq and nq+1. We as-
sume

un�r,�� = 	
k

�cnk
�1��l−��,nq�,k�r�ei��+nq/2��

+ cnk
�2��l−��,nq+1�,k�r�ei��+�nq+1�/2��� ,

vn�r,�� = 	
k

�dnk
�1��l+��,nq�k�r�ei��−nq/2��

+ cnk
�2��l+��,nq+1�k�r�ei��−�nq+1�/2��� . �13�

�Note added: We should mention that the selected function
does not obey the Neuman boundary condition. But, it would
have little effect on the final results. The reason lies mainly
on following two points. First, in comparison to the azi-
muthal component of the supercurrent with its radial compo-
nent, the former dominates, which implies that the later that
is directly proportional to the spatial derivative of the pair
potential can be neglected. Second, this approximation is ap-
propriate since the disk radius is not very small �we have
chosen a=4�0�. An algebraic computation shows that the
production of the selected function and its derivative drops
�2–3� orders at the boundary.�

FIG. 1. Spatial distribution of quasiparticle amplitudes u�r� and v�r� corresponding to the lowest eigenvalue �1/2 �a�, self-consistent
current density �b� for n=1 state, and pair potential�c� for n=0 and n=1 states at temperatures T=0.08 K�Tc, and 0.8 K�Tc.
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This reduces Eq. �2� to a 4N�4N matrix eigenvalue prob-
lem, from which, coupled with Eqs. �3�–�5�, the eigenvalue
�n and eigenvector �cnk

�1� cnk
�2� dnk

�1� dnk
�2��T and thereby the solu-

tions are solved self-consistently. The free energy F �Note
added: There is a formal analogy between the free energy
expressed in terms of ���2 and that described by a wave
function � of the paired electrons, see, Eqs. �6� and �7� on p.
175 in Ref. 14, for instance.� and the magnetization M���
�����A�−H� /4
 can then be computed from the solu-
tions. We plot the field dependences of free energy for vari-
ous states in Fig. 2 with the solid lines for the giant vortex
state, whereas the dashed for the multivortex states.

We consider, for example, state nq=1 and nq=2. As
shown in Fig. 2, the upward paraboliclike curve for the mul-
tivortex state �1, 2� intersects with the nq=1�nq=2� state at
the penetration �expulsion� field Hp

�1� �He
�2��. We will demon-

strate that state transition 1→2�2→1� as the magnetic field
varies will occur at Hp

�1� �He
�2�� due to the charge redistribu-

tion, instead of corresponding to field HSad
1↔2 where state nq

=1 degenerates with state nq=2 �without the SO term�.
Clearly, state nq=1�nq=2� then is a metastable state in the
magnetic field range HSad

�1↔2��H�Hp
�1��He

�2��H�HSad
�1↔2��.

The multivortex state �1,2� that links these metastable states
is named as the saddle state. Note that this conclusion re-
mains valid for other nq values.

D. The barrier for transition nq^nq+1

It is well known that a first-order transition between vor-
tex states with different azimuthal quantum number likely
occurs at the saddle magnetic field HSad

�nq↔nq+1� where the
states nq and nq+1 degenerate. But if there presents a barrier
U, such a first-order transition would take some time that
follows an Arrhenius law like ��exp�U /kBT�. At sufficiently

low temperature such that U�kBT, state nq survives up to
the penetration field that is larger than HSad

�nq↔nq+1�, that is,
Hp

nq �HSad
�nq↔nq+1�. Similarly, with decreasing the magnetic

field, the vortex state nq+1 remains stable until the expulsion
field He

nq+1�HSad
�nq↔nq+1�. The origin of barrier, such as the

Bean-Livington �BL� model, the vortex pinning by defects,
etc., for flux penetration and expulsion has been discussed
for decades. These models are essentially based on the Lon-
don theory, which are then valid only for the vortex motion
far from the sample boundary. In addition, the BL barrier is
found independent on the vortex core energy,27 and it seems
unlikely accounting for vortex dynamics in mesoscopic su-
perconductors. We believe the charge redistribution around
vortices can provide a barrier. We present a plausible argu-
ment.

The charging of vortices has two consequences at least.
First it induces a radial electric field that provides the force
necessary for the circular motion of quasiparticles in a vor-
tex, which has to overcompensate the Lorentz force on those
carriers for a stable vortex structure. Second, there presents
an extra force on a moving vortex because of the charge
redistribution around the vortex. A charged vortex �with
charge density qv� moving with the velocity vq yields a cur-
rent density j�v=qvv�q. Charge neutrality then requires a back-
flowing supercurrent −jv that exerts a Lorentz or Magnus
force, −qv�qv�q�n� , on the vortex. Where n� is a unit vector in
the direction of the vortex axis. This force drives vortices
parallel �qv�0� or antiparallel �qv�0� to the electric field
when the charging vortex moves circularly, and it forces the
charged vortex core circulating about the disk axis when the
initial v�q directs along the radial axis, which makes sense to
speak of a barrier for flux penetration and expulsion.

Figure 3�a� shows charge distribution for state nq=1, the
free energy F for state nq=1, nq=2 and saddle state �1,2� of
the vortex charge free case in Fig. 3�b�, and the associated
electrostatic energy Eq due to charge redistribution in Fig.
3�c�. Clearly, with field increase up to HSad

1↔2, state transition
1→2 would unlikely occur since the SO interaction contrib-
utes a larger energy to the state nq=2 in comparison with that
to nq=1. The system then remains in the metastable nq=1
state for H�HSad

�1↔2� up to the critical field Hc
nq→nq+1 where

the meatastable state degenerates with the saddle state. Re-
markably, we find at the field Hp

�1�: E12�Hp
�1��+F12�Hp

�1��
=E1�Hp

�1��+F1�Hp
�1��.

In addition, at He
�2�: E12�He

�2��+F12�He
�2��=E2�He

�2��+F2�He
�2��.

These results demonstrate that Hp
�1� �He

�2�� are indeed the criti-
cal field for vortex penetration �expulsion� or a transition 1
→2 �2→1� occurs due to thermal instability of the system.

To find out the barrier, one needs a time-dependent model,
e.g., the time-dependent BdG model that includes the charge
redistribution, which will be presented elsewhere. Here, we
present a phenomenological approach. As discussed above,
in energy space a multivortex state �nq ,nq+1� is a saddle
state that links the metastable states nq and nq+1. It may also
be treated as a transit state dynamically. Figure 4 shows vor-
tex cores of state �1,2� distribution varying with magnetic
field. At the saddle field HSad

1↔2, one core locates at the disk

FIG. 2. Free energy for various vortex states of a superconduct-
ing disk with a=4�0, h=0.1�0, and �=0.30�0. F0�HC

2 V /8


= 1
2N�0��0

2�0�V. The dashed lines show the so-called saddle states
that degenerate with the metastable giant vortex states at the pen-
etration �expulsion field� where barriers for state transition n→ �n
+1���n+1�→n� vanishes.
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center, another one at the outer edge of the disk. Remember
that the system is now in the nq=1�or nq=2� state. A core of
a transient state could accommodate somewhere away from
the disk center simply because there presents a barrier that
prevents its jumping on to �out of� disk center. The height of
the barrier is then the energy difference between the saddle

state and the corresponding metastable state�s�. Figure 3�d�
shows the barrier for transition 1↔2. Similarly, the barriers
for transition nq↔nq+1 that are defined as the energy dif-
ference between state �nq ,nq+1� and state nq �nq+1� for H
�HSad

nq↔nq+1�H�HSad
nq↔nq+1� are plotted in Fig. 2 �the inset�.

It is interesting to note that with a field increase from
HSad

nq↔nq+1 up to Hp
�nq� where UB→0 state transition nq→nq

+1 occurs accompanied remarkably with an increase in the
sample magnetization shown by the thick solid arrows in
Fig. 5. Thus, the total flux penetration through the supercon-
ducting disk will indicate a negative jump.

IV. CLOSING REMARKS

We show that magnetic flux carried by vortices may differ
from the flux quanta �0 because of the charged vortex in-
duced spin-orbit coupling that generates an additional geo-
metric �the ac-like� phase to the wave function. The frac-
tional flux quanta �the AB flux� is expected since the wave
function phase must be quantized �Mod�2
��. Furthermore,
we find that the spin-orbit coupling would in principle de-
press the first-order transition between giant vortex states,
and the system is expected to evolve along metastable giant
vortex states. Consequently, with a magnetic field increase,
sample’s magnetization is expected to increase as state tran-
sition occurs since magnetization for the preexisting state
drops significantly, implying negative flux jump.

Finally, we present a brief discussion about the feasibility
of the experimental observations of the vortex charging ef-
fect. One can examine the TC�H� phase boundary of a single
connected sample �a cylinder or a disk� in an axial magnetic

FIG. 3. Vortex charge distribution �a� ��* measures the distance
from the disk center where vortex charge sign reversal occurs.�, the
free energy of charge free case �b�, the spin-orbit contribution to the
state energy �c�, and the barrier �d� for transition 1↔2 varying with
magnetic field. State transition occurs only when F�n,n+1�+E�n,n+1�
=Fn+En.

FIG. 4. �Color online� Contour plots of pair potential, indicating
how a vortex core �the circlelike white zone� where amplitude of
pair potential vanishes is expelled out of the multivortex �1,2� state
with magnetic field increasing from �a� to �f� �see Fig. 3�d��.
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field. As in the original Little-Parks experiment for a multi-
ply connected thin-wall Tin microcylinder28 an oscillation in
TC�H� will occur. But in this case, the oscillation period is
expected to decrease as H increases due to the presence of
SO contribution. Actually, moving along the TC�H� bound-
ary, the pair potential concentrates more and more near the
sample edge, implying a larger spin-orbit contribution be-
cause of a sharper potential distribution, and a less AB-like
flux or a noninteger flux penetration. On the other hand, for
the multiply connected case �a thin cylindric shell or a ring�,
the giant vortex core locates at the center of the sample and
an almost uniform pair potential over the shell is found, lead-
ing to a significant decrease in the SO contribution and the
oscillations in Tc are perfectly periodic with �. �Note added:
Similar results would be expected when one works in the
framework of the GL theory by considering the fact that
there is no additional flux should be included for the shell,
whereas such a contribution would be included for the disk.�
For an experimental verification of this predictions, the read-
ers can refer to Ref. 29. Furthermore, for a direct detection of
the vortex field, one may envisage the classic geometry for
the observation of vortices via the Bitter-decoration tech-
nique, with the superconductor filling half space, e.g., z�0

and penetrated by a magnetic field B� � ẑ. The resulting vortex
line is charged up due to particle-hole asymmetry, which in
turn generated an electric field or a surface electric dipole
that can be detected by sweeping a tip over sample surface.
Blatter et al.30 discussed the detection of vortex field in
type-II superconductors by the scanning tunneling micros-
copy. Also, the vortex charge in high-temperature supercon-
ductor �HTSC� YBa2Cu3O7 was detected by nuclear mag-
netic resonance method.31 It has been shown16 that the vortex
charge due to the opening of the energy gap or the transition

of a system to superconducting is in the order of � /EF
��m /2�2�2
2��−1 �We have used the expression: EF
�m /2�2
2�2�2 for a metallic superconductor in the clean
limit �cf. Ref. 14�. This ratio is then orders smaller for typical
metallic superconductors than that of HTSC, for which the
vortex charge is in the order of 10−3e when ��0��5 Å. Con-
sequently, above mentioned techniques would be challenged
because of limited accuracy. Recently, Geim et al. developed
the ballistic Hall megnetometry,32 and abnormal magnetic
responses in mesoscopic disks of metallic superconductor
�aluminum� have been signaled by using this technique,1

which sheds lights on experimental detection the vortex
charge in mesoscopic metallic superconductors. In addition,
this technique will be useful to detect vortex charge field in
type-II metallic superconductors, e.g., the niobium-alloy ma-
terial, Nb3Sn where33 the coherence length is �4 nm, and
the critical temperature TC=18 K, or ��0��4 meV, from
which a value of � /EF is estimated in the order of 3.5
�10−2 that is comparable to the value of 10−1 for typical
HTSCs.34–38

Note added: The theoretical calculations without involv-
ing the SO term suggested that the nq+1→nq transition
would occur at the field less than the magnetic field where
magnetizations for those two states intersect, implying a
positive jump with decreasing magnetic field �see, Fig. 3 of
Ref. 1�. The positive flux jump with decreasing magnetic
field �but its orientation unchanged� has, however, not been
found in our simulations. We can prove that the modified
Bogoliubov-de-Gennes Eqs. �1� are invariant under the trans-
formation u→v*, v→−u*, and �→−�, which relates an
eigenstate to its time-reversal counterpart.24 Clearly, decreas-
ing field intensity, whereas its orientation remains un-
changed, does not physically match with the time-reversal
operation. Remember that the SO term is time-reversal in-
variant. Therefore, differences in the system magnetic re-
sponse would be expected for increase with decrease field.
For increasing field �see Fig. 5�, the magnetization of a nq
state saturates first and drops quickly beyond the saddle point
field, which becomes less than that of the succeeding nq+1
state at Hp

�n�. Thus, the sample magnetization increases as
nq→ �nq+1� state transition occurs, yielding a negative flux
jump at Hp

�nq�. For decreasing field, however, the transition

field He
�nq+1� locates very close to the valley of the magneti-

zation curve for the preexisting nq+1 state, where the total
screening current flow direction reversal is expected. Clearly,
the vortex field exerts now a Lorentz force on the vortex line
that attempts to expel magnetic flux out of the sample.
Therefore, transitions with magnetic field decrease occur at
He

�nq+1� and would be no positive flux jump so long as the
applied field orientation remains unchanged. Indeed, “flux
inside a superconductor increases when a vortex leaves has
not been seen” in the experiments of Geim et al.1
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FIG. 5. Magnetization response for the superconducting Al disk.
The solid arrows show that vortex number increasing could possi-
bly result in flux expulsion, whereas flux inside the superconductor
increases when a vortex leaves has not been seen, which are con-
sistent with the experiments of Geim et al. �Ref. 1�.
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