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Magnetic interactions of Mn clusters supported on Cu
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It is demonstrated that the magnetic interactions can be drastically different for nanosized systems compared
to those of bulk or surfaces. Using a real-space formalism we have developed a method to calculate noncol-
linear magnetization structures and hence exchange interactions. Our results for magnetic Mn clusters sup-
ported on a Cu�111� surface show that the magnetic ordering as a rule is noncollinear and cannot always be
described by using a simple Heisenberg Hamiltonian. We argue that the use of ab initio calculations allowing
for noncollinear coupling between atomic spins constitutes an efficient and reliable way of analyzing nanosized
magnets.
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I. INTRODUCTION

The effort of shrinking materials and devices to nanosizes
is fueled both by scientific curiousity and industrial require-
ments. Applications are found in most scientific fields �pho-
tonics and electronics,1 biotechnology,2 information
technology,3 materials science,4 and energy applications5�
and devices based on nanotechnology are rapidly becoming a
natural part of our daily life �e.g., in personal computers�.
The best way to characterize a nanomaterial is, apart from its
size reaching nanometer dimensions, that finite size or quan-
tum effects dominate, yielding new interactions and different
functionality.

Small clusters supported on a surface are of special inter-
est since they have the potential of increasing the density in
information storage. One may envision that future magnetic
hard disks with information carried by magnetic clusters,
will have a storage density two orders of magnitude larger
than those used today. The properties of such systems may
be measured by means of scanning tunneling microscopy
�STM�,6 where information is acquired on an atomic scale
and atoms are imaged directly. This technique represents an
enormous experimental development, and it has been applied
to several nanomagnets,7 but it must be followed by compli-
mentary theoretical methods. The complication lies in that,
due to the nanosize of these systems, traditional theoretical
models based on bulk magnetism are often inappropriate.
This calls for a method adapted for supported clusters where
the constraint to fix the spin arrangement in a collinear way
must be released so that complex noncollinear magnetic
structures can be analyzed.

In this paper we present a first principles method for treat-
ing noncollinear magnetic configurations of supported clus-
ters. As a demonstration, the technique is applied to Mn clus-
ters supported on a Cu�111� surface. We have studied a large
body of Mn clusters with different geometries. For practical
reasons we present here only the results for a selection of the
considered Mn clusters.

II. DETAILS OF CALCULATIONS

In order to correctly describe the physics of isolated clus-

ters supported on surfaces in an efficient way, the theoretical
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method should preferably be real-space �RS� based, or at
least not depend on translational symmetry. While the theory
of noncollinear magnetism8,9 has been implemented in sev-
eral methods capable of treating periodic systems and free
clusters, very few methods capable of treating noncollinear
ordering in supported clusters10–12 have been reported so far
in the literature. The method used in this work differs from
these previous methods by being a fully parameter-free den-
sity functional method.13 The self-consistent noncollinear
real space method used in this study is based on the Haydock
recursion method14 and the linear muffin-tin orbital atomic
sphere approximation �LMTO-ASA� technique.15 Besides
being formulated completely in real space, our method also
has the advantageous feature of having the computational
cost scaling linearly with the number of inequivalent atoms
in the system, and can thus be used for calculations of large
systems. The RS-LMTO-ASA, a collinear version of this
method, has successfully been used extensively for various
types of electronic structure calculations earlier, and a more
elaborate description of the collinear implementation can be
found in Refs. 16 and 17.

The recursion method is, in its original formulation, de-
signed to calculate the local density of states �LDOS�, which
corresponds to the diagonal terms of the imaginary part of
the local Green’s function G���= ��−H�−1 for specified atoms
and orbitals, where H is the Hamiltonian and � is the energy.
For a correct treatment of noncollinear magnetism, an evalu-
ation of off-diagonal parts of the Green’s function are
needed, which, in principle, are possible to extract using re-
cursion methods. However, this is quite cumbersome and can
be circumvented by using a unitary transformation U on the
Hamiltonian H, H�=UHU†. The Green’s function is trans-
formed in the same way; G�=UGU†. Using the relation U†U
=1 and the fact that cyclic permutations of matrix multipli-
cations conserve the trace of the product, the magnetic den-
sity of states m���, can be written as

m��� = −
1

�
Im tr��U†UGU†U� = −

1

�
Im tr���G�� , �1�

where � are the Pauli matrices, ��x ,�y ,�z� and �� is a Pauli

matrix after the unitary transformation. The transformation
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matrix U is different for the tree directions, and chosen so
that, U� jU†=�z�, for j=x ,y ,z, to yield a diagonal representa-
tion. The unitary transformation corresponds to a spin rota-
tion where U can be calculated using the spin-1

2 rotation ma-
trices. These transformations can then be applied to the
original Hamiltonian for calculating the LDOS along the
three orthogonal directions. With the Hamiltonian decom-
posed in a spin-dependent part, B, and a spin-independent
component, H, U operates only on the spin-dependent part,

H� = H + B · U�U†. �2�

From the transformed Hamiltonians H�, the LDOS for the
different directions are obtained using the recursion method,
the local magnetization axis is calculated, and the LDOS for
the local spin axis is constructed. Compared with the collin-
ear case, the computational cost is tripled since the recursion
is now performed for three directions, but it stills scales lin-
early with the number of atoms. Since our Hamiltonians are
constructed within an ab initio LMTO-ASA formalism, all
calculations are fully self-consistent, and the spin densities
are treated within the local spin density approximation
�LSDA�.18 No external parameters are thus needed to per-
form the calculations within our scheme. It can be noted that
the choice of exchange and correlation potential is for some
systems, e.g., for �-Fe,19 important for obtaining the correct
magnetic structure. However, the choice of an exchange cor-
relation potential typically becomes important only when one
considers extremely small energy differences between differ-
ent magnetic configurations �e.g., of order � Ry/atom be-
tween ferromagnetic and antiferromagnetic�. Furthermore, it
is often the case for transition metal systems20 that differ-
ences in the magnetic structure, when calculated with LSDA
potentials compared to using gradient corrected potentials,
are foremost an effect of the fact that the equilibrium vol-
umes depend on the choice of exchange and correlation po-
tentials. In this work, equilibrium volumes are not calculated,
a fact which substantially diminishes the effect of which
form of exchange correlation that is used, i.e., gradient cor-
rections compared to LSDA. The importance of gradient cor-
rections in the case of Mn structures on Cu surfaces has
earlier been a matter of controversy,21 but it is not believed
that a gradient corrected potential would change the conclu-
sions of this work, since as we shall see below, the energies
relevant to this study are of order m Ry/atom.

In this study we have considered a large number of clus-
ters with different shapes and sizes supported on a Cu�111�
surface. The calculations of the Mn clusters have been per-
formed by embedding the clusters as a perturbation on a
previously self-consistently converged “clean” Cu�111� sur-
face. The cluster atoms and neighboring Cu atoms are then
recalculated self-consistently while the electronic structure
for atoms far from the cluster are kept unchanged. As is
usually the case for LMTO-ASA methods, the vacuum out-
side the surface needs to be simulated by having a number of
layers of empty spheres above the Cu surface in order to
provide a basis for the wave function in the vacuum and to
treat charge transfers correctly. Structural relaxations have
not been included in this study, so surface and cluster sites

have been placed on a regular fcc lattice with the experimen-

174434
tal lattice parameter of Cu. Structural relaxations can, in cer-
tain cases,23 play an important role for the magnetic proper-
ties of supported clusters but cannot be obtained within the
ASA. A complete structural relaxation is, however, not rel-
evant for the systems considered in this study since in an
experimental situation, various geometries would most likely
be placed at nonequilibrium positions by means of, e.g., a
STM tip. The only relevant relaxation one might consider is
the binding distance between the cluster atoms and the sub-
strate atoms. Since the Cu and Mn atoms have a similar size
we have used the interatomic distance of bulk Cu as the
distance between nearest neighbor Mn and Cu atoms and
between Mn and Mn atoms. The clean Cu�111� surface has
been modeled by a large ��5000� slab of atoms and the
continued fraction, that occurs in the recursion method, have
been terminated with the Beer-Pettifor22 terminator after 25
recursion levels.

III. RESULTS

In Fig. 1 we show Mn clusters with a particularly com-
plex magnetic structure. The local magnetic moments for the
Mn atoms in the clusters depend strongly on the number of
Mn neighbors with values between 4.7�B for the single ada-
tom and 2.7�B when six Mn neighbors are present. In Fig.
1�a� the magnetic moments of a linear chain of Mn atoms is
shown. Each Mn atom couples its magnetic moment antipar-
allel to its neighbor in a collinear way. This is in accordance
with a Heisenberg Hamiltonian with antiferromagnetic near-
est neighbor interactions.

In Fig. 1�b� the three atoms have been moved to form a
triangular geometry and the magnetization profile then be-
comes a noncollinear structure. This is the result of a well-
known phenomenon; magnetic frustration.24 In a triangular
geometry two magnetic moments with antiferromagnetic in-
teractions can couple antiparallel, but the third moment can-
not simultaneously be antiparallel to the first two, so it be-
comes “frustrated.” Instead each moment forms an equal
angle of 120° to its neighbor, and the calculated magnetiza-
tion profile in Fig. 1�b� �and 1�a�� is the consequence of
antiferromagnetic Mn-Mn interactions.

In Figs. 1�c� and 1�d� a more interesting scenario is found.
First six Mn atoms forming a hexagonal ring structure were
studied �1�c��. The antiferromagnetic nearest neighbor inter-
action cause a magnetic order where every second atom has
its magnetic moment pointing up and every other has a mo-
ment pointing down, and the magnetic order is collinear.
However, for the cluster with one extra atom in the center of
the hexagonal ring, Fig. 1�d�, a different magnetic order, with
a noncollinear component, is found. The atoms at the edge of
the cluster have a canted antiferromagnetic profile, with a net
moment pointing antiparallel to the magnetization direction
of the atom in the center of the cluster. The magnetic mo-
ment of the central atom is almost perpendicular ��100° � to
the atoms at the edge of the cluster and with a magnetic
momentof 2.7�B. The edge atoms have a magnetic moment
of 4�B per atom that has an angle of �165° to neighboring
edge atoms and is parallel to its second nearest neighbors.

In Fig. 1�e�, the magnetic order of a cluster with rhombic

shape is shown. A noncollinear magnetic structure, as is
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shown in the figure, is found to be metastable in our calcu-
lations, and a collinear antiferromagnetic solution has a
somewhat lower energy of �40 meV/cluster. It should be
noted here that, in general, it is possible that supported clus-
ters can exhibit several local minima for different magneti-
zation configurations, much in the same way as one might
encounter in bulk materials. This situation is as a matter of
fact also similar to the structural properties of matter, as a

FIG. 1. �Color online� The magnetic ord
function of, e.g., pressure. In Fig. 1�f� we show the moment
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profile of the rhombic cluster with one extra atom in the
middle of the cluster. The most stable magnetic configuration
for this cluster is noncollinear with a slightly canted antifer-
romagnetic structure.

Taken together, the results in Fig. 1 show that as a rule
noncollinear ordering is obtained for supported Mn clusters.
Also, Fig. 1 shows that an analysis of the magnetism of
supported clusters based upon conventional theoretical mod-

for Mn clusters on a Cu�111� surface.
els, such as the Heisenberg model, may be cumbersome to
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perform for more complicated geometries. Due to differences
in the local symmetry, the electronic structure at different
atoms in the cluster becomes unique and different from the
neighboring atoms, which can be seen in Fig. 2 where the
LDOS for the central atom and an edge atom of the cluster in
Fig. 1�d� is shown. As an effect of the difference in the
electronic structure, the exchange interactions between atoms
in the cluster depends strongly on the position of the atom in
the cluster. This means that it is inappropriate to use the same
magnetic moment and exchange parameters of, e.g., a
Heisenberg Hamiltonian for all atoms in the analysis of the
magnetism of the cluster in Fig. 1�d�. To describe the mag-
netic properties accurately, noncollinear first principles
theory is a very good alternative.

In our calculations, both the exchange interactions within
each cluster as well as between the clusters appear naturally.
This has been used for examining the distance dependence of
intercluster interactions of triangular Mn clusters supported
on a Cu�111� surface. In Fig. 3, the two triangular clusters
are connected, forming a single, six atom, cluster. As ex-
pected, this single cluster shows a noncollinear order due to
its frustrated geometry. The magnetic moments and angles
between moments for the atoms in the cluster displayed in
Fig. 3 are shown in Table I where the atoms are labeled
according to Fig. 3�b�. The magnetic moments for the atoms
in the cluster depend on the number of nearest Mn neighbors
where fewer neighbours yield higher magnetic moment.

Figure 4 shows the magnetic order of the clusters as they
are separated from each other with an increasing distance.
When the distance between the clusters is very large one
expects that the moment profile within each cluster would be
identical to that in Fig. 1�b�. The magnetic order of the clus-
ters in Fig. 4�a� is indeed close to the noninteracting cluster
order with only a few degrees deviation of the magnetic mo-
ments. The magnetic moments for the clusters in Fig. 4�b�
are even closer to the magnetic order found for the noninter-
acting case. It can also be noted that the two cluster-cluster
distances in Figs. 4�a� and 4�b� give very similar magnetiza-
tion geometries. This demonstrates that the intracluster inter-
action is much larger than the intercluster interaction, even
for short cluster-cluster distances. As a measure of the inter-

FIG. 2. Local density of states for a central and an edge atom in
the cluster in 1�d�.
cluster exchange for this geometry, total-energy calculations
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show that the energy needed to flip the spins by 180° in one
of the clusters, in Fig. 4�a�, is in the range of a few meV.

The results in Fig. 4 show that the “frustrated geometry”
of the triangular clusters, with 120° between the different
moments of each cluster, is very robust, even if the cluster-
cluster distance becomes very small. Hence the intraex-
change interaction is much stronger �and antiferromagnetic�
than the interexchange interaction. This finding is important
when one attempts to design cluster-based media for mag-
netic information storage where a bit stored in one cluster
should not be allowed to interact and degrade the informa-
tion in the nearest neighboring cluster.

We end this paper with a short discussion on the possibil-
ity to grow the clusters studied here and to measure their
magnetic structures with atomic resolution. Recently small
magnetic Cr clusters supported on a gold surface, with dif-

FIG. 3. �Color online� Magnetic moments for two triangular Mn
clusters connected to each other, resulting in a single, six atom,
cluster. The angles between the magnetic moments are given in
Table I, where the atoms are labeled according to the figure to the
right.

TABLE I. Magnetic moments �in �B� and angles between mo-
ments for the cluster displayed in Fig. 3. The numbers to the far left
in the table refer to the numbering of the atoms in the cluster in Fig.
3 and the moments listed to the far right refer to atomic moments.

Atom 1 2 3 4 5 6 Moment

1 0 155 88 80 155 5 4.28

2 155 0 118 75 50 153 3.94

3 88 118 0 167 68 89 3.60

4 80 75 167 0 124 79 3.60

5 155 50 68 124 0 156 3.94

6 5 153 89 79 156 0 4.28
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ferent geometries, have indeed been synthesized and studied
with STM.27 Different geometries were found to have differ-
ent spinconfigurations, much in the same way as we discuss
here. In general, spin-polarized �SP-STM� �Ref. 25� should
be the best method to detect the magnetic structures pro-
posed here, since it has been shown to have the necessary
resolution to determine magnetization directions between
different atoms in a nanostructure. This technique was also
used to measure the g value and spin excitation at single
absorbed Mn atoms on a substrate of Al2O3.26 Hence, STM
is the most promising experimental technique to verify the
here predicted magnetic profiles. Examples of SP-STM de-
terminations of atomic scale magnetism, including noncol-
linear coupling, may be found in Refs. 28 and 29.
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