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Three-body correlation effects on the spin dynamics of double-exchange ferromagnets

M. D. Kapetanakis, A. Manousaki, and I. E. Perakis
Department of Physics, University of Crete, and Institute of Electronic Structure and Laser,
Foundation for Research and Technology—Hellas, Heraklion, Crete, Greece
(Received 2 January 2006; revised manuscript received 21 February 2006; published 18 May 2006)

We present a variational calculation of the spin wave excitation spectrum of double-exchange ferromagnets
in different dimensions. Our theory recovers the random phase approximation and 1/S expansion results as
limiting cases and can be used to study the intermediate exchange coupling and electron concentration regime
relevant to the manganites. In particular, we treat exactly the long range three-body correlations between a
Fermi sea electron-hole pair and a magnon excitation and show that they strongly affect the spin dynamics. The
manifestations of these correlations are many-fold. We demonstrate that they significantly decrease the stability
of the ferromagnetic phase and the magnon stiffness. We also show that the ferromagnetic state is unstable
against spin wave excitations close to the Brillouin zone boundary. As a result, we find a strong softening of the
spin wave dispersion as compared to the Heisenberg ferromagnet with the same stiffness within a range of
intermediate concentrations. We discuss the possible relevance of our results to experiments in colossal mag-

netoresistance ferromagnets.
DOLI: 10.1103/PhysRevB.73.174424
I. INTRODUCTION AND PROBLEM SETUP

The magnetic exchange interactions between itinerant car-
riers and local magnetic moments lead to new magnetic
properties in a wide variety of systems that have been the
subject of intense research lately. Examples range from fer-
romagnetic semiconductors such as EuO, EuS, chrome
spinels, or pyrochlore! to dilute III-Mn-V and II-VI magnetic
semiconductors.>® Of particular interest here are the manga-
nese oxides (manganites) R,_,A,MnO;, where R=La,Pr,
Nd,Sm,... and A=Ca,Ba,Sr,Pb, ... . These systems display
colossal magnetoresistance and ferromagnetic order medi-
ated by itinerant carriers.*~® Our main goal in this paper is to
describe the role of ubiquitous three-body correlations (be-
yond the mean field approximation) on the spin dynamics of
such ferromagnets.

To study the role of correlations, it is often necessary to
neglect particularities of the individual systems, such as
chemical structure and crystal environment. Given the wide
variety of the above ferromagnetic systems, it is also impor-
tant to identify the minimal Hamiltonian that adequately de-
scribes their common properties and spin dynamics.>’!'! The
most basic such model is the Kondo lattice or double ex-
change Hamiltonian H=K+Hh+Hgper+Hy, where K
=Ekaskcltvckg is the kinetic energy of the itinerant carriers.
In the manganites, n=1-x itinerant electrons per Mn atom
occupy the band of Mn d states with e, symmetry. We sim-
plify the calculation of the correlations by considering a
single tight-binding band of cubic symmetry and neglect the
bandstructure and the degeneracy of the e, states. The opera-
tor cf  creates an electron with momentum k, spin o, and
energy 8k=—2t2flzlcos k;a, where d=1,2,3 is the system di-
mensionality and « is the lattice constant. We take a=1 and
measure the momenta in units of %/a.

A common feature of all the systems of interest here is
the strong magnetic exchange interaction H,,, between the
itinerant carrier spins and the local spin-S magnetic moments
S, located at the N lattice sites R;. In the manganites, these
S=3/2 spins are due to the three electrons in the tightly
bound 1,, orbitals. Introducing the collective localized spin
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operator Sy=1/ VN2 S je‘i‘l‘Rf and the corresponding spin
lowering operator S;:Sﬁ—iSﬁ, we express the local magnetic
exchange interaction in momentum space

J
Hyon=——7= 2 O-Sflcli—qa'cka
2 \'Nk,qo

J .
— == (Szcl_.1c0 + Hel), (1)
2N Paciearhl

where o==+1. In the manganites, J>0 describes the ferro-
magnetic Hund’s rule coupling between the local and itiner-
ant spins on each lattice site. Hyy, is the weak antiferromag-
netic direct superexchange interaction between the spins
localized in neighboring sites, while H;; describes the local
Coulomb (Hubbard) repulsion among the itinerant electrons.
The precise values of the parameters entering in the above
Hamiltonian are hard to calculate for strongly coupled many-
body systems such as the manganites. Although the param-
eter estimates vary in the literature, typical values are ¢
~0.2-0.5¢eV and J~2 eV, which corresponds to 4=J/t
=10.5 On the other hand, the antiferromagnetic superex-
change interaction is weak, ~0.01¢z. The electron concentra-
tion, n=N,/N¢=1-x where N, is the number of electrons,
varies from O to 1. Ferromagnetism in the metallic state is
observed within a concentration range 0.5=n=0.8 in both
3D and quasi-2D (layered) systems. In this paper we neglect
for simplicity H,, and Hy (to be studied elsewhere) in
order to focus on H,,, and the correlation effects predicted
by the minimal model.

Given the large values of J/¢ in most systems of interest,
a widely used approximation is the J— o limit (double ex-
change ferromagnet).'? In this strong coupling limit, the itin-
erant carrier is allowed to hop on a site only if its spin is
parallel to the local spin on that site. The kinetic energy is
then reduced when all itinerant and local spins are parallel,
which favors a ferromagnetic ground state (double exchange
mechanism). We denote this fully polarized half-metallic
state by |F) and note that it is an eigenstate of our Hamil-
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tonian H. This state describes local spins with §,=S on all
lattice sites and a Fermi sea of spin-T itinerant electrons oc-
cupying all momentum states with g = Er, where Ep is the
Fermi energy.

Another commonly used approximation is to treat the lo-
cal spins as classical (S— o limit).> The ferromagnetism can
then be described by an effective nearest neighbor Heisen-
berg model with ferromagnetic interaction. The quantum ef-
fects are often taken into account perturbatively in 1/S. This
1/S expansion can be implemented systematically by using
the Holstein—Primakoff bosonization method.”®!* To
O(1/8), this method gives noninteracting random phase ap-
proximation (RPA) magnons.®%!% In the strong coupling
limit J/t— o, the RPA dispersion coincides with that of the
nearest neighbor Heisenberg ferromagnet. The O(1/S?) cor-
rection to the spin wave dispersion however deviates from
this Heisenberg form. This correction comes from the scat-
tering of the RPA magnon with the spin-{ electron Fermi sea
when treated to lowest order in the electron-magnon interac-
tion strength (Born approximation).”!3

The role of nonperturbative carrier-magnon correlations
[beyond O(1/5%)] has been studied by exact diagonalization
of small and 1D systems'®!! or by using variational wave
functions'>!¢ inspired from the Hubbard model and the
Gutzwiller wave function.!’?° Zang et al.'® performed finite
size exact diagonalization calculations of the ground state of
the Hamiltonian H for J/t=40 and of its spin excitations for
J=c_1In 1D, they found that the ground state is a spin singlet
for even N, and a fully polarized ferromagnetic state for odd
N,. In 2D (N=38) and in 3D (N=4), they found additional
ground states, such as spiral or ferromagnetic domain states,
depending on n and the boundary conditions. Zang et al.'’
also found deviations in the J=02 spin excitations from the
Heisenberg model. For filled shell, they found quasi-spin-
wave excitations with a dispersion softening at large mo-
menta due to a spin-polaron effect, while open-shell fillings
gave a complicated low energy excitation spectrum.'®!! As
discussed below, our three-body variational calculation re-
produces these exact results (see Fig. 1). Kaplan and
Mahanti'! performed exact numerical calculations of the en-
ergy eigenstates in 1D rings with a ferromagnetic ground
state. They found that, although the spin wave dispersion can
differ markedly from that of the Heisenberg model, within a
range 0.3=n<0.9 relevant to the manganites the 1D disper-
sion (obtained for J/t=40 and S§=3/2) agrees well with the
Heisenberg model.

The variational calculations of Refs. 15 and 16 treat local
correlations expected to dominate for large J/¢.' Okabe'
calculated the spin wave and single particle excitation spec-
trum by including local contributions to the electron-magnon
scattering using a more restricted variational wave function
than the one considered here. He concluded that the spin
wave spectrum does not differ appreciably from the RPA
result. Wurth et al.'® found that the spin wave dispersion
deviates from the Heisenberg form for very small electron
concentrations, outside the range relevant to the manganites.
A similar conclusion was reached based on the 1/S§
expansion.'> For n~0.7, the O(1/S?) magnon dispersion
showed a relative hardening at the zone boundary in the
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FIG. 1. Comparison of our full three-body calculation of the
spin-wave dispersion with the exact-diagonalization numerical re-
sults of Ref. 10 (J—oo, 1D system) for N=20, S=1/2.

strong coupling limit.!> References 15 and 16 also showed
that the ferromagnetic (Nagaoka) state |F) becomes unstable
with increasing electron concentration due to the softening of
either the single particle spin excitations (overdoped strong
coupling regime) or the long wavelength spin wave excita-
tions (underdoped regime).

Due to the interplay between the spin and charge degrees
of freedom, a good understanding of the spin dynamics is
important for understanding the physics of colossal magne-
toresistance and transport in the manganites. Several experi-
mental studies of the spin wave excitation spectrum have
been reported in the literature. Heisenberg-like magnons
were observed for high electron concentrations n>0.7.2!
However, for lower electron concentrations 0.5=n=0.7, un-
expectedly strong deviations from the short range Heisen-
berg magnon dispersion were observed in several different
manganites.”?28 Most striking is the pronounced softening of
the spin wave dispersion and short magnon lifetime close to
the zone boundary, which indicate a new spin dynamics in
the metallic ferromagnetic phase for intermediate n. The
physical origin of this dynamics remains under debate. It has
been conjectured that the coupling to additional degrees of
freedom not included in the double exchange Hamiltonian H
is responsible. Some of the mechanisms that have been pro-
posed involve the orbital degrees of freedom, the spin-lattice
interaction, the local Hubbard interaction, bandstructure ef-
fects, etc.0:7-26:29-31

Given the questions raised in the literature about the ad-
equacy of the simple double exchange model,’ it is important
to treat the Hamiltonian H in a controlled way. Such a treat-
ment would allow us to assess the accuracy of the commonly
used approximations and understand the successes and limi-
tations of the very basic model in explaining the experi-
ments. In this paper we study variationally the low energy
spin excitations of the half-metallic fully polarized state |F).
By using the most general variational wave function with up
to one Fermi sea pair excitations, we treat exactly up to
three-body correlations between a magnon and a Fermi sea
pair. As already noted in the context of the Hubbard
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model, 820 the Gutzwiller wave function, which treats local
correlations,'>!% is a special case of such a wave function.
Here, however, we treat both local and long-range correla-
tions on equal footing in momentum space in order to inter-
polate between the weak and strong coupling limits with the
same formalism. We treat nonperturbatively in a variational
way the multiple electron-magnon and hole-magnon scatter-
ing processes that lead to vertex corrections of the carrier-
magnon interaction. The above two scattering channels are
coupled by three-body correlations. We show that this cou-
pling is important for the intermediate electron concentra-
tions and exchange interactions relevant to the manganites,
while for small (large) n the electron-magnon (hole-magnon)
scattering channel dominates. Analogous calculations were
performed to describe the electron-Fermi sea pair local Hub-
bard interactions'®2%-3* and the valence (or core) hole-Fermi
sea pair interactions that lead to the Fermi edge (x-ray edge)
singularity.3>3 In the case of the 1D Hubbard model, the
three-body correlation treatment gave excellent agreement
with the exact results.>* A similar agreement for our model is
demonstrated in Fig. 1, which compares our full calculation
(exact for N,=1 and N,=N?) with the exact diagonalization
results of Ref. 10 for a low S=1/2 (where the quantum fluc-
tuations are most pronounced). This agreement gives us con-
fidence that our calculation adequately describes the correla-
tions within the model Hamiltonian considered here.

This paper addresses a number of issues regarding the
effects of correlations on the spin dynamics. First, by com-
paring to the 1/S expansion, RPA, and ladder approximation
results, we show that vertex corrections and long range three-
body magnon-Fermi sea pair correlations play an important
role in the parameter regime relevant to the manganites. We
also find large deviations from the J=c¢ spin wave dispersion
for the intermediate values of J/¢ relevant to the manganites.
Most striking is the strong magnon softening at the zone
boundary for intermediate n, absent for J— 0.

Second, we show by using an unbiased variational wave
function that three-body correlations significantly shift the
ferromagnetic phase boundary. Phase separation”® and sin-
gle-particle excitations'>!¢ lead to additional upward shifts
of this boundary, further limiting the ferromagnetic regime.
In addition to the long wavelength softening and eventual
instability,'>!® which occurs in all dimensions, we find a sec-
ond instability close to the zone boundary for intermediate
J/t (while the stiffness remains positive). This instability
only occurs in 2D and 3D for intermediate electron concen-
trations (0.4 =n=0.7 for the 2D three-body calculation) and
is absent in the strong coupling limit. This effect is exacer-
bated by the three-body correlations. One should contrast the
above instability to the spin wave softening (but not instabil-
ity) at the zone boundary,”!%!1:13.16 which occurs for small
n<0.3 and increases with J. Our results indicate that the
interplay between phase separation and electron-magnon cor-
relations must be considered.

Third, we study the deviations from the Heisenberg spin
wave dispersion induced by the correlations. This is moti-
vated by the experimental observation of pronounced devia-
tions for n=0.7.2>28 Deviations from Heisenberg behavior
already occur to O(1/5?), or even to O(1/S) for finite J/1,
but in most cases these correspond to magnon hardening.'?
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By comparing our results to the Heisenberg dispersion with
the same stiffness, we show that, for intermediate values of
J/t relevant to the manganites and such that the ferromag-
netic state is stable up to n~ 0.8, the three-body correlations
in the 2D system give magnon hardening at the zone bound-
ary for n=0.4 followed by strong magnon softening for
0.4<n=0.7 and then small magnon hardening for n>0.7.
This behavior is similar to the experiment.

The outline of this paper is as follows. In Sec. II we
discuss the four approximations that we use to calculate the
carrier-magnon correlations. In Sec. I A we discuss the
variational wave function that treats the three-body correla-
tions, while the variational equations are presented in Appen-
dix A. We also obtain the RPA magnon dispersion variation-
ally. In Sec. II B we establish the connection between the
above variational results and the 1/ expansion results.”!* In
Sec. II C we discuss the two-body ladder approximation, ob-
tained from our variational results by neglecting the coupling
between the electron-magnon and hole-magnon scattering
channels. The latter coupling is discussed in Appendix B. In
Sec. II D we discuss the approximation of carrier-localized
spin scattering and show that this variational treatment im-
proves on the RPA while making the numerical calculation of
three-body effects feasible in much larger systems. In Sec. III
we present our numerical results for the spin wave disper-
sion, stability of the ferromagnetic phase against spin wave
excitations, and deviations from Heisenberg dispersion in the
one-dimensional (1D), 2D, and 3D systems and compare be-
tween the different approximations. We end with our conclu-
sions.

II. CALCULATIONS

In this section we discuss the four approximations that we
use to treat the effects of the carrier-magnon correlations.
From now on we measure the energies wq of the spin wave
states with respect to that of the fully polarized ferromag-
netic state |F), whose stability and low energy spin excita-
tions we wish to study. We note that |F) is an exact eigenstate
of the Hamiltonian H with maximum spin value and total
spin z component N(S+n/2). The variational principle al-
lows us to conclude that a negative excitation energy wq
means instability of |F) driven by the spin wave of momen-
tum Q. Our variational states have the form |Q)=M5|F>,
where the operator Ma conserves the total momentum, low-
ers the z component of the total spin by 1, and includes up to
one Fermi sea pair excitations. A spin wave has total spin z
component of N(S+n/2)—1, which corresponds to one re-
versed spin as compared to |F). This spin reversal can be
achieved either by lowering the localized spin z component
by 1 or by coherently promoting an electron from the spin-T
band to the spin-| band. The spin reversal can be accompa-
nied by the scattering (shakeup) of Fermi sea pairs. From
now on we use the indices v, u,... to denote single electron
states inside the Fermi surface and «, 3,... to denote states
outside the Fermi surface.

A. Three-body correlations

In this section we discuss our three-body variational cal-
culation of the spin wave dispersion. First, however, we
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show that the well known RPA magnon dispersion®'# can be

obtained variationally for any value of J/t by neglecting in
ME all Fermi sea pair excitations. The most general such
operator has the form

_ 1
Mgpa = SqlF) + \_17,2 XY CQuni ot (2)
where the variational equations for the N, amplitudes XEPA
are obtained in Appendix A [Eq. (A4)]. In the strong cou-
pling limit JS— o0, XRPA— 1 and M ERP 4 reduces to the total
spin operator.'> To lowest order in ¢/JS we obtain from Egs.

(A3) and (A4) that the RPA dispersion then reduces to the
Heisenberg dispersion

RPA 1 1

(J)Q—

- +O0(t1]S). 3
2NS+n/2V<EkF(sv+Q e,)+0(dJS).  (3)

The O(1/S) magnon dispersion®!? is obtained from the

above strong coupling RPA result by replacing the total spin
prefactor S+n/2 by S.

We now include in ME the most general contribution of
the one-Fermi-sea-pair states:

1
t oo L ; 1
My =Sq+ =2 Xequcn + 2 chcu
VN ap

] I .
X \PS;LSQ+;L—Q+ 2\/’%2 q)g,uVCQ+,u—a+VLCVT > (4)
v

where the amplitudes X2, \PSM, and CIDSW are all determined
variationally; we do not use the RPA results for XQ and ®Q.
As compared to previous calculations,>'>!% we do not as-
sume any particular form or momentum dependence for the
above variational amplitudes. This allows us to treat in an
unbiased way the long range correlations for any value of
J/t. The first two terms on the right-hand side (RHS) of Egq.
(4) create a magnon of momentum Q. The last two terms
describe the scattering of a momentum Q magnon to mo-
mentum Q+pu—a with the simultaneous scattering of a
Fermi sea electron from momentum u<kp to momentum
a>kp.

The variational wave function (4) offers several advan-
tages. While local correlations'>!® dominate in the strong
coupling limit, long range correlations become important as
J/t decreases.'® By working in momentum space, we treat
both long and short range correlations while addressing both
the weak and strong coupling limits with the same formal-
ism. We therefore expect that our results interpolate well for
the intermediate values of J/t relevant to the manganites.'®
Our wave function satisfies momentum conservation auto-
matically, which reduces the number of independent varia-
tional parameters. Importantly, our results become exact in
the two limits of N,=1 and N,=N¢, and should therefore
interpolate well for intermediate electron concentrations 0
<n<1. To see this, we note that, for N,=1, the Fermi sea
consists of a single electron. As a result, multipair excitations
do not contribute, while ®@=0. In the half-filling limit N,
=N?, all lattice sites are occupied by one spin- electron and
the Fermi sea occupies all momentum states up to the zone
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boundary. As a result, the RPA wave function Eq. (2) be-
comes exact. Equation (4) also gives the exact wave function
in the atomic limit 7=0, £,=0, where the variational ampli-
tudes do not depend on the electron momenta. To see this, we
note that, due to the Pauli principle QJSW must be antisym-
metric with respect to the exchange of the Fermi sea electron
momenta v and u. In the atomic limit, ®Q must therefore
vanish since it is independent of the momenta. For the same
reason, all multipair amplitudes vanish and Eq. (4) gives the
exact result. Finally, our results converge with increasing
system size N and thus apply to the thermodynamic limit.
The only restriction is that we neglect contributions from two
or more Fermi sea pair excitations. Such multipair contribu-
tions are however suppressed for large S, while their contri-
bution in 1D is very small (Fig. 1 and Ref. 34).

The variational equation for W@ is derived in Appendix A
[Egs. (A5) and (A8)]. The magnon energy is obtained from
Eq. (Al) after substituting Eq. (A2):

J €10~ €~ ®Q
0=
INT IS+ e, 8~ g

+ 2T, (5)

14
where we introduced the electron vertex function

J &g,0-€&,—®
re=-——2=0 I o (6)
2NJS+e,,q-8,~wo,, 7

The first term in Eq. (5) gives the RPA contribution to the
magnon energy. The second term is the carrier-magnon self-
energy contribution, determined by the electron vertex func-
tion I'®. The latter satisfies Eq. (B3), which describes the
multiple electron-magnon scattering contribution (ladder dia-
grams, two-body correlations) as well as the coupling to the
hole vertex function (B2), due to the three-body correlations.
Below we discuss three contributions to the full I'¢: O(1/5?)
(Born scattering approximation), ladder diagram (two-body
carrier-magnon correlations), and the contribution due to car-
rier scattering with the localized spins.

B. 1/S expansion

In this section we make the connection with the Holstein-
Primakoff bosonization treatment of the quantum effects.”!3
We recall that classical spin behavior is obtained in the limit
S—oo with JS=finite. By expanding Egs. (A8), (A6), and
(B2) in powers of 1/S (JS=finite) or the carrier-magnon
interaction, we see that ¥Q=0(1/S), I'*=0(1/5?%), and T
=0(1/5%). We obtain from Eq. (B3) to lowest order in 1/S

1

)22 , (7)

o €a™ &y

1—~g=_J_2( £v+Q_£v
" AN \JUS+e,0-e,

and from Eq. (5)

J €,4Q— &,— WQ
wQ=7—
2N IS +e,.9-8,— g

J_2 (8V+Q_8V)2
4N2 av (JS + 8v+Q - 811)2(801 - 81/) .

(8)

The last term in the above equation comes from the lowest
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order magnon-electron scattering contribution. The O(1/S)
spin wave dispersion’ is obtained from the first term by ne-
glecting wg=0(1/5) in the denominator. The spin wave en-
ergy to O(1/5%) is obtained by expanding the first term to
this order. We recover the strong coupling O(1/5?) results of
Refs. 7 and 13, obtained by using the bosonization tech-
nique, by further expanding Eq. (8) in the limit JS— oo,

The O(1/5%) magnon dispersion is not variational. Thus
we cannot definitely conclude instability of the ferromag-
netic state if we find a negative magnon energy to O(1/5?).
On the other hand, the three-body calculation outlined in the
previous section treats the magnon-Fermi sea pair interaction
variationally rather than perturbatively (as in the 1/S expan-
sion) while recovering the O(1/S5%) results as a special case.
The n-pair contributions to Eq. (4) have amplitudes of order
O(1/8"). Therefore, the shake-up of multipair excitations is
suppressed for large S. Our three-body calculation thus puts
the O(1/S?) results on a more quantitative (variational) basis
by treating fully rather than perturbatively all contributions
of the one Fermi sea pair states.

C. Two-body ladder approximation

To go beyond the Born approximation [O(1/5%)], we first
consider the two-body correlation contributions to the Fermi
sea pair amplitude WQ while still neglecting the three-body
correlations. This is equivalent to treating the ladder dia-
grams that describe the multiple electron-magnon and hole-
magnon scattering, while neglecting the coupling between
these two scattering channels. Noting that the magnon dis-
persion is determined by I'* only [Eq. (5)], the ladder ap-
proximation dispersion is obtained from Eq. (B3) with I"”
=0 and Eq. (5):

LE €,4,Q— &,— WQ
N7 JS+e,.9-8,— g

2
(e s
JS+eq-e,~wo/ av

e )
v _i 81/+Q_8V_('UQ E I/AQ
2NJS+e,,0—&,— 0 0 a'v

(J)Qz

where AQ is given by Eq. (A7). We note that, similar to the
1/§ expansion, the above ladder approximation result is not
variational. A similar approximation was used in the context
of the Fermi edge singularity.>>33 There it was shown that at
least three-body correlations are necessary in order to de-
scribe the unbinding of the discrete exciton bound state.3>33
In the case of the Hubbard model, the ladder approximation
was shown to overestimate the electron self-energy.>*

D. Carrier-localized spin scattering (®=0,W # 0)

To describe the three-body correlations, the coupled equa-
tions for I'* and I'* must be solved. Although this is possible
in 1D and 2D for fairly large systems, in 3D the numerical
solution of the full variational equations is challenging, due
to the dependence of Fi’w on six momentum components. On
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the other hand, I'¢ depends on one momentum only. The
dependence of I on the momentum » can be eliminated by
considering a simpler variational wave function, obtained
from Eq. (4) by setting ®=0. This corresponds to treating
fully the scattering of the electron with the localized spins
while neglecting the electronic contribution to the scattered
magnon. This approximation becomes exact in the two limits
N,=1 and N,=N¢ recovers the O(1/5%) and RPA results,
while the local Hubbard repulsion Hy; neglected here sup-
presses @. The main advantage of this variational calculation
is that it improves the RPA by allowing us to treat three-body
carrier-localized spin correlations in a large system. The cor-
responding spin wave dispersion is obtained by solving the
coupled equations (B3) and (B4) and then substituting I'* in
Eq. (5).

III. NUMERICAL RESULTS

In this section we present the results of our numerical
calculations. To draw conclusions on the role of the correla-
tions, we compare the different approximations discussed in
the previous section for a d-dimensional lattice with N9 sites,
d=1,2, and 3. The dimensionality of the system affects the
quantum fluctuation and correlation effects. Quantum fluc-
tuations are expected to be most pronounced in the 1D sys-
tem, where we show that the 1/S expansion can lead to spu-
rious features. The calculation of the 1D magnon dispersion
could also be relevant to quasi-1D materials with chain struc-
tures. Our 2D magnon dispersion is relevant to the quasi-2D
layered manganites,*-3% where deviations from the Heisen-
berg dispersion similar to the 3D system???% were observed
experimentally.?’-?® The similarity of the spin dynamics in
3D and 2D indicates that the relevant physical mechanisms
are generic and do not depend crucially on the particularities
of the individual systems. In 2D, the full three-body varia-
tional calculation can be performed in fairly large systems
(N~20-30), while in 3D it could only be performed for N
~10. Therefore, the 2D system also offers computational
advantages. On the other hand, the rest of the approximations
discussed here can be performed in very large systems (up to
N~200), until full convergence with increasing N is
reached.

Figures 2 and 3 show the magnon dispersion in the 1D
and 2D systems, respectively, for a fixed exchange interac-
tion, J/t=10, and four different values of n. The 2D disper-
sion (Fig. 3) was calculated along the Brillouin zone direc-
tion (0,0)— (77,0) (I'-X), where the discrepancies between
the different approximations are maximized. For very small
electron concentrations (n=0.12 in Figs. 2 and 3), the carrier-
magnon scattering tends to soften the spin wave dispersion
close to the zone boundary, consistent with previous
results.!®1113:16 Thig softening may be interpreted as a rem-
nant in the thermodynamic limit of the failure of the RPA for
N,=1, where Eq. (4) gives the exact solution. Indeed, for
N,=1, the magnon energy is of O(1/N?), while the RPA
gives O(1/N) energies. It is important to note, however, that
the spin wave dispersion does not become negative (un-
stable) close to the zone boundary for very low concentra-
tions. Furthermore, for such n, the ®#0,¥Y+#0 and ®
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FIG. 2. Spin-wave dispersion in the 1D sys-

tem: comparison of the full three-body variational

(@

calculation (solid curve) to the different approxi-
. mations discussed in the text. J/¢t=10.

=0,W #0 variational results are similar to the ladder ap-
proximation [the corresponding curves almost overlap in
Figs. 2(a) and 3(a)]. This indicates that the three-body corre-
lations are weak for very low concentrations. This result can
be understood by noting that the last term in Eq. (A8) [and
Eq. (A7)], which describes the hole-magnon multiple scatter-
ing contribution, is suppressed for small n. Indeed, with de-
creasing n and Fermi energy Ep, the phase space available
for the hole to scatter decreases relative to the phase space
available for electron scattering. As a result, the electron-
magnon scattering channel (electron ladder diagrams) domi-
nates. On the other hand, the difference between the above
dispersions and the RPA is large, while the differences from
the O(1/5%) (Born scattering) result are noticeable even for
very small n [Figs. 2(a) and 3(a)]. In 1D, the O(1/S?) result
even fails qualitatively for very low (n=0.12 in Fig. 2) and
very high (n=0.8) electron concentrations. For such n, the
O(1/5?) dispersion becomes negative (unstable) at the zone
boundary. This instability persists even for J— o but is ab-
sent in all our variational results.

With increasing electron concentration, the spin wave en-
ergies initially increase (compare the n=0.12 and n=0.3 dis-
persions in Figs. 2 and 3). Figure 4 shows the spin wave
stiffness D(n), obtained by fitting the quadratic behavior
D(n)Q? to the long wavelength numerical dispersions, for
finite exchange interaction J/¢=10. The RPA predicts an ini-
tial increase of the spin wave stiffness with n followed by a
decrease. However, the carrier-magnon scattering reduces
D(n) and changes the above concentration dependence sig-
nificantly, especially in 2D and 3D (see Fig. 4). The O(1/5?)
contribution to D(n) is significantly suppressed as compared
to the rest of the approximations of carrier-magnon scatter-
ing. We note that the results of Fig. 4 do not agree with the
experiment, which shows enhanced ferromagnetism [and
therefore D(n)] for n>0.5. This discrepancy indicates an
inadequacy of the model Hamiltonian studied here. In Ref. 7,
a mean field treatment of the Hubbard local repulsion allevi-
ated this discrepancy. Hy will be treated elsewhere.

As n increases, we see from Figs. 2 and 3 that the differ-
ent approximations start to deviate substantially from each

FIG. 3. Spin-wave dispersion in the 2D sys-

n=0.12 n =0.3
0.2 T T
— 3-body (a)
|- - - RPA -
- @=0
= o1H — ows) -
3 Ladder
0 1
n =0.56
0.2 T T

tem along the direction I'-X for the same param-
eters as in Fig. 2: comparison of the full three-

body variational calculation (solid curve) to the
i different approximations discussed in the text.
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other. This is clear for the 2D system (Fig. 3), while in 1D
the differences develop for higher electron concentrations.
Compared to the full three-body variational calculation (P
#0,V #0), the ladder and O(1/5%) (nonvariational) ap-
proximations give softer spin wave energies, while, as ex-
pected, the variational ®=0,¥#0 and RPA (d=V¥=0)
wave functions give higher spin wave energies. The large
differences between the above dispersions point out the im-
portant role of carrier-magnon correlations. In particular, the
difference between the full three-body calculation (or the
®=0,¥+#0 calculation) and the ladder approximation in
Figs. 3(c) and 3(d) shows that three-body correlations are
significant. Furthermore, Fig. 3 shows that the different ap-
proximations bound the full three-body result. This is par-
ticularly useful for the 3D system, where the full three-body
calculation could only be performed for relatively small lat-
tices with N~ 10. On the other hand, spin wave dispersions
for a rather large (50%) 3D lattice were obtained by using the
RPA, O(1/5?%), and ®=0,V¥ # 0 approximations (Fig. 5). By
comparing the dispersions in Figs. 5 and 3, obtained for the

FIG. 4. Spin wave stiffness for J=10r¢ as func-
tion of electron concentration and system dimen-
sionality.

same parameters, we see that the trends as a function of n are
qualitatively similar in the 2D and 3D systems.

Figure 6 shows the 2D spin wave dispersions obtained
with the different approximations along the main directions
in the Brillouin zone for parameters (n=0.7,J=8t) typical in
the manganites. Figure 6 compares the dispersions along the
directions (0,0) — (7,0) (I'-X), (7,0) — (7, 7) (X-M), and
along the diagonal (0,0) — (7, ) (I'-M). The discrepancies
between the different approximations are very large along
I'-X but much smaller along the other directions. For ex-
ample, the RPA fails completely along I'-X, where the full
three-body calculation shows a striking spin wave softening
that is most pronounced close to the X point. Such a strong
effect, much stronger than the softening at small n, only
occurs in 2D and 3D for intermediate values of n (0.4<n
=0.7) and J/t. For such parameters, a strong magnon soft-
ening and short lifetime was observed in the manganites.?>~28
On the other hand, the O(1/S?) dispersion in Fig. 5 shows
instability at long wavelengths (negative stiffness) rather
than softening at the zone boundary.

FIG. 5. Spin wave dispersions in 3D for J/¢
=10 and electron concentrations similar to Figs. 2

and 3.
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FIG. 6. Spin wave dispersion along the different directions in
Brillouin zone for n=0.7, J=8f: Comparison of the different ap-
proximations.

To see the origin of the above spin wave softening, we
show in Fig. 7 the spin wave dispersion for a slightly smaller
J/t than in Fig. 6. The spin wave energy now becomes nega-
tive in the vicinity of the X point, while the magnon stiffness
remains positive. This variational result allows us to con-
clude instability of the fully polarized ferromagnetic state
due to the X point magnons. The strong zone boundary soft-
ening is a precursor to this instability. We note that softening
of electronic origin was obtained before within the one-
orbital Hamiltonian for finite values of J/¢ by including Hy;
and Hgyp,.”' The main difference here is that our calcula-
tion is variational (and thus allows us to draw definite con-
clusions by guaranteeing that the exact magnon energies are
even softer than the calculated values) and our effect was
obtained by using the simplest possible Hamiltonian (H,,
=H,pe;=0). Figure 7 also compares the full three-body and
RPA calculations for two different values of N with fixed n.
For n=0.7, our results have converged reasonably well even
for N~ 10 and thus reflect the behavior in the thermody-
namic limit.

The above strong magnon softening and instability disap-
pear in the strong coupling limit J/z>> 1. This can be seen in

PHYSICAL REVIEW B 73, 174424 (2006)

Fig. 8, which compares the 2D magnon dispersions for n
=0.7 and different values of J/t>1 with the result obtained
by expanding Eqgs. (A8) and (5) in the limit J— <. The mag-
non dispersions converge slowly to the strong coupling re-
sult, which is reached only for J/¢~ 1000. Since the typical
exchange interaction values in the manganites are of the or-
der of J/t=10, we conclude that the manganites are far from
the J—o limit. Noting in Fig. 8 that the zone boundary
magnon softening has disappeared completely for J/t=20,
we see that the finite J/¢ effects play an important role in the
manganite spin dynamics.

We now turn to the 3D system, where the full three-body
calculation faces computational difficulties due to the large
number of variational parameters W2 . As can be seen in Fig.
7, in the 2D system the magnon dispersion results for n
=0.7 have already converged reasonably well for N~ 10. We
therefore expect that, in 3D, the calculation for a NXN XN
lattice with N~ 10 should give reasonable results. Figure 9
show the 3D magnon dispersions obtained this way for N
=8, n~0.7, and J/t=14 using the different approximations.
Figure 9 shows similar 3D magnon behavior as in the 2D
system (Fig. 5) even for this relatively large J/¢=14: magnon
softening close to the X point and significant deviations be-
tween the different approximations along I'-X.

Next we turn to the effect of the correlations on the sta-
bility of the fully polarized ferromagnetic state. We obtain
two different instabilities with respect to spin wave excita-
tions. (i) the X-point zone boundary instability discussed
above (intermediate 7 in 2D and 3D) and (ii) the long wave-
length instability (negative stiffness) to a spiral state.'>!6 In
the latter case, the minimum magnon energy occurs at a fi-
nite momentum value, which increases with n and becomes
7 at n=1 (antiferromagnetic order at half filling). We note
that the system can further lower its energy by phase sepa-
rating,>3 while single particle excitations lead to additional
instabilities.!>!® However, our variational calculation guar-
antees that, if the magnon energy becomes negative for J
=J.(n), the ground state of the Hamiltonian H for all J
<J.(n) is not the half metallic state |F). Additional effects
such as phase separation will shift the ferromagnetic phase
boundary further up as compared to Fig. 10, which describes
the stability against spin wave excitations only. The most

0.1 T 0.3 T 0.3 T

RPA:18x18
= = RPA:6x6 R
— 3-body:18x18 B o B
H: - 3-body:6x6

=, 005 ‘

" =

FIG. 7. Spin wave dispersion for a NXN 2D
lattice along different directions (n=0.7,J=7.5¢).
Convergence with system size N is very good for
this n.
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0.2

FIG. 8. Spin wave dispersion in 2D, obtained from the full
three-body calculations, for n=0.7 and increasing values of J/t.
Convergence to the strong coupling limit is slow.

striking feature in the latter figure is the large shift (increase)
of J.(n) as compared to the RPA, with a magnitude that
depends critically on the approximation of the carrier-
magnon scattering. We therefore conclude that the interplay
between carrier-magnon correlations and phase separation
must be treated when calculating the phase diagram of the
manganites.

By comparing the shape of J.(n) between the 1D and
2D/3D systems, we see that, in the latter case, J,.(n) develops
a plateaulike shape within an intermediate concentration re-
gime [see Fig. 10(d)]. This feature is absent in the 1D sys-
tem, where there is no zone boundary instability. This pla-
teau occurs for 0.4<n=0.7 in 2D (full three-body
calculation) and for 0.25<n<0.6 in 3D (®=0,¥ # 0 three-
body calculation). It is much less pronounced for the
O(1/5?% and RPA calculations and results in a pronounced
zone boundary spin wave softening over an extended range
of concentrations.

For small n, J.(n) is small, implying enhanced stability of
the ferromagnetic state in the concentration regime relevant,
e.g., to III-Mn-V semiconductors.”> This stability is a rem-
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FIG. 9. Spin wave dispersion for a N XN XN 3D lattice along
different directions (n=0.7, J=141, and N=8). I'=(0,0,0), X
=(7,0,0), M=(m,m,0), R=(m,m,m).

nant of the fact that, in the exactly solvable limit N,=1, the
ferromagnetic state |F) is the ground state for all values of
J/t. Figure 10(d) shows the 2D phase diagrams for 0.5=n
=0.8 relevant to the manganites. The full three-body varia-
tional calculation gives J.(n) ~7—8: in this regime, close to
the high end of the values quoted in the literature, while
phase separation and other instabilities will further increase
J.(n). Therefore, the simple double exchange Hamiltonian
predicts that the manganites lie in a regime that is close to
the instability of the ferromagnetic state. In this regime, the
correlations, vertex corrections, and finite J effects play an
important role in the spin dynamics. Furthermore, it is clear
from Fig. 10(d) that the RPA significantly overestimates the
stability of the ferromagnetic state. For example, for n
~0.5, the RPA underestimates J.(n) by 100% as compared
to the full three-body variational calculation. Finally, close to
half filling n=1, the two variational results give magnon en-
ergies similar to the RPA, which becomes exact for n=1. On
the other hand, the O(1/5%) approximation fails in this high
concentration regime.

FIG. 10. Phase diagram due to the spin wave
1 instability and comparison between the different

approximations discussed in the text. (a) 1D sys-

e tem, (b) 2D system, (c) 3D system, and (d) 2D
system in the electron concentration range rel-
evant to the manganites.
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Finally we discuss the possible relevance of our calcula-
tion to the spin wave dispersion observed experimentally in
the quasi-2D and -3D manganites. The experimental results
are typically analyzed by fitting the short range Heisenberg
dispersion to the long wavelength experimental dispersion
and then comparing the two close to the zone boun-
dary.?'-2837 This comparison showed that the Heisenberg
model fails to describe the experimental results in the over-
doped manganites (typically for 0.5=n=0.7), but fits well
in the underdoped samples (n>0.7). This failure is due to
the strong magnon softening close to the zone boundary (X
point).?*2% Here we compare our numerical results with the
Heisenberg dispersion wge“, obtained by fitting to the long
wavelength numerical results, by introducing the parameter
A=/ wy—1, where w{** and wy are the Heisenberg and
numerical magnon energies calculated at the X point. |A| thus
measures the magnitude of the deviations from Heisenberg
behavior at the zone boundary. For example, |A| ~ 1 means
100% deviation, A >0 means magnon softening at the zone
boundary, as compared to the Heisenberg dispersion with the
same stiffness, while A<<0 implies zone boundary harden-
ing. Figure 11 compares A(n) obtained from our different
approximations. With the exception of small values of J/¢,
the RPA gives small deviations from Heisenberg behavior,
mostly a hardening at the zone boundary (A <0, see Fig. 10),
and predicts a weak concentration dependence of A(n). This
similarity between the RPA and Heisenberg dispersions is
expected for J>>¢ since the two coincide in the strong cou-
pling limit J— o [see Eq. (3)].

The magnon-electron scattering leads to larger deviations
from Heisenberg ferromagnet spin dynamics and enhances
A(n) [see Figs. 11(a) and 11(b) for 2D and 3D, respectively].
In order to compare with the experiment, the value of J/t is
chosen so that |F ) is stable up to n~0.8, where a metallic
ferromagnetic state is observed experimentally. For J/¢~ 10,
this is the case for the full three-body calculation, while
larger values of J/t are required to achieve stability with
respect to the O(1/5%) magnons for n~0.8. Figures 11(a)
and 11(b) compare the behavior of A(n) for the different
approximations in the 2D and 3D systems respectively. The

O(1/S?) calculation gives magnon hardening rather than
softening in the concentration range of interest, similar to the
strong coupling results of Ref. 13. This is in contrast to A(n)
obtained by using the full three-body calculation, shown in
Fig. 11(a) for the 2D system. In this case, the magnon hard-
ening for n<<0.5 (A<0) changes to magnon softening for
0.5<n<0.7 (A>0) and then back to a small magnon hard-
ening for n>0.7. This behavior with n, obtained by using the
minimal Hamiltonian, is consistent with the experimental
trends. Although magnon softening at the X point can be
obtained using other approximations, the full three-body cal-
culation gives such an enhanced effect within the range of
intermediate electron concentrations of interest and for val-
ues of J/t such that the fully polarized ferromagnetic state is
stable for 0.5=n=0.8 (where it is observed experimentally).
The above behavior of A(n) is not reproduced in the strong
coupling limit J— o, where magnon hardening is obtained.
It arises from the interplay of the X-point instability and the
plateaulike shape of J.(n), Fig. 10, induced by the correla-
tions. On the other hand, for J=10z, the carrier-localized spin
scattering approximation ($=0,¥ #0 variational wave
function) gives A(n) that, more or less, follows the RPA
behavior [see Figs. 11(a) and 11(b)]. As J/t decreases, mag-
non softening, A >0, can also be obtained with this approxi-
mation over a range of electron concentrations in both 2D
and 3D [see Figs. 11(c) (2D) and 11(d) (3D)]. However, for
such J/t, the ferromagnetic state is unstable for n>0.6, i.e.,
in a regime where ferromagnetism is observed experimen-
tally. We expect that the behavior of A(n) in the realistic
materials will also depend on Hy;, Hpe, and the bandstruc-
ture effects (to be studied elsewhere). Here we point out that
at least three-body correlations must be included for a mean-
ingful comparison to the experiment.

IV. CONCLUSIONS

In this paper we presented a nonperturbative variational
calculation of the effects of magnon-Fermi sea pair correla-
tions on the spin wave dispersion for the simplest possible
double exchange Hamiltonian. Our theory treats exactly all
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three-body long range correlations between an electron, a
Fermi sea hole, and a magnon excitation. We achieved this
by using the most general variational wave function that in-
cludes up to one Fermi sea pair excitations. Since the contri-
bution of multipair Fermi sea excitations is suppressed by
powers of 1/S, one could alternatively think of our calcula-
tion as putting the O(1/5?) result, which treats the one Fermi
sea pair contribution perturbatively within the Born approxi-
mation, on a variational nonperturbative basis. Our theory (i)
becomes exact in the two limits of one and N? electrons and
should therefore interpolate well between the low concentra-
tion and half filling limits, (ii) converges well with system
size and thus applies to the thermodynamic limit, (iii) be-
comes exact in the atomic limit (=0), conserves momentum
exactly, and treats both short and long range correlations on
equal basis; it should therefore interpolate well between the
strong and weak coupling limits, which is important given
the relatively small values of J/7 in the manganites, and (iv)
contains the well known O(1/5?) and RPA results as limiting
cases. In this paper we studied, among others, (i) the spin
wave dispersion for different system dimensionalities (1D,
2D, and 3D), (ii) the deviations from the strong coupling
double exchange limit, and (iii) the role of up to three-body
correlations and nonperturbative vertex corrections on the
spin dynamics. By comparing the full three-body variational
calculation to a number of approximations (RPA, 1/S expan-
sion, ladder diagram treatment of two-body correlations, and
carrier-localized spin rather than carrier-magnon scattering),
we showed that the correlations play an important role on the
spin excitation spectrum and the stability of the ferromag-
netism in the parameter range relevant to the manganites.
Importantly, the correlations lead to spin dynamics that dif-
fers strongly from that of the short range Heisenberg ferro-
magnet for intermediate electron concentrations.

Our main results can be summarized as follows. First, the
different approximations lead to substantial differences in the
spin wave dispersion and ferromagnetic phase boundary for
electron concentrations above n~ 0.3 and intermediate val-
ues of J/t, which includes the parameter range relevant to the
manganites. These large differences come from the correla-
tions, which cannot be neglected. This result implies that
variational treatments of the correlations should be used if
possible in order to draw definite conclusions. Second, we
find that, depending on n, there are two possible instabilities
of the ferromagnetic state toward spin wave excitations: in-
stability driven by a negative spin stiffness and instability at
large momenta, close to the X-point zone boundary, with
positive stiffness. The latter instability only occurs in the 2D
and 3D systems, for electron concentrations n =0.7 and finite
values of J. The three-body carrier-magnon correlations en-
hance this effect. As a precursor to the above zone boundary
instability, we find a strong magnon softening at the X point.
Third, by comparing to the Heisenberg dispersion obtained
by fitting to the long wavelength numerical results, we find
strong deviations from the spin dynamics of the short range
Heisenberg model. By choosing the exchange interaction so
that the fully polarized ferromagnetic state is stable up to n
~(.8 as in the experiment, we show that the full three-body
2D calculation gives strong magnon softening at the X point
for 0.5=n=0.7, which changes into a small hardening for
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n>0.7. This is similar to the behavior observed in the man-
ganites. Our work provides new insight into the spin dynam-
ics in the manganites and can be extended to treat related
ferromagnetic systems (such as, e.g., the III-Mn-V magnetic
semiconductors) that are far from the double exchange
strong coupling limit. Our calculations imply that the metal-
lic ferromagnetic state in the manganites should be viewed as
a strongly correlated state. The interplay between the corre-
lations and phase separation must be studied in order to de-
termine the phase diagram of the manganites. Finally, the
carrier-magnon correlations studied here can also play an
important role in the ultrafast relaxation dynamics of itiner-
ant ferromagnetic systems, which is beginning to be explored
by using ultrafast magneto-optical pump-probe spectros-
copy.39-41
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APPENDIX A

In this appendix we present the variational equations that
determine the wave function amplitudes XQ, WQ, and ®Q.
These are obtained by minimizing the variational energy
(F |MQHM5|F ), where Ma is given by Eq. (4), with respect
to the above variational amplitudes. The normalization con-
dition (F|MoM}|F)=1 is enforced via a Lagrange multi-
plier, which coincides with the variational magnon energy
wq. Similar to the three-body Fadeev equations, the resulting
variational equations are equivalent to solving the Schro-
dinger equation within the subspace spanned by the states
SolF) and ¢y, ¢, |F), which describe all possible configu-
rations with one reversed spin and no Fermi sea excitations,
and the magnon-Fermi sea pair states CLTCVTSZ) ol F) and
c('ﬂc,,Tcwa_alcm | F) to which a magnon or spin flip exci-
tation can scatter with the simultaneous excitation of a Fermi
sea pair. We note that the above momentum space basis en-
sures the conservation of momentum and total spin. The ex-
plicit form of the variational equations is obtained after
straightforward algebra by projecting the Schrédinger equa-
tion [H ,M8]|F )=wq|F) in the above basis after calculating
the commutator [H, M, B] by using Eq. (4) for M Ez and noting
that H|F)=0 (we take the energy of |F) as zero). The varia-
tional equation that gives the energy w reads

Jn i

J
wo=2 - LIS, (Al

2N

The last term in the above equation describes the contribu-
tion due to the carrier-magnon scattering. The first two terms
on the RHS give the RPA magnon energy if X? is substituted
by its RPA value, obtained for ¥Q=0. The carrier-magnon
scattering renormalizes X as compared to the RPA result

(US+e,g— €, wo)X2= JS[I + 20 (A2)

The RPA is obtained from Egs. (A1) and (A2) after setting
Ve=pQ=(:
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Jn
o= K (A3)

JS
RPA= oA (A4)
JS+e,9-8,—wq

4
This full RPA result can also be obtained as the zeroth order
contribution to an expansion in powers of 1/L, where L is
the number of electron flavors and corresponding degenerate
electron bands.®
The scattering amplitude W< is determined by the varia-
tional equation

(wQ_%”HV )wo-i(l_xQ)+—sz

2N 2N
_ iz \I;Q _ _E q)Q
N = av’ av'v’
(AS)

The first term on the RHS of the above equation gives the
Born scattering approximation contribution to the carrier-
magnon scattering amplitude, which is the only one that con-
tributes to O(1/5?). The next two terms describe the effects
of the multiple electron-magnon (second term) and hole
magnon (third term) scattering. Finally, the last term comes
from the electronic contribution to the scattered magnon, i.e.,
from the coherent excitation of a spin-{ electron to the spin-
| band. The amplitude ®¢ of the latter contribution to Eq.
(4) is given by the variational equation

(JS+eQiptva—EutEa— &y~ ‘”Q)(ng =JS(PQ, - w9 )

(A6)
We note that, in the strong coupling limit J— o, <I>
—>\I’Q \I’Q and the last two terms in Eq. (4) describe the
scattering of a Fermi sea pair with the strong coupling RPA
magnon created by the total spin lowering operator S
+(1/\N)2 cQ +»|Cvp- Our general wave function Eq. (4) does
not assume an RPA magnon and includes corrections to the
strong coupling limit that are important for the values of J/¢
relevant to the manganites.

A closed equation for the carrier-magnon scattering am-
plitude WQ can be obtained by substituting in Eq. (A5) the
expressions for ®Q and XQ obtained from Egs. (A6) and
(A2). Defining the excitation energy

Q _
Ay, =wg+e,—¢,
J EQ+v/+v-a~ Ev/ te,—8&,— wQ

2N IS+ €Qiyiv-a €y

/+8a—8y—wQ

(A7)

we thus obtain the following equation:
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J e,,0—&,—®
AQpQ - — 10 2 1+> 9
2NJS+e,,0-&,— wq " av

EQivtv'—a— €y r+ & a” €y~ WQ

s w

aVJS+8Q+V+V _a— €y tE, —(UQ.
(AB)

The above equation describes up to three-body correlations
between the magnon and a Fermi sea pair. The first term on
the RHS describes the bare carrier-magnon scattering ampli-
tude. This is renormalized by the multiple scattering of a
Fermi sea electron (second term on the RHS) and a Fermi
sea hole (last term on the RHS). These two contributions
describe vertex corrections of the carrier-magnon interaction.
Equations (A1) and (A8) were solved iteratively until con-
vergence for the spin wave energy was reached.

APPENDIX B

In this Appendix we identify the three-body correlation
contribution to the carrier-magnon scattering amplitude W<,
Eq. (A8), and distinguish it from the two-body multiple scat-
tering contributions. We note from Eq. (A8), that W< has the
form

0 J

£,1Q = €= WQ re-1"
T ONAQ IS+, 0, — 0g

+ < (B1)

where we introduced the electron vertex function Eq. (6) and
the hole vertex function
J
m=—>w
av 2N§

EQtrv—at Ea— €y~ &y —WQ

(B2)

’
IS + EQivtri—a— Ey T E4— €,— W

Substituting Eq. (B1) into Eq. (6) we obtain after some alge-
bra that

J &,0-8&,—® 1|
re=|1--——=¢ . 5
2NJS+e,9-€,—wo Ay,

8V+Q_ €y~ (DQ

J? 1
X — 0
4N JS+8V+Q_8V_wQ ’ A 2

a a’ v

h
I ewg-emag 5 Fan

2NJS+e,,0—&,— 0 o Ag,y

(B3)

The first factor on the RHS of the above equation comes
from the electron-magnon two-body ladder diagrams
summed to infinite order. The last term in the second factor
describes the coupling of the electron-magnon and hole-
magnon scattering channels. This coupling comes from the
three-body correlations. An analogous equation for I'* can be
obtained by substituting Eq. (B1) into Eq. (B2). In the case
of the simpler variational wave function ®=0, ¥ # 0, which
describes the carrier-localized spin scattering contribution,
the calculation of I'* simplifies by noting from Eq. (AS5)
and the definition (B1) that I"=T" = The corresponding
variational equation can be obtained by setting ®2=0 in
Eq. (A5):
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J< I

J
U=ll+-->2 | | 7=
« l 2N§ A2 || 4N

1 ]—1 ng

’
14

=
JS+e,,0— 80— 0q ASV, 2N

s

o (B4)

’
14

The first factor on the RHS comes from the hole-magnon ladder diagrams, while the coupling to I'* comes from the three-body

correlations.
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