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We calculate the density of states for the face-centered-cubic �fcc� Ising model with nearest-neighbor inter-
actions using a Wang-Landau algorithm. This allows us to calculate thermodynamic quantities at all tempera-
tures for both the ferromagnetic �FM� and antiferromagnetic �AF� models from the same data set, while
avoiding the hysteresis usually occurring in models undergoing a first-order phase transition. For the FM
model, our results are in agreement with high-temperature �HT� series expansion results, and are of the same
precision. For the AF model which has a first-order transition, and where precise estimates of the critical
behavior are lacking, we obtain TN=1.7217�8�. We also obtain estimates of the free energy, internal energy, and
entropy of both the ordered and disordered states at TN with a precision comparable to that obtained in the HT
series for the FM model. Details of the finite-size scaling for the AF model are discussed, and a different
convergence criterion for the Wang-Landau method is introduced.
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I. INTRODUCTION

The ordering of the fcc Ising antiferromagnet has been a
long-standing problem in statistical physics, dating back to1

the 1930s. Chemical ordering in binary alloys such as CuAu
motivated the initial research, but the model is now studied
primarily due to an interest in frustrated magnetism.2–4 For
bipartite lattices, the solution of a ferromagnetic �FM� model
immediately yields the solution of the corresponding antifer-
romagnetic �AF� model through a gauge symmetry. How-
ever, the fcc lattice is not bipartite. The lack of gauge sym-
metry serves to explain in part why, despite the existence of
precision estimates of the critical behavior of the fcc Ising
FM model, comparable results do not exist for the fcc Ising
AF model. Here we obtain accurate estimates of basic ther-
modynamic quantities such as the Néel temperature �TN�, the
free energy at TN, and others with an accuracy comparable to
those for the fcc Ising FM model.

The difficulty experienced with the fcc Ising AF model
has two distinct sources: First, the model is geometrically
frustrated resulting in an infinite ground-state degeneracy
and second, the phase transition is first order. Geometrical
frustration is provided by the topology of the fcc lattice
where, using alloy terminology, it is impossible to assign to
every Cu atom a full complement of nearest-neighbor Au
neighbors and vice versa. An important consequence of geo-
metrical frustration is that the low-temperature �LT� series
expansions for the fcc Ising AF model are short5,6 in com-
parison with those of the FM model, and as such the conver-
gence of Padé approximants to the series is poor. An addi-
tional problem is that it is not always clear which of the
available ground states should be used as a starting point for
the calculation7 of the LT series.

The first-order phase transition thought to occur in the fcc
Ising AF primarily affects the accuracy obtained to date in
Monte Carlo methods, since hysteresis is typically
observed,2,3 despite the fact that the Monte Carlo method is

ergodic. The presence of hysteresis in Monte Carlo data, and
elsewhere, makes the determination of a sharp phase bound-
ary both difficult and uncertain.8 Furthermore, first-order
transitions are not anticipated by the system approaching TN
from above �the correlation length � remains finite�, perhaps
explaining the lack of published high-temperature �HT�
series.9

The Hamiltonian of the Ising models we consider here is

H = − J�
�i,j�

SiSj , �1�

where the sum is over nearest-neighbor Ising spins S= ±1 on
a fcc lattice with periodic boundary conditions, and J=
+1�J=−1� for the FM �AF� model, respectively. The ground
states of the fcc Ising AF consist of a stack of uncorrelated,
antiferromagnetically ordered, �100� planes as was first dem-
onstrated by Luttinger.10 As there are three ways to choose
the normal axis to the stacking planes, and each plane can be
in one of two AF ordered states, the ground-state degeneracy
is g0=3�22L where the number of sites is N=4L3 and L is
the linear dimension of the fcc lattice. It is commonly
accepted2,3 that a first-order phase transition occurs near
kBTN / �J � �1.76. However, as mentioned earlier, traditional
Monte Carlo methods become hampered near a first-order
transition, complicating the precise estimate of TN. Here we
use a Monte Carlo method which eliminates entirely the
problems caused by the first-order transition, the geometrical
frustration, and the resulting large ground-state degeneracy.

II. METHODS

In a traditional Monte Carlo procedure, states are selected
with a weight proportional to g�E�exp�−�E�, with g�E� be-
ing the density of states and �= �kBT�−1. Thus a new simula-
tion is required for each value of �. New techniques such as
re-weighting11 have been devised to produce data at continu-
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ous values of � near the simulated temperature. A completely
different strategy, due to Wang and Landau,12 is to calculate
g�E� directly, making it possible to calculate thermodynamic
quantities at any temperature. For instance, the partition
function Z, free-energy/site f , internal energy/site u, and
heat-capacity/site c can be obtained from g�E� by the stan-
dard statistical mechanics formulas:

Z = � g�E�exp�− �E� , �2�

f = − ��N�−1ln�Z� , �3�

u = �NZ�−1 � Eg�E�exp�− �E� , �4�

c =
du

dT
. �5�

The entropy/site s, a quantity not readily accessible using
Monte Carlo �MC� methods, immediately follows from the
relation f = �u−Ts�. We also calculate the average absolute
magnetization/site, �m�E�� and its square �m�E�2�, for each
energy level. We may then compute the average magnetiza-
tion, its square, and the susceptibility from the usual formu-
las:

m = Z−1 � �m�E��g�E�exp�− �E� , �6�

m2 = Z−1 � �m�E�2�g�E�exp�− �E� , �7�

� = ��N���m2� − �m�2	 . �8�

We do not calculate the analogous AF �staggered� order pa-
rameters mst, mst

2 , and �st as the process is computationally
expensive, and would not improve upon our estimates of TN.

The density of states for the FM model at energy E is
equal to the density of states of the AF model at energy −E,
which allows us to obtain thermodynamic densities for both
models from the same simulation data. This fact is especially
useful since we can compare our estimates of f , u, and s at Tc
for the FM model with HT series estimates, establishing the
accuracy and precision of our calculated g�E�. Then, using
this same g�E�, we can calculate f , u, and s at TN for the AF
model, confident that the results are of equal accuracy and
precision as for the FM model.

To calculate g�E� we mostly follow the prescription given
by Wang and Landau,12 and so we only give a brief descrip-
tion of the method here. We begin by assuming that g�E� is
unity, and that the initial spin configuration is random. A spin
is then chosen at random and the energy before, Ei, and after,
Ei�, the attempted inversion is recorded. The spin is then
inverted with a probability P with

P�Si+1 → − Si� = min
 g�Ei�
g�Ei��

,1
 , �9�

and the spin configuration is updated accordingly with the
energy of the new state Ei+1 �either Ei or Ei�� noted. Follow-
ing each attempted spin inversion g�E� is updated13 to
g�Ei+1�= fg�Ei�, with the initial choice f =exp�1�, and we

record a histogram of the number of visits to each energy
state H�E�. If H�E� is flat, then the density of states has been
calculated exactly �we make more detailed comments regard-
ing the flatness criterion near the end of this paper�. How-
ever, since the original modification factor f is large, g�E� is
at best only approximately correct. Once H�E� is determined
to be reasonably flat we repeat the procedure for the nth
iteration using a new f , with fn+1=�fn. Typically we use n
�20 with 107−108 updates per energy level for each itera-
tion n. Finally, the calculated g�E� are normalized such that
the total number of states is �=2N. In Fig. 1 we have plotted
the calculated14 ln�g�E�	 for 2�L�24. In Fig. 2 we have
plotted the calculated �m�E�� for the same system sizes.

FIG. 1. Density of states g�E� for the fcc Ising model for system
sizes L=2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, and 24.

FIG. 2. Average magnetization/site at energy E, �m�E��, for the
fcc Ising model for system sizes L=2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14,
16, 18, 20, and 24.
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III. RESULTS

A. Ferromagnetic model

To test the precision and accuracy of the results obtained
from g�E�, we first compare our results for the fcc Ising FM
model with those calculated from HT series expansions. In
Fig. 3 we have plotted the thermodynamic densities u�T ,L�,
f�T ,L�, c�T ,L�, ��T ,L�, m�T ,L�, and s�T ,L�. At Tc, one ex-
pects the free-energy/site to scale as

f�Tc,L� = f0 + fdL−d �10�

and the energy/site to scale as

u�Tc,L� = u0 + udL−d+1/�, �11�

with �=0.6299, calculated from HT series for the Ising uni-
versality class.15 The scaling at Tc=9.7943 �Tc calculated
from the HT series16� is shown in Fig. 4. A simple two-
parameter fit �using L�4� yields the estimates for f0, u0, and
s0 shown in Table I. Our results are in excellent agreement
with the HT series estimates, having both comparable preci-
sion and accuracy. That we have been able to calculate the
critical behavior of the FM fcc Ising model to better than a
part in ten thousand is a testament to the high quality of our
calculated density of states.

For a finite sized system, pseudotransition temperatures
Tc�L� can be found from the peak location of c�T ,L� and
��T ,L�, and the maximum slope of m�T ,L�. The pseudot-
ransition temperatures are expected to scale according to

Tc�L� = Tc + aL−1/� �12�

which allows us to locate the true transition temperature Tc.
In Fig. 5 we have plotted the pseudotransition temperatures
for c�T ,L�, ��T ,L�, and the maximum slope of m�T ,L� vs
L−1/�. It is clear from the plot in Fig. 5 that scaling correc-
tions are substantial for small system sizes, and to use all of
the data it would be necessary to include the scaling correc-
tions to Eq. �12�. However, by simply neglecting the data for
L	8, a weighted average of the three estimates of Tc yields
Tc=9.7941�8�, in agreement with the HT series estimate16

Tc=9.7943�1�.

B. Antiferromagnetic model

While the fcc Ising FM model is well understood, the
same cannot be said for the fcc Ising AF model. In the pre-
vious section we showed that our calculated g�E� was ca-

FIG. 3. Thermodynamic densities for the fcc Ising FM model,
obtained from the data shown in Figs. 1 and 2.

FIG. 4. Scaling of f�Tc ,L� and u�Tc ,L� at Tc=9.7943. Straight
line fits using L�4 yield f0=−7.265 35�3� and u0=−1.4858�5� in
agreement with the high-temperature series estimates f0=
−7.2654�3� and u0=−1.4845�3�.

TABLE I. Comparison between the results of the high-
temperature �HT� series expansion and our implementation of the
Wang-Landau Monte Carlo �MC� method for the fcc Ising FM
model.

HT series estimates Wang-Landau MC

f0 −7.2654�3� −7.26535�3�
u0 −1.4845�3� −1.4858�5�
s0 0.5902�1� 0.59009�5�
Tc 9.7943�1� 9.7941�8�
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pable of reproducing known results for the FM model with
an error better than a part in ten thousand, comparable to the
precision of HT series estimates. The exact same g�E�, in
addition to solving the FM model, solves the AF model since
g�E� of the AF model is equal to g�−E� for the FM model.
We expect that the precision and accuracy obtained for the
FM model will carry over to our analysis of the AF model, if
only because the underlying data are identical. We now turn
to the fcc Ising AF model where we anticipate a first-order
transition near2 TN=1.76.

To demonstrate that the transition is first order we first
show in Fig. 6 plots of the u�T ,L�, f�T ,L�, c�T ,L�, ��T ,L�,
m�T ,L�, and s�T ,L�. The data indicate the presence of a first-
order transition since in the approach to the thermodynamic
limit �i� the energy and entropy both exhibit a discontinuity,
�ii� the free energy shows a break in slope, and �iii� the heat
capacity shows a delta function peak. The FM order param-
eters m�T ,L� and their fluctuations ��T ,L� are also shown,
and for finite lattices they also show indications of a phase
transition. However, in the thermodynamic limit the ferro-
magnetic order parameter vanishes.

It is often difficult to distinguish between first- and
second-order transitions.8 A common signature for the exis-
tence of a first-order transition is the characteristic double
peaked structure at TN of P�E�
g�E�exp�−�E�, the probabil-
ity distribution of states with energy E. Rather than showing
this feature, we simply note that the presence of a double
peaked probability distribution near TN is already apparent in
Fig. 6 from the jump in the internal energy, the entropy, or
even the magnetization. At TN�L�, one peak in P�E� repre-
sents the probability of being in a disordered metastable state

with internal energy u0
+ and the other peak in P�E� represents

the probability of being in the ordered metastable state u0
−.

Traversing TN�L�, the probability associated with one state
shifts to the other state, resulting in a jump in the internal
energy given by the latent heat, �=u0

+−u0
−. The discontinui-

ties, which are sharp in the thermodynamic limit, become
rounded due to the finite system size as shown, for example,
in Fig. 7�a� for u�T ,L�. The rounding of the discontinuity is
a good example of the problem of determining the order of a
transition for a system of finite size.

The divergence of the heat capacity provides a quantita-
tive measure of the nature of the transition. For a first-order
transition, quite general arguments from the theory of ther-
modynamic fluctuations, or the existence of a renormaliza-
tion “discontinuity” fixed point,17 implies that the heat ca-
pacity diverges as Ld. Since the divergence of the heat
capacity for a second-order transition is described by the
power-law relation c�L�/�, one defines for a first-order tran-
sition fictitious critical exponents �=1 and �=1/d. The re-
lation �=1 follows from the expectation17 that the eigen-
value of the renormalization-group transformation, y=1/�,
takes its maximal value at a first-order transition, y=d. In
Fig. 8 we have plotted c�T ,L� in the vicinity of the first-order
transition. The L3 divergence of c�T ,L�, the signal of a first-
order transition, is shown in the inset �a� of Fig. 8 confirming
that the transition at TN is of first order.

To determine TN we extract from c�T ,L� the pseudotransi-
tion temperature TN�L�. From the earlier discussion we ex-
pect that the shift in TN�L� from TN�� can be described with
a fictitious critical exponent �=1/d, and thus we should have
TN�L�
L−d from Eq. �12�. However, as shown in the inset

FIG. 5. Scaling of pseudotransition temperatures Tc�L� for the
fcc Ising FM model. Solid lines are two parameter fits to Eq. �12�
using L�8 �the smaller systems clearly suffer from finite-size ef-
fects�. A weighted average of the three estimates yields Tc

=9.7941�8�, in agreement with the high-temperature series estimate
Tc=9.7943�1�.

FIG. 6. Thermodynamic densities for the fcc Ising AF model,
obtained from the data shown in Figs. 1 and 2.
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�b� of Fig. 8, the shift is clearly described by TN�L�
L−1

except for the smallest lattice size L=2. This behavior is
reminiscent of the first-order transition occurring in FM Ising
models with imposed boundary conditions.17 The difference
between our initial expectation and our finding is a rather
clear example of the difficulty associated with first-order
transitions, where for example, one might incorrectly con-
clude that the transition is second order and ��1. A two
parameter fit to TN�L�=TN+aL−1 using L�2 yields TN

=1.7217�8�. Our estimate of TN is significantly lower than2

TN=1.76.
At TN, f�TN ,L�, and u�TN ,L� are expected to scale accord-

ing to Eqs. �10� and �11�, respectively, with the relation �
=1/d. Equation �11� predicts that the internal energy should

be a constant for large L. As shown in Fig. 7�c�, the predic-
tion is confirmed for L�7. Note that since TN�L� approaches
TN from above, the large L behavior of u�TN ,L� actually
represents u0

−, the internal energy at TN of the metastable
ordered state. A fit for L�7 yields u0

−=−1.809 25�15�. To
determine u0

+, we need to calculate the latent heat.
The latent heat is given by the area under the delta func-

tion peak of c�T ,  �. As was shown in the inset �a� of Fig. 8,
c�Ld. A two parameter fit to cmax�L�=c0+cdLd neglecting
the smallest lattice sizes yields c0=3�6� and cd=0.0654�13�.
Since the peak height diverges as Ld, the inverse half width
at half maximum, �, must also diverge like Ld such that the
area under c is a constant, representing the latent heat. The
divergence of � is shown in the inset �a� of Fig. 8. A two-
parameter fit to ��L�=�0+�dLd neglecting the smallest lat-
tice sizes yields �0=184�86� and �d=0.360�9�. If we make
the assumption18 that the rounded delta function is a Gauss-
ian of height cd and half width �−1, then the latent heat is
�=�2�cd /�d=0.455�15�. Therefore the internal energy of
the metastable disordered state at TN is u0

+=−1.354�15�. Our
estimate of u0

+ is consistent with a continuation of the high-
temperature, large L, behavior of u�T ,L� extrapolated to TN

as shown in Fig. 7�a� where we have plotted u�T ,L� in the
vicinity of TN.

In the case of the free energy, Eq. �10� and the relation
�=1/d predicts that f�TN ,L��L−3. However, as can be seen
in Fig. 7�b� the data appear to scale much better using
f�TN ,L��L−2. A bold, yet incorrect assertion would be that
fcc Ising AF model is quasi-two dimensional. Indeed, the

FIG. 7. In �a� we show an expanded view of the internal
energy/site u�T ,L� in the vicinity of TN. The dashed line shows our
predicted behavior in the thermodynamic limit, with squares indi-
cating u0

− and u0
+, respectively. In �b� we show the scaling of

f�TN ,L� at TN=1.7217. The almost overlapping solid and dashed
lines are two and three parameter fits, as discussed in the text. The
fitted value, f2=−0.606�9� is close to our anticipated result, f2=

−
TN

2 ln�2�, validating our assignment of TN. In �c� we show the
scaling of u�TN ,L�. For large L, the u�TN ,L� approaches a constant
as expected for the first-order transition.

FIG. 8. c�T ,L� for the fcc Ising AF model in the vicinity of TN.
Inset �a� shows the L3 divergence of the peak height and inverse
half width �scaled to fit the plotting area�, as expected for a first-
order transition. Inset �b� shows the scaling of the pseudotransitions
temperature TN�L�, expected to scale as TN�L�=TN+aL−d, with d
=3. We find instead that the data are much better described with
d=1, and a two-parameter fit �using L�2� yields TN=1.7217�8�.
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possibility of a reduced effective dimensionality was a moti-
vation for the LT series expansions of Betts and Elliott.5

To come to an understanding of the L−2 scaling of
f�TN ,L�, we write Eq. �3� as

f =
E0

N
−

ln�g0�
��N�

− ��N�−1�ln1 + �
k�0

gku
k�� , �13�

where E0=−2N is the ground-state energy of the AF model,
u=e−4� and gk=g�E=E0+4k� /g0 is a polynomial in N pro-
portional to the density of states. A further expansion of
ln�1+�k� yields the basic starting point for the LT expansion.
It is important to note that Eq. �13� is exact, and that all of
the interesting information on the critical behavior is con-
tained within the third term. For the FM model, where g0
=2, the second term of Eq. �13� is proportional to L−3 and
together with the expected L−3 critical contribution of the
third term, the free-energy/site can be expected to scale ac-
cording to Eq. �10� with d=3. However, for the AF model
g0=3�22L, which contributes to f�TN ,L� a term

TN

2 ln�2�L−2

in addition to the expected L−3 critical contribution of the
third term. We then expect that the free energy should scale
as

f�L� = f0 + f2L−2 + f3L−3 �14�

with f2=−
TN

2 ln�2�. A fit to Eq. �14� with f2=−0.596¯ fixed
yields f0=−2.028 09�4�, as shown in Fig. 7�b� by the solid
line. Leaving f2 as a free parameter yields only a slightly
different value f0=−2.028 05�7�, and f2=−0.601�6� is still in
agreement to the expected value f2=−0.596¯, justifying our
assignment of TN. Thus we conclude that the infinite ground-
state degeneracy has the effect of masking the true value �
=1/d expected for a first-order transition.

Unlike the FM model, where precise estimate for f0, u0
and s0 exist from the HT series, comparable results do not
exist for the AF model. Nevertheless, short LT series do
exist,5 although the estimates made from this series cannot
be expected to be as precise as our Monte Carlo results. To
make a comparison of our Monte Carlo results for the fcc
Ising AF model we have made Padé estimates for f0, u0

−, and
s0

− from the LT series expansion coefficients of Betts and
Elliott, see Table II.5 The �N,M	 Padé estimates for f0 and u0

−

are listed in Tables III and IV. It is clear from Tables III and
IV that the estimates are far from convergent. The series
estimates for f0 and u0

− are, however, reasonable, although
the scatter in u0

− is noticeably worse.
Since the series are short and poorly convergent, we have

simply calculated f0 and u0
− for N+M a constant, and ex-

trapolated the results to �N+M�−1=0. Our LT series estimate,
f0=−2.0278�6� is, somewhat surprisingly, in good agreement
with our MC estimate f0=−2.028 09�4�. The LT series esti-
mate u0

−=−1.814�11� has an error two orders of magnitude
larger than that for f0 owing to the fact that the Padé esti-
mates to u0

− have greater fluctuations. The estimate does,
however, agree with our more precise MC result u0

−=
−1.809 25�15�. The LT series expansion estimate of TN has
previously been recalculated19 from the data appearing in
Ref. 5. The estimate, TN=1.73, is near our high-precision
result TN=1.7217�8�. Longer series, should they become
available, would be useful in order to have a better compari-
son with our results.

C. Density of states

Since all of our results rely upon an accurate calculation
of the density of states, it is important to check the accuracy
of our calculations at this most basic level. Using the coeffi-
cients of the LT expansions it is possible to calculate g�E�
exactly for energies near the ground-state energy EJ /N=−6
of the FM model and EJ /N=2 of the AF model. These exact
density of states can then be compared to the approximate
density of states calculated in our implementation of the
Wang-Landau algorithm, which permits us to determine the

TABLE II. A comparison between the results from our imple-
mentation of the Wang-Landau MC method, and those obtained by
us from the low-temperature �LT� expansion coefficients of Ref. 5
using Padé approximant techniques. TN is calculated in Ref. 18
from the data appearing in Ref. 5.

LT series estimates Wang-Landau MC

f0 −2.0278�6� −2.02809�4�
u0

+ −1.354�15�
u0

− −1.814�11� −1.80925�15�
s0

+ 0.391�6�
s0

− 0.124�6� 0.12711�11�
TN 1.73�� 1.7217�8�

TABLE III. �N ,M	 Padé estimates for the free energy/site taken
at TN=1.7217. The free-energy series from which the Padé esti-
mates are derived is f =−2−T�u2+4u3+15u4+137/2u5

+8945/24u6�, taken from our Ref. 5. The expansion variable is u
=exp�−4��.

1 2 3 4 5

1 −2.027160 −2.026748 −2.027685 −2.027645

2 −2.027534 −2.026739 −2.026969 −2.027952

3 −2.026772 −2.026980 −2.027794

4 −2.027267 −2.028103

5 −2.026255

TABLE IV. �N ,M	 Padé estimates for the internal energy/site
taken at TN=1.7217. The series from which the Padé estimates are
derived is u=−2+8u2+48u3+240u4+1370u5+8945u6.

1 2 3 4 5

1 −1.81383 −1.83484 −1.82802 −1.82177

2 −1.82969 −1.83664 −1.83024 −1.80759

3 −1.84598 −1.83274 −1.82075

4 −1.82662 −1.81820

5 −1.81560
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statistical error in g�E� from which all of our results are
derived.

To demonstrate how this is accomplished, we expand
ln�1+�� in Eq. �13� for small � which yields the usual LT
expansion formula:

f =
E0

N
−

ln�g0�
��N�

− �−1�
k�0

bku
k� . �15�

Only those terms in gk that are linear in N, bk, survive the
expansion, at least for the FM and AF fcc Ising models
which are known to be both regular and to satisfy the Peierls
condition.7 Using the LT series expansion coefficients bk� for
1�k��k it is easy to calculate gk, and therefore g�E�; for
example g4= 1

4b1
4N4−b1

2b2N3+ � 1
2b2

2+b1b3�N2+b4N. We can
therefore compare the accuracy of our implementation of the
Wang-Landau method by comparing gk calculated from the
MC method to gk calculated from LT expansions. Since we
are unaware of any other method designed to check the ac-
curacy of the Wang-Landau MC method, except for the un-
interesting case where the exact solution to a particular
model is already known, this test should also prove useful for
other MC practioners.

For the fcc Ising FM model, gk are known16 to at least k
=40. In Fig. 9 we compare the density of states measured in
our implementation of the Wang-Landau MC method with
those of the LT expansion for the FM fcc Ising model. In Fig.
10 the same comparison is made with the LT expansion re-
sults for the AF fcc Ising model, as calculated by Betts and
Elliott5 up to k=6. Practically speaking, the two expansions
�FM and AF� give us access to the regions near both end
points in g�E�. From the comparison, we estimate that our

error in g�E�,
�g�E�

g�E� , is less than 10−4 for the smaller lattices

and less than 10−3 for the largest. At very small L, the MC
estimate of g�E� noticeably deviates from the exact calcula-
tion of g�E�. However, this is nothing more than an expected
finite-size effect. For example, for the fcc Ising AF, finite-
size effects alter the expression for gk for L=2 already at k
=4, while forL=3 finite-size effects do not alter the data until
k=6.

The exact density of states can also be used as a flatness
criteria when applying the Wang-Landau MC method. A typi-
cal flatness criterion is the following: When the minimal his-
togram entry Hmin�E� is some fixed fraction, say 99%, of the
average H�E� then H�E� is reset to zero, fmod is updated to a
smaller value and the calculation of g�E� proceeds. While
this criterion allows the calculation to converge, it does not
ensure that the calculation converges to the correct result. A
superior convergence criterion would have the property that
g�E� be forced to converge to the exact result. However, the
exact result is in our case unknown, with the exception of the
small intervals around EJ /N=−6 �the FM ground state� and
EJ /N=2 �the AF ground state�. On the other hand, since the
Wang-Landau method is based upon the idea of a random
walk across the energy landscape, and the FM and AF
ground states are furthest apart in energy, a test designed to
ensure that these two most distant points in the random walk
have the correct g�E� will have the tendency to ensure that
the intermediate g�E� are calculated at least as well.

Based upon this idea, we have found that a better criterion
is to calculate

�MC = ln�g�Emax�/g�Emin�	 , �16�

and compare the result to the known solution, in our case
�EX=ln�3�22L−1�. When ��MC−�EX � 	M, with M some
chosen convergence parameter, then H�E� is reset, fmod is
updated as well as M, with M *ln�fmod� and the calculation
of g�E� proceeds. Typically we choose at the first iteration,

FIG. 9. Density of states divided by ground-state degeneracy,

gk=
g�E�

g0
for the fcc Ising FM model near E0. Points are calculated

from the MC method while solid lines are gk reconstructed from LT
expansion coefficients as explained in the text.

FIG. 10. Density of states divided by ground-state degeneracy,

gk=
g�E�

g0
, for the fcc Ising AF model near E0. Points are calculated

from the MC method while solid lines are gk from LT expansion.
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where ln�fmod�=1, M �100 for the smallest sizes and M
�1000 for the largest. After the first iteration, the difference
between g�Emin� and g�Emax� is less than M. Following the
second iteration where ln�fmod�=0.5, the difference between
g�Emin� and g�Emax� is less than M /2 and so on. We have
found that when using this convergence test, H�E� tends to a
flat histogram which is a necessary condition for the success-
ful implementation of the Wang-Landau algorithm. Indeed,
our results for the FM model indicate that the g�E� we have
calculated is extremely accurate.

IV. CONCLUSIONS

We have employed the Wang-Landau MC method to
study both the AF and FM fcc Ising models. We have also
implemented a different flatness criteria which, based on our
own results, indicates that the g�E� converges towards the
exact solution. Our results for the FM model are consistent
with the HT series estimates. Our data and the HT series
estimates are summarized in Table I. The same data used to
calculate the properties of the FM model are then used to
study the critical behavior of the AF model. We find that the

transition temperature is much lower than previously
thought,2 and TN=1.7217�8�. Furthermore, we have found
that the pseudotransition temperatures for the AF model shift
from the true transition temperature as TN�L−1, similar to
the shift in critical field for FM Ising models undergoing a
first-order transition.17 We have also made estimates of sev-
eral thermodyanmic quantities at TN, as summarized in Table
II. Furthermore, we have found that at TN, the predicted re-
lation 1/�=d expected at a first-order transition is satisfied
when scaling either the internal energy or free energy. How-
ever, in the case of the free energy we find that it is important
to account for the contribution from the infinite ground-state
degeneracy which would otherwise mask the true L−3 scal-
ing.
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