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Stochastic theory of spin-transfer oscillator linewidths
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We present a stochastic theory of linewidths for magnetization oscillations in spin-valve structures driven by

spin-polarized currents. Starting from a nonlinear oscillator model derived from spin-wave theory, we derive
Langevin equations for amplitude and phase fluctuations due to the presence of thermal noise. We find that the
spectral linewidths are inversely proportional to the spin-wave intensities with a lower bound that is determined
purely by modulations in the oscillation frequencies. Reasonable quantitative agreement with recent experi-
mental results from spin-valve nanopillars is demonstrated.
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I. INTRODUCTION

Since the theoretical predictions of Berger! and
Slonczewski>? concerning the influence of a spin-polarized
current on magnetization at a mesoscopic scale, many issues
concerning the interplay between spin transport and spin dy-
namics in metallic heterostructures have been brought to
light by extensive experimental and theoretical work. The
primary effect on these length scales is a transfer of spin
angular momentum between the current and the magnetiza-
tion, which may lead to magnetization reversal, the genera-
tion of spin waves, or both. One can account for the spin-
polarized current in the equations of motion of magnetization

M, to a reasonable approximation, by an additional torque of
the form

M| o(p.MI - -
T =M X (M X p), 1
o |, M, (M X p) (1)

where [ is the current density, M, is the saturation magneti-
zation, p is the unit vector along the direction of spin polar-
ization, and o is a parameter that measures the spin-transfer
efficiency. For particular orientations of magnetization, cur-
rent polarization, and applied fields, such a term can act as a
negative Landau-Lifshitz form of magnetic damping. As
such, the existence of stable precessional states of magneti-
zation can be made possible by tuning the applied current
such that it compensates the intrinsic magnetic damping (av-
eraged over a precession period). These oscillations can be
detected experimentally through the oscillating voltages aris-
ing from the time-varying magnetoresistance in a spin-valve
structure. Evidence for such dynamical states has been re-
ported for a number of geometries and magnetic
materials,*~!* which seems to indicate that such stable oscil-
lations are a general feature of spin-momentum transfer.
While the frequencies of these oscillations appear to be
well understood from spin-wave theory?*?> and numerical
simulation,?>-?8 there is less consensus concerning the origin
of the spectral linewidths. Part of the reason for this discrep-
ancy may be due to the different experimental conditions,
materials, and heterostructure geometries used to study these
oscillations. For instance, it is found that spectral linewidths
for point-contact geometries®!'*!7 are generally narrower
than those reported for nanopillars,”!® although recent ex-
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perimental evidence from more complex nanopillar stacks
indicates that this is not a general rule.!>2° Moreover, simple
macrospin calculations® and more elaborate micromagnetics
simulations>*?” consistently overestimate the spectral line-
widths by at least an order of magnitude.

In this paper, we present a stochastic theory of spin-
transfer oscillator linewidths based on spin-wave theory. We
derive a linearized Langevin equation to show that fluctua-
tions about the dynamic state, due to thermal noise, give rise
to a spectral linewidth that is inversely proportional to the
spin-wave mode intensity with a lower bound determined by
modulations in the oscillation frequency. The main features
of the theory are shown to give reasonable quantitative
agreement with recent experiments on spin-valve nanopil-
lars.

II. STOCHASTIC MODEL

We believe that the current-induced magnetization oscil-
lations observed in experiment correspond to parametrically
excited spin-wave modes. Parametric excitation here differs
from more well-known means such as parallel pumping,3*-3!
in which parametric resonance is achieved with an oscillat-
ing magnetic field applied parallel to the magnetization. In
the case of spin transfer, the torque in (1) allows a means of
modifying the spin-wave damping, so parametric excitation
occurs as the resultant damping for a given spin-wave mode
becomes negative. The exact profiles of the excited modes
are geometry dependent, but nevertheless one can derive
from spin-wave theory?*-?232 a generic oscillator equation of
the form (here we follow the notation of Ref. 21)

b+ (i + T)be=T(bLHLL ...) + filD), 2)

where b,(t) is a complex dimensionless variable (|b| <1) for
a spin-wave mode k, wy is the spin-wave frequency, and I';
is a phenomenological relaxation rate that encompasses all
possible damping mechanisms for the spin wave. All infor-
mation concerning the relevant magnetic energies (Zeeman,
exchange, magnetocrystalline anisotropy, dipole-dipole, etc.)
is contained in wy, through the dispersion relation for the
spin waves. The b, variables diagonalize the linear part of
the original magnetic Hamiltonian H, (without current
terms) and can be found from the usual series of Holstein-
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Primakoff and Bogoliubov transformations (a discussion per-
tinent to thin films can be found in Ref. 33). For finite mag-
netic elements of arbitrary shape, the corresponding
eigenmodes can be found numerically3*~3¢ or through the use
of approximate spin-wave theories.’’° The quantity 7, on
the right-hand side represents nonlinear terms that include
higher-order interactions and sources of parametric excita-
tions, such as Eq. (1). We assume that the experimentally
observed oscillation corresponds to a parametrically excited
spin-wave mode k that is largely populated in comparison to
the thermal occupation of other modes. This mode is taken to
be immersed in a thermal bath whose effect is represented by
the additional stochastic force f;(r) acting on b, where f;(z)
is taken to represent a white noise associated with thermal
magnons,

no(wy)
NS

Fe0f 1) = 20 =0 S e = 1), (3)
ny(wy) is the thermal occupation of magnons and is normal-
ized by NS=M,V/(gup), the total spin in the system, in the
same manner as the variables b,. Here, M, is the saturation
magnetization, V the volume of the magnetic element, g the
gyromagnetic factor, and up the Bohr magneton.

In the absence of the nonlinear 7} term, it is straightfor-
ward to obtain from direct integration of Eq. (2)

Ldny

> =— (= nyg). 4)

Thus, fluctuations in the magnon population n,=(b,b;) relax
toward n)=ny(w;)/(NS) with a characteristic time I‘;l. At
thermal equilibrium, in the absence of driving terms, the oc-
cupation of thermal magnons must go over to the usual
Bose-Einstein distribution, ny,=[exp(fiw,/kgT)—1]""'. For
spin waves in the gigahertz range, it suffices to use n
=kgT/(hw;). In what follows, we shall assume that this re-
lationship holds for all levels of driving and nonlinearity
considered here. We therefore neglect the role of nonlinear
damping on the thermal noise of the system;*’ appropriate
estimates of such higher-order effects, obtained for parallel
pumping, are given in Ref. 41.

As discussed above, a sufficiently large spin-polarized
current can result in a stable dynamic oscillation of magne-
tization. By expanding Eq. (1) in the appropriate spin-wave
variables, neglecting all three-wave interaction terms and re-
taining only four-wave terms that lead to self-interaction of
the single excited spin-wave mode, one finds an oscillator
equation with the additional stochastic term of the form?!

bi+ (iwg+ Tby= al(1 = b)) by + i), (5)

where w;=wyy+N|by|* contains a nonlinear frequency shift
that can become important for large spin-wave amplitudes.
In the absence of the stochastic term, Eq. (5) describes the
dynamics of a nonlinear oscillator that is capable of support-
ing self-sustained oscillations with a frequency wy. Indeed, at
the threshold o/=I"; with f;=0, a Hopf bifurcation takes
place and a stable orbit with |b|>=d=(oI-T})/ ol is made
possible for ol>T,.
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FIG. 1. Thermal dependence of parametric magnon population
n,, as a function of supercriticality {. The shaded region corre-
sponds to the zero-temperature case n,,. The difference between
finite- and zero-temperature populations is shown in the inset.

It is interesting to note that the presence of thermal noise
suppresses completely the current threshold for self-
sustained oscillations. To see this, we introduce the nonlinear
terms in (5) into (4) and take the steady-state limit to obtain

g+ (1= ne—nj=0, (6)

where {=ol/T;, is the zero-temperature supercriticality pa-
rameter. The presence of a nonzero n;, term leads to a finite
parametric magnon population n,=n,—n, for all currents
I>0, as shown in Fig. 1. For sufficiently large currents such
that ¢ is far from 1, there is very little difference between the
zero-temperature and finite-temperature parametric magnon
populations. As such, we will assume that the condition
|bi|>=d for self-sustained oscillations holds at all tempera-
tures to simplify the proceeding analysis, and use of the ac-
tual temperature dependence will be made later when dis-
cussing linewidths.

In addition to the stochastic force f;(), noise sources can
lead to a direct modulation of the oscillation frequency
itself. Such modulations can originate from external field
sources or other fluctuating magnetic elements in close prox-
imity. An estimate of the frequency modulations*? can be
made by considering the action of a random thermal field
h,(t) superimposed on the external field H, H(t)=Hy+h,(1),
where h,(t) is assumed to be a white noise with zero mean,

<hr(t)> = O’ <hr(t)hr(t,)> = 2Dr5(t - t,) s (7)

and D, is an appropriate diffusion constant. The action of the
random field on the equations of motion for the b variables
are obtained by supplementing the original diagonal Hamil-
tonian H,, with the random field Hamiltonian

H(1) == u2 h (DS, = h (1) 2 biby. (8)
i k

where u=guoup, o ()=yh(1), and y=guous/h is the gy-
romagnetic constant. Following the usual procedure for gen-
erating the equations of motion, Ek:i[HO+H,,bk]/ﬁ, itis a
simple matter to show that the random field leads to a modu-
lation of the spin-wave frequency w(f)=wy+ o' (7).
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In experiment, the current-driven oscillations in spin-
valve devices are detected through a time-varying voltage
due to the corresponding magnetoresistance oscillations. Gi-
ant magnetoresistance is related to the relative orientations of
the free m and fixed magnetizations M=MZ, R=R,
+AR(M-m), where R, and AR are material-dependent con-
stants that can be readily determined in experiment. We al-
low for a misalignment between the easy axes of the free and
reference layers, which is denoted by the angle 6 measured
from the z axis in the xz plane. The corresponding (scaled)
voltage fluctuations are then given by

V-1IR,
IAR

1
=m, cos 6— E sin O(m, +m_), 9)

where m,=m +im,, and I, is the average dc current. Ex-
panding m in the appropriate spin-wave variables and assum-
ing that only the parametrically excited mode k contributes to
the time-varying magnetization, we find that the two-time
correlation function for the voltage fluctuations, (v(f)v(0)),

can be written as
(O (0)) = Fk, O)[(b ()b (0)) + ¢ .c. ]+ G(k, 6)
X bbb (0)b(0)) -+, (10)

where F(k,6) and G(k,0) contain all the factors related to
the transformation to spin-wave variables. To obtain (10), we
have assumed that there exists a center of symmetry such
that b,=b_; and that the spatial average of b, is nonzero.
These assumptions are justified in rectangular magnetic ele-
ments, for example, in which the lowest-lying excitations
have been shown to be cosinusoidal standing waves in the
dipolar-dominated regime. In the absence of misalignment
(6=0), contributions to the magnetoresistance oscillations
can only come from the m, term, which gives rise to the
G(k,0) terms to lowest order and result in spectral frequen-
cies that are twice the oscillation frequencies. In what fol-
lows, we assume that the misalignment is nonzero and that
the two-time correlation functions in the spin-wave vari-
ables, proportional to F(k, 6), are sufficient to describe the
experimental data.

III. CORRELATION FUNCTIONS

The Fourier transform of (v(f)v(0)) gives the spectral
density of voltage oscillations measured in experiment, so
the main goal of this section is to obtain expressions for
(bk(t)bZ(O» and (b;(t)bk(0)> from (5). To begin, we make the
assumption that fluctuations in the spin-wave amplitudes are
sufficiently small so as not to modify the frequency in the
stable oscillation regime. This allows a rotating-wave ap-
proximation [b,(f)=B,(t)e~**'] to be made to obtain

By = B(d, - |B{)B, + \"Z]?k(t)’ (11)

where B=ol, d=(ol-T})/p, \“‘ka(f)=€iw7k(f)» and ¢
=I";ny/2NS. 1t is reasonable to assume that the stochastic
noise remains white in the rotating frame, so we will take
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fk(t) to have zero mean and satisfy (7k(t)ﬁ,(t’))=45k’k,5(t
—t"). For the sake of clarity and without loss of generality,
we will omit the mode index k in what follows. Following

the treatment in Ref. 43, we introduce B=b;+ib, and f= i
+if, to write Eq. (11) as
bi=B(d - b} = B3)b;+ \afi(0), (12)

where i=1,2 and (fi(t)f;(1))=20;;6(t—1t"). Because we are
interested in separating out the amplitude and phase fluctua-
tions in B, we find it convenient to introduce B=A exp(i¢),
where A=\r’b%+b§ and ¢=tan"'(b,/b,), which leads to

A= B(d - A)A =q(fcos ¢+ frsin ),

-
AL .
¢ = (= isin &+ fxcos 6). (13)
Instead of solving (13), one can equivalently consider
A= Bld =424 - =af,(0).
g
b= T4, (14)

with

Fafa")) = () f gt")) =28t~ 1"),
Fa@fp(t")) =0, (15)

as these Langevin equations lead to the same drift and diffu-
sion coefficients* (in the Stratonovitch definition) and there-
fore describe the same physical system.

The stochastic equations (14) represent a set of coupled
nonlinear Langevin equations. In general, it is difficult to
compute correlation functions directly from these equations
and one can instead solve the corresponding Fokker-Planck
equation. For our spin-transfer oscillators, we note that for
excitations sufficiently above threshold (determined in this
case by the thermal noise floor), one can linearize the Lange-
vin equations about the stationary state |B|>=d and consider
only the small fluctuations about this dynamic equilibrium.
Let A(f)=Vd+a(t), where a(t)/ Vd<1. If we retain only lin-
ear terms in a(z) and neglect a term proportional to g/d, we
find a simple Ornstein-Uhlenbeck process for the amplitude
fluctuations and a Wiener process for the phase fluctuations,

. I
a+ ka=\qf(1),

$=- \/gfd,(t), (16)

where xk=2Bd=2(cI-T"). In the absence of the stochastic
terms, Eq. (16) shows that amplitude fluctuations are damped
out with a characteristic frequency « that increases as the
driving current increases (or equivalently, as the system
moves further away from threshold). While this can lead to a
linewidth broadening with the driving current, it is shown
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later that it is the phase fluctuations which dominate in the
large amplitude regime.

From the formal solutions of (16), it is straightforward to
evaluate the desired two-time correlation functions for large
times ¢,¢' >0 after which initial correlations are unimportant.
We find

(aa(t')) = %"

<ei¢(z)e—i¢(z’)> — e—th—z’\/d’ (17)

which shows that phase fluctuations are inversely propor-
tional to the mode intensity d and includes a temperature
dependence through g. We can understand this result by con-
sidering each w;, magnon as a simple phase oscillator. Para-
metric magnons constitute a group of phase-locked oscilla-
tors, while thermal magnons have random phases but possess
the same phase velocity. The overall phase is then deter-
mined from the sum over all phases in the two groups. The
number of thermal magnons (i.e., the noise level) is deter-
mined only by Bose-Einstein statistics, while the parametric
magnons are populated according to the level of supercriti-
cality. Since we assume the noise level remains constant at
all levels of driving, the dispersion in oscillator phases, char-
acterized by the measured linewidth, is inversely propor-
tional to the parametric magnon population.

While the last result demonstrates that phase fluctuations
in B are inversely proportional to the mode intensity d, there
exists a lower limit to the phase noise arising from modula-
tions in the oscillation frequency, which are implicitly ex-
cluded from the analysis above by virtue of the rotating-

wave approximation. An estimate of this additional
contribution to the phase noise is found from
<eiw(z)e—iw(z’)> — eiwote—yzDrlr—z’\ (18)

which shows that frequency modulations will lead to an
amplitude-independent linewidth in the spectral density that
is proportional to y*D,. If we take a random magnetic field
corresponding to superparamagnetic fluctuations of the entire
magnetic element (Goldstone mode),** we find

ya
¥'D,= AT (19)
0 s

where « is the Gilbert damping constant. We point out that it
is also possible to include the effects of spin-shot noise into
this definition by an appropriate renormalization of a@.*’
Other fluctuations in the applied current will not be consid-
ered here.

The spectral density of magnetoresistance oscillations ob-
served in spin-transfer experiments is proportional to the
Fourier transform of the correlation functions (b(r)»"(0)) and
(b*(t)b(0)). The contribution to positive frequencies is given
by (b"(1)b(0)), which in terms of our definitions for A and

¢ is
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(b"(1)b(0)) = (" Ve V) (B"(1)B(0))
— <eiw(t)e—iw(0)><A (l‘)A (O)><ei¢(t)e—i¢(0)>

— oot e-(fD,+q/d>lt<d + ie—'f”), (20)

K

where in the second equality we have used the fact that am-
plitude and phase fluctuations are uncorrelated in the linear-
ized equations. Because the correlation function is a sum of
two exponential functions, the spectral density will be a sum
of two Lorentzians centered about w=w, S(w)
:dSl(w;F?ff)+(q/K)Sz(w;I’;ff), where S;(w;I") is a normal-
ized Lorentzian,

A= m(w—wy)+ 1%
with "= 92D, +g/d and T'$"=T""+ . While the presence of
the g/« and « factors from the amplitude correlation func-
tion appears to introduce a complicated d dependence,

21

_n(')(w)l—d
4 4 @2

1. 4d q
k==I , =

2 1-d «
one can show numerically that, in practice, such terms do not

significant modify the overall 1/d dependence of the effec-
tive linewidth of S(w), and as such, one can use

So(d)

Slw) = (0—w)’ + (D + qld)*’

(23)

where

SO(d)’r{n(;+<4 4d> + ni(1 - d) 29

to a good approximation.
IV. RESULTS AND COMPARISON TO EXPERIMENT

We obtain the full temperature dependence of measurable
quantities, such as line intensities and linewidths, by replac-
ing d with the correct finite-temperature magnon population,
n,,. This quantity is found by solving Eq. (6) for n,=n,, and
using the relation {=(1-d)7!,

n,(d,T) = g + %\/cﬂ +4(1 =d)n)(T) —n{(T).  (25)

This result shows that the effective parametric magnon inten-
sity is renormalized at finite temperatures by the thermal
magnon bath nj. We recover the zero-temperature result n,,
=d by letting nj— 0. Thus, the spectral linewidth is given by

kT
n,(T)

This is the main result of this paper. All material parameters
are encompassed in the spin-wave relaxation frequency I';,
while the thermal and intensity dependences of the linewidth
are contained in kg7/n,(T). If we apply the Gilbert model for
spin-wave relaxation and ignore propagating losses, the
damping rate I', can be obtained from?'

Awk=2yzD,+Fk (26)
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FIG. 2. Linewidth factor kgT/n,, as a function of d for several
temperatures.

Jw
Fk = Wy K0 N (27)
(?Q)H

where wy represents the circular part of the magnetization
precession.”® Thus, the spectral linewidth for a parametri-
cally excited spin-wave mode b, with Gilbert damping, sub-
ject to thermal noise sources (3) and (19), results in an ap-
pealing simple form

2 1 doy 1

+ - —— |kgT. 28
Za(l)Hd) B ( )

This result shows that random field fluctuations given by Eq.
(19) play a minor role compared to the thermal noise, since
dwy/ dwy s of order unity and d<<1 for most practical situ-
ations. We will neglect the random field term in what fol-
lows, but we would like to emphasize that other external
field sources not considered here could, in principle, give
more significant contributions.

A plot of the linewidth factor kg7/n,, as a function of d is
presented in Fig. 2. Here, we have used a parametric spin
wave frequency of wy,/(27)=12 GHz for the scale factor in
the temperature dependence. For low excitation amplitudes,
one observes that the linewidth is nearly independent of the
intensity d and is instead dominated by the thermal noise
term n). As parametric excitation is increased past d=1072,
the linewidth decreases rapidly as the inverse of the intensity
1/d. We would like to point out that such a spin-wave theory
is expected to break down somewhere in the region d>0.2,
in which it would be necessary to retain higher-order terms
in Eq. (5) for a correct description. Furthermore, there is no
guarantee that the single parametric mode will remain stable
in this highly nonlinear regime. One should therefore regard
the predictions for d>0.2 as an illustration of the general
qualitative behavior.

The renormalization of the parametric magnon population
by the thermal magnons in Eq. (25) leads to a nontrivial
thermal dependence for the spectral lines, as shown in Fig. 3.
In the low-amplitude regime where thermal magnons domi-
nate tlLe linewidth, one observes that the linewidth increases
like V7, due to the corresponding n, term under the square
root in Eq. (25). Such a behavior has already been observed
in experiment*® and can be understood from random field
arguments. As the mode excitation increases, a transition to-
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Temperature (K)

FIG. 3. Linewidth factor kgT/n,, as a function of temperature for
several spin-wave intensities d.

ward a linear temperature dependence occurs between d
=0.01 and 0.1. In this regime, the thermal magnons are es-
sentially separated from the paramagnetic magnons, so their
role is simply to provide an independent thermal noise term
with a linear temperature dependence. Such a regime change
should be detectable in experiment.

Much of the discussion so far has made use of d as a
characteristic parameter. Indeed, the results above show that
quantitative predictions about the spectral linewidths can be
made without knowledge of the spin-transfer efficiency o
(and therefore the absolute values of the threshold currents),
which can only be obtained from detailed transport
calculations.*’ In the same spirit, we believe that quantitative
comparisons to experiment can be made through a character-
istic feature of the parametric spin wave spectra that is inde-
pendent of the current and field configurations. We suggest
that the intensity of the spectral lines, given by Eq. (24), is a
good experimental parameter against which linewidths can
be compared. In Fig. 4(a), the theoretical spectral line inten-
sity Sy in Eq. (24) is shown as a function of mode intensity d.
As one would expect, the power pumped into the parametric
mode increases as the mode intensity increases, with a low-
amplitude region that is essentially flat due to thermal mag-
nons. Departures from this monotonic increase, observed in
any experiment, would be a sign of mode instability and the
generation of other spin-wave modes. A stronger temperature
dependence is seen for large amplitudes [Fig. 4(b)].

In the regime d=0.02, the spectral line intensity is ap-
proximately proportional to the square of the spin-wave in-

4™ T T

10°F [ o7sk (@7 (b}
10°%
2|
o102
10%
10% el :
0:001 0.01 01T 1 0100
d T (K)

FIG. 4. Spectral line intensity Sy(w=wy) as a function of (a)
intensity d and (b) temperature 7. The symbols in (a) are a guide to
the eye.
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FIG. 5. (Color online) Comparison of Eq. (28) (solid lines) with
experimental data from Ref. 29. The only fitting parameter is the
scale factor relating the measured mode intensity S ni to the para-
metric magnon population n,, which is obtained from one data
point from the 150 K series.

tensity d. Therefore, one can expect the relationship Awy
o« 1/4S§, to hold for large excitation amplitudes. An example
of this behavior has been observed in recent experiments on
rectangular spin-valve nanopillars.?® The experimental re-
sults with a comparison of Egs. (28) and (24) for large d are
shown Fig. 5. The free layer in the spin-valve stack has di-
mensions of 100X 50X 2.8 nm?, with uyM,=0.85 T and a
Gilbert damping constant of a=0.02. The data are taken
from a low-current regime in which only one oscillation
mode is observed and no evidence of mode instability is
detected.”! The solid lines in Fig. 5 are based on the theoret-
ical prediction of Eq. (28), where the smallest linewidth
value from the 150 K data was used to obtain a correspon-
dence between the measured spectral line intensity S, and the
parametric magnon population 7,; this is the only fitting pa-
rameter. To calculate the spin-wave damping rate [Eq.(27)],
we used the dispersion relation appropriate for rectangular
magnetic elements and assumed that the lowest-order spin-
wave mode is excited.’® All other parameters are obtained
from experiment.?’ One observes that an excellent fit is ob-
tained for the lowest-temperature data set (150 K), with pro-
gressively larger deviations as the temperature is increased,
the origins of which are still under investigation. Neverthe-
less, the theoretical curves give a good quantitative bound on
the experimental linewidths. We note that the random field
contribution (19) would lead to a limiting linewidth of about
0.1 MHz with these experimental parameters.

V. DISCUSSION AND CONCLUDING REMARKS

The quantitative agreement between our stochastic model
and experiment lends credence to the hypothesis of paramet-
ric spin-wave excitation in spin-transfer oscillators.?*2 This
description is most appropriate for nanopillar geometries in
which the eigenmode spectrum is well defined. For point-
contact geometries, self-localization of spin-wave excitations
has been shown to be crucial to describe experimental data.*®
One could, in principle, extend the ideas in this article to
point-contact geometries by using the well-studied stochastic
Ginzburg-Landau equation.** Nevertheless, we believe that
the general features of this theory are applicable to any ex-
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perimental system in which there is only one parametric
mode. We expect departures from our predictions for spectral
lines that comprise closely spaced modes, and indeed for any
system in which stochastic magnetic processes are not the
source of linewidths.

The relevance of Brownian motion for the parametric spin
waves also suggests why it is inherently difficult to repro-
duce narrow linewidths by straightforward numerical time-
integration of magnetization dynamics. In all time-
integration schemes, to the best of our knowledge, the effect
of finite temperatures is accounted for by including random
noise terms to the equations of motion of magnetization, as
we have done. While one could expect amplitude fluctua-
tions to reach dynamic equilibrium in a time of ™! (e.g., for
(=125, k*'=5 ns for the nanopillars in Ref. 29), the ensu-
ing phase fluctuations would require integration times to at
least the order of 1/Af=0.1 us for meaningful comparisons
with experiment. Furthermore, it is necessary to average over
a large number of realizations of the stochastic force to re-
cover the appropriate statistics. This represents a computa-
tionally intensive task, so any lighthearted venture into such
a program of study will necessarily lead to inconsistent re-
sults.

Within the framework of the stochastic model presented
here, spectral linewidths of current-driven magnetization os-
cillations are due to phase noise that is determined purely by
the spin-wave intensity and temperature, where the latter
controls the level of thermal noise due originating from ther-
mal magnons present in the system. This relationship holds
independently of any details concerning the spin-transfer ef-
ficiency of the heterostructure o, notably its magnitude and
angular dependence. As such, no attempt is made to discuss
absolute linewidths in terms of any external control param-
eter such as the applied electric current. Furthermore, we
expect that the excited spin-wave mode will not be stable to
all levels of current driving, and therefore details concerning
the nonlinear instabilities would be required to give any
quantitative predictions on the minimum linewidth attainable
for a particular system.

In the discussion of frequency modulations due to exter-
nal sources, we evoked briefly the random fields (19) appro-
priate for the superparamagnetic fluctuations of a single-
domain particle.** Indeed, transverse components of this
random field can also give rise to a stochastic term of the
form f,() in Eq. (5), where only coupling to the (quasi)uni-
form mode (k=0) is possible given that the random field is
taken to be uniform across the magnetic particle. As for the
frequency modulations, it is easy to show that the transverse
components also lead to an amplitude-independent phase
noise of the order of 0.1 MHz. This does not appear to be the
dominant mechanism for spin-valve nanopillars at least,
where a strong 1/d dependence is seen.

In summary, we have developed a stochastic theory of
spin-oscillator linewidths based on spin-wave theory. We
have derived linear Langevin equations for fluctuations about
dynamic equilibrium, which are shown to lead to spectral
linewidths that are inversely proportional to the spin-wave
intensity. Lower bounds for the linewidth are shown to arise
from random fields leading to frequency modulations. These
results are shown to give good quantitative agreement with
experiments on spin-valve nanopillars.
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0For elliptical precession the Gilbert damping term (a/M S)AZ

X ;M leads to a relaxation rate I' that is not directly propor-
tional to the precession frequency wi():wH(wH+ wyy). There is a
circular component wy, made up of Zeeman, exchange, and
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uniaxial anisotropy terms, and an elliptical component w,, that
arises from dipolar fields (or any other transverse anisotropy).
The relaxation rate, found from the solution of the linearized
equations of motion, is I'=a(2wy+wy,) and is equivalent to
Eq. (27).

>I'We are unable to obtain a correspondence between the applied

current and the supercriticality parameter for the experimental
system considered, because neither the spin-transfer efficiency o
nor the misalignment angle 6 is known quantitatively. Therefore,
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we have no means of evaluating whether the experimental data
fall within the range of applicability of the spin-wave theory
presented. Nevertheless, we expect the general features of our
theory to remain valid, because it is derived from the linear
Langevin dynamics about a fixed magnetization trajectory.
While higher-order terms are required to describe quantitatively
the fixed point in the range d>0.2, we expect that the small
deviations about the fixed point will behave as we have shown
here.



