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We study the behavior of a three-dimensional Ising-like system in an external field near the critical point by
using the non-Gaussian spin-density fluctuations, namely, the quartic measure density with the even and odd
powers of the variable �the asymmetric �4 model�. The basic idea of the analytic method for deriving complete
expressions of the thermodynamic characteristics �including the scaling functions� is described. The proposed
method allows us to perform the calculations on the microscopic level without any adjustable parameters.
Explicit expressions for the total free energy, order parameter, susceptibility, entropy, and specific heat of the
system are obtained as functions of the temperature and field. The regions of the so-called weak and strong
fields are considered for temperatures above and below Tc �Tc is the phase-transition temperature in the
absence of an external field�. The average spin moment and susceptibility, depending on the field variation and
the proximity to Tc, are investigated. It is confirmed that the temperature and field fluctuations for the order
parameter play the leading roles in the weak and strong fields, respectively.
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I. INTRODUCTION

A central problem in statistical physics is the description
of phase transitions and critical phenomena. The most spec-
tacular achievement in the theory of critical phenomena, con-
firming the concept of universality and scaling, is the devel-
opment of the renormalization-group �RG� ideas.1 The
application of the Feynman diagram technique by Wilson as
well as the introduction of the expansion parameter �=4−d
and the constructive idea that the critical exponents vary
smoothly with varying space dimension d opened paths for
the advancement of field-theory RG methods in the theory of
critical phenomena. The use of the RG approach in this
theory provided a deep insight into the processes in the
neighborhood of the critical temperature and made it pos-
sible to calculate the critical exponents, the equation of state,
the correlation functions, and some other important charac-
teristics of various model systems. At present, there are dif-
ferent statements of RG approaches to critical phenomena.
The essences of some of them are presented in Refs. 2–5.
Much success was achieved in the theory of critical phenom-
ena using renormalized perturbation theory series6 and the
resummation procedure for asymptotic series.7,8 The RG
transformation within the framework of the collective vari-
ables �CV� method, generalized by Yukhnovskii9–12 to the
case of spin systems and used in the present paper, can also
be related to the Wilson type. This theoretical investigation
method for a system of charged particles was initially pre-
sented by Bohm and Pines �see, for example, Ref. 13� and
also by Zubarev.14 The main results of investigating the criti-
cal behavior of the three-dimensional �3D� Ising model using
the CV method are indicated in Ref. 15.

The study of the effect of an external magnetic field on
the critical behavior of spin systems, in particular, of 3D
Ising-like systems, is an actual problem. Due to their sim-
plicity, convenience for mathematical analysis, and the many
physically relevant applications,16 the 3D Ising model and

members of the corresponding universality class belong to
the most extensively studied systems. Despite the great suc-
cesses in the investigation of 3D Ising-like systems made by
means of various methods �see, for example, Refs. 16–18�,
the statistical description of the behavior of the mentioned
systems near the critical point in terms of the temperature
and field variables and the calculation of scaling functions
are still of interest.19 The direct theoretical computation of
the total thermodynamic characteristics �including the scal-
ing functions� is our aim in this research work. The calcula-
tions within the method of CV �k �Refs. 11 and 20–22� are
performed using the non-Gaussian spin-density fluctuations,
namely, the quartic measure density. The latter is represented
as an exponential function of the CV whose argument in-
cludes the even and odd powers up to the fourth power of the
variable �the asymmetric �4 model�. The asymmetric �4

model has not been used deeply enough so far. In previous
studies �see, for example, above-mentioned Refs. 11 and 20–
22�, the non-Gaussian measure densities contained only the
even powers of the variable in exponential functions. An
infinitely weak external field was introduced in the course of
calculation of the contribution from the long-wave spin-
density oscillation modes to the 3D Ising system thermody-
namic characteristics. In this paper, we introduce an external
field in the Hamiltonian from the outset. Such an approach
leads to the appearance of odd powers of the CV in the
expression for the partition function and allows us to de-
scribe a lot of quantities �cumulants, coefficients of the par-
tition function, etc.� as functions of an external field.

The term collective variables is applied to a special class
of variables specific for each individual physical system. The
set of CV contains variables associated with order param-
eters. For this reason, the phase space of CV is most natural
for describing a phase transition. For magnetic systems, the
CV �k are the variables associated with modes of spin mo-
ment density oscillations, while the order parameter is asso-
ciated with the variable �0, in which the subscript 0 corre-

PHYSICAL REVIEW B 73, 174406 �2006�

1098-0121/2006/73�17�/174406�13� ©2006 The American Physical Society174406-1

http://dx.doi.org/10.1103/PhysRevB.73.174406


sponds to the peak of the Fourier transform of the interaction
potential.

II. BASIC RELATIONS

We consider a 3D Ising-like system on a simple cubic
lattice with N sites and period c in a homogeneous external
field h. The Hamiltonian of a system has the form

H = −
1

2�
j,l

��rjl��j�l − h�
j

�j. �1�

Here rjl is the distance between particles at sites j and l, �j is
the operator of the z component of spin at the jth site with
two eigenvalues +1 and −1. The interaction potential is an
exponentially decreasing function

��rjl� = A exp�−
rjl

b
� , �2�

where A is a constant, b is the radius of effective interaction.
For the Fourier transform of the interaction potential, we use
the following approximation:20,21,23

��k� = ���0��1 − 2b2k2� , k � B0,

��0��̄ , B0 � k � B .� �3�

Here �̄ is the small constant, B=� /c is the boundary of the
Brillouin half-zone, ��0�=8�A�b /c�3, and B0=B /s0. The
parameter s0 determines the region of the wave vector values
k�B0, where the parabolic approximation for ��k� is effec-
tive �see Eq. �3�	. The model potential �3� is based on the fact
that large values of the wave vector are inessential for cal-
culating critical characteristics.

The integration over the layers of the CV phase space21,22

leads to the representation of the partition function of the
system in the form of a product of the partial partition func-
tions Qn �Refs. 23–25� of individual layers and the integral
Inp+1=
W4

�np+1�����d��Nnp+1 of the “smoothed” effective mea-
sure density

Z = Z0Q0Q1 . . . Qnp
jnp+1�Q�P�np��	Nnp+1Inp+1. �4�

Here Z0=2N�cosh h��N exp�	��0��̄N /2	, h�=	h is the di-
mensionless field. The quantity 	=1/ �kT� is the inverse tem-
perature, k is the Boltzmann constant. The expression for
Q�P�n�� is presented in Refs. 25 and 26, and jnp+1

=�2Nnp+1−1. The quartic measure density of the �np+1�th
block structure

W4
�np+1���� = exp�− ã1

�np+1�Nnp+1
1/2 �0 −

1

2 �
k�Bnp+1

dnp+1�k��k�−k

−

1

3!
a3

�np+1�Nnp+1
−1/2 �

k1,. . .,k3

ki�Bnp+1

�k1
¯ �k3


k1+¯+k3�
−

1

4!
a4

�np+1�Nnp+1
−1 �

k1,. . .,k4

ki�Bnp+1

�k1
¯ �k4


k1+¯+k4� �5�

includes odd powers of the variable in addition to even pow-
ers. Here Bnp+1=B0s−�np+1�, Nnp+1=N0s−3�np+1�, N0=Ns0

−3, s is
the RG parameter, and 
k1+¯+kl

is the Kronecker symbol.
The coefficients ã1

�n�=s−nwn, dn�0�=s−2nrn �appearing in
dn�k�=dn�0�+2	��0�b2k2	, a3

�n�=s−3nvn, and a4
�n�=s−4nun are

related to the coefficients of the �n+1�th layer in the recur-
rence relations24,25 �RR� whose solutions23,24

wn = − ch1M1�h��E1
n − ch2M1�h��T13

�0�

��0
−1/2�	��0�	−1E3

n, M1 = tanh h�,

rn = r* + ck1
�0�	��0�
E2

n + ck2T24
�0��0

−1/2�	��0�	−1E4
n,

vn = − ch2M1�h��E3
n,

un = u* + ck1
�0��	��0�	2T42

�0��0
1/2
E2

n + ck2E4
n �6�

are used to calculate the energy of the system. In the region
of the critical regime, the variables wn, rn, vn, and un are
close to the coordinates of the fixed point w*=0, r*

=−f0	��0�, v*=0, and u*=�0�	��0�	2. The reduced tem-
perature is defined by 
= �T−Tc� /Tc �Tc is the phase-
transition temperature in the absence of an external field�.
The eigenvalues El �E1 ,E2 ,E3�1,E4�1� of the RG linear
transformation matrix and other quantities appearing in Eqs.
�6� are given in Refs. 23–26.

The analytic method for evaluating the thermodynamic
functions of the system in the vicinity of the critical point is
developed for the weak and strong fields. The weak and

strong fields h̃ are defined on the basis of comparison with

the value of the limiting field h̃c. The relation for the limiting
field can be written in the form23

h̃c = �
̃�p0, p0 =
5

2
� , �7�

where � is the critical exponent of the correlation length. The
designations are introduced as


̃ = 

ck1

�0�

f0
, h̃ =

h�

f0
. �8�

It should be noted that the critical behavior of the system in
an external field and the calculation of the free energy de-
pend on the trajectory of tending the system to the critical
point in the field-temperature plane. The diagram of the re-
gions, defined by different trajectories of the system tending
to the critical point �
̃=0, h̃=0�, is shown in Fig. 1.

III. EXPLICIT EXPRESSIONS FOR THERMODYNAMIC
CHARACTERISTICS OF A 3D ISING-LIKE SYSTEM

IN REGIONS OF THE WEAK AND STRONG
EXTERNAL FIELDS

For calculating the free energy of the system in an exter-
nal field, we take into account two fluctuation processes,
which exist for the order parameter near the critical point.
These fluctuation processes are described by a non-Gaussian
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distribution. The first of them is characterized by the quantity
m
=−ln 
̃ / ln E2−1 at T�Tc �or �
=−ln � 
̃ � / ln E2−1 at T
�Tc� and is associated with the temperature variable. This
process is observed for the effective spin blocks whose sizes
do not prevail over period cm=cs0sm
, which is commensu-
rate with the system correlation length �=�0
̃ −� at the fixed
value of 
̃. The second fluctuation process is described by the

quantity nh=−ln h̃ / ln E1−1 and is related to the field vari-

able. For small values of the field �h̃� h̃c�, the behavior of
the system is determined by the first fluctuation process since

m
�nh �Ref. 23�. For large values of the field �h̃� h̃c�, the
inequality nh�m
 is performed and the main contribution to
behavior of the system is ensured by the field fluctuations of

the order parameter. At h̃= h̃c, the temperature and field ef-
fects on the system near the critical point are equivalent

�m
=nh�. The quantity h̃c satisfies the condition of equality
of the spontaneous moment and the moment induced by the

field. The relation for h̃c �7� corresponds to the equation of
the pseudocritical line.16,27,28 The conditions m
�nh �or �


�nh for T�Tc� and nh�m
 define the different ways of
calculating the free energy of the system.

The free energy of the system in the regions of both weak
and strong fields is calculated by separating the contributions
from the short- and long-wave modes of spin-density oscil-
lations. The cases of temperatures T�Tc and T�Tc are con-
sidered. Short- and long-wave modes are separated by the
layer number np �see Eq. �4�	 determining the point of exit of
the system from the critical-regime region by the tempera-
ture or by the field variable �np=m
 �the weak-field region
and T�Tc�, np=�
 �the weak-field region and T�Tc�, and
np=nh �the strong-field region�	 �Ref. 23�. Our calculations
are performed for some fixed value of the parameter s=s*

=3.3783. For such a preferred value of s nullifying the quan-
tities

h2
�n� = �6�rn + q�un

−1/2, h3
�n� = h30vnun

−3/4 �9�

at the fixed point, the mathematical description becomes less
complicated. Here q= q̄	��0�, q̄=�2�b /c�2s0

−2�1+s−2�, h30

=243/4 /6. When s=s*, we have �=ln s / ln E2=0.609 �Ref.
25�. To simplify our calculations, we neglect the critical ex-
ponent � �characterizing the behavior of the pair-correlation
function for T=Tc�, although it can be taken into account if
necessary.11,20 The short-wave part of partition function (the
contribution from fluctuations of �k with k� �Bnp

,B0	 or the
partial partition functions Qn in Eq. �4� for n�np)is obtained
using the quartic measure density with the even and odd
powers of the variable. The calculation of the expression
describing the contribution to free energy from short-wave
modes of spin-density oscillations involves the summation of
partial free energies over the layers of the phase space of CV
up to the point, at which the system leaves the critical-regime
region. In this case, it is important to obtain an explicit de-
pendence on the number of the layer. For this purpose, the
solutions of RR �6� are used. We attract your attention to the
behavior of the quantities h2

�n� and h3
�n� near the critical point.

Each of them takes on small values when n�np. It is easy to
make sure of this using the solutions of RR �6�. We have

h2
�n� = h22�ck1

�0�
E2
n −

1

2
�0

−1/2T42
�0��ck1

�0�
E2
n�2� ,

h3
�n� = h32M1�h��E3

n�1 − h34ck1
�0�
E2

n� , �10�

where h22= �6/�0�1/2, h32=−h30ch2
�u*�−3/4, h34=3T42

�0��0
−1/2 /4.

For all values n�np, we find that h2
�n��1. The analogous

inequality takes place for h3
�n� since M1�h���h��1. There-

fore, for all n�np, the quantities Qn can be presented in the
form of series in powers of h2

�n� and h3
�n�. Using Eqs. �10�, we

arrive at their explicit expressions. The calculation of the
long-wave part of partition function �the contribution from
fluctuations of �k with k� �0,Bnp

� or the quantity In in Eq.
�4� for n�np	 is based on using the Gaussian measure den-
sity as the basis one. It is related with coefficients a3

�n� and
a4

�n�, which begin to decrease fast �in comparison with dn�k�	
when the number n increases. Here, we have developed a
direct method of calculations with the results obtained by
taking into account the short-wave modes as initial param-
eters. The final integration with respect to the variable �0 is
performed in the approximation of the non-Gaussian mea-
sure density with the renormalized coefficients using the
steepest-descent method.

An introduction of an external field in our analysis leads
to the generalized description of the critical behavior of the
system on the basis of ideas and procedures presented in
Refs. 11 and 20–22. The calculation of the partition function
of a 3D one-component spin system in an external field as
well as the RR and their explicit solutions near the critical
point are given in Refs. 24–26. The proposed method for
calculating the thermodynamic characteristics of 3D Ising-
like systems in an external field is described in detail in Refs.

FIG. 1. Regions of the possible location of the trajectories of the

system tending to the critical point �
̃=0, h̃=0�. The curves 1 and 2

correspond to the limiting value of the field h̃c �7� when T�Tc and
T�Tc, respectively. The regions I and IV correspond to small val-

ues of the field �h̃� h̃c� when T�Tc and T�Tc, and the regions II

and III are characterized by large values of the field �h̃� h̃c�. The
expressions for the order parameter are indicated for the trajectories
along axes.
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29 and 30 for the high-temperature �T�Tc� and low-
temperature �T�Tc� regions, respectively. References 24 and
26 have been written on the basis of the unpublished Ref. 25.
The further subsections of this section include the main
points of Refs. 29 and 30. The basic idea of the calculational
method is presented above. Calculating separately and sum-
ming the contributions to free energy from short- and long-
wave spin-density oscillation modes, we can obtain the com-
plete expression for the free energy of the system. Other
thermodynamic characteristics �average spin moment, sus-
ceptibility, entropy, and specific heat� are defined by direct
differentiation of the total free energy with respect to field or
temperature. We shall consider the cases of some values of
the temperature and field �regions I–IV in Fig. 1�.

A. The case of T�Tc and h̃™ h̃c

According to the formula �4�, it is convenient to present
the free energy of the system in the form23

F�+� = F0 + FCR + FTR + FI. �11�

The term

F0 = − kTN�ln 2 + ln cosh h� +
1

2
	��0��̄� �12�

corresponds to the contribution from noninteracting spins

when �̄=0. The quantity FCR=−kT lnQ0−kT�n=1
np ln Qn

�where np=m
� is the contribution to free energy from short-
wave oscillation modes at T�Tc. It corresponds to the
critical-regime region. Using Eqs. �10� and the approximate
relations29

ln Q0 = N0�ec0� + ec1� 
̃ + ec2T� 
̃2 + ec2� h̃2� ,

ln Qn = Nn�H20 + H21h2
�n−1� − �h2

�n� − H22�h3
�n−1��2

+
3

8
��h3

�n��2
 , �13�

taking into account the sum of geometric series and the
equalities s−3�m
+1�= 
̃3�, 
̃E2

m
+1=1, E3
m
+1= 
̃−�/2, we can

write the following expression for FCR accurate to within 
̃2

and h̃2:

FCR = − kTN0�e0p + e1p
̃ + e2p
̃2 + e3ph̃2 + e4p
̃3�� . �14�

The contribution to free energy

FTR = − kT�ln Qm
+1 + Nm
+2�1

2
ln 2 + ln Q�P�m
+1��
�

from the layer of the CV space immediately beyond the point
of exit m
 from the critical regime is related to the transition
region.20,22 This is the free energy of the regime, which cor-
responds to the transition from short-wave to long-wave os-
cillation modes for the order parameter. For FTR, we obtain

FTR = − kTN0
̃3��fmp + s−3�fp2 − �m
 + 1�ln s	� . �15�

The quantities fmp and fp2 as well as the coefficients in Eqs.
�13� and �14� are independent of the field.29

With the help of the term

FI = − kT ln Im
+2, �16�

where

Im
+2 =� �d��Nm
+2

�exp�a1mN1/2h̃�0 −
1

2 �
k�Bm
+2

dm
+2�k��k�−k

−
1

3!
a3

�m
+2�Nm
+2
−1/2 �

k1,. . .,k3

ki�Bm
+2

�k1
¯ �k3


k1+¯+k3

−
1

4!
a4

�m
+2�Nm
+2
−1 �

k1,. . .,k4

ki�Bm
+2

�k1
¯ �k4


k1+¯+k4� ,

�17�

we take into account long-wave fluctuations of the order pa-
rameter. Now, after the integration over 0th,1st,. . .,�m
+1�th
layers of the phase space of CV, the coefficient in the qua-
dratic term of an exponential function in Eq. �17� changes
sign and takes on the positive value.29 This term dominates
over other terms for all k�0. Thus, we perform the integra-
tion with respect to CV with these values of indices k using
the Gaussian distribution. In this case

Im
+2 = �
k�0

Bm
+2 � �

dm
+2�k��1/2

Im
+2
�0� , �18�

where

Im
+2
�0� =� �d�0� exp�a1mN1/2h̃�0 −

1

2
dm
+2�0��0

2
�
−

1

3!
a3

�m
+2�Nm
+2
−1/2 �0

3 −
1

4!
a4

�m
+2�Nm
+2
−1 �0

4
 . �19�

Here a1m= f0M20/M2, M2=1−tanh2 h�, and M20 is given
in Refs. 26 and 29. The coefficient in the cubic term

�a3
�m
+2�Nm
+2

−1/2 �
̃�h̃, h̃� h̃c= 
̃5�/2, 
̃�1	 is vanishingly small
in comparison with other coefficients �dm
+2�0��
̃2�,
a4

�m
+2�Nm
+2
−1 �
̃�	, and in following calculations, we shall ne-

glect this term. For evaluating the integral �19� with respect
to the variable �0 associated with the order parameter, we use
the steepest-descent method. It is convenient to carry out the
substitution of the variable

�0 = �N�̄0.

The quantity �̄0 can be determined from the extremum con-
dition for an exponential function in Eq. �19�. As a result, we
arrive at the equation
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− a1mh̃ + dm
+2�0��̄0 +
1

6
a4

�m
+2�s0
3s3�m
+2��̄0

3 = 0, �20�

in which the substitution of the variable

�̄0 = �
̃ �/2 �21�

leads to the equation

− a1mh̃ + �rm
+2s−2� +
1

6
s0

3s−1um
+2�3

̃ 5�/2 = 0. �22�

It should be recalled that the factor 
̃ 5�/2 in Eq. �22� satisfies

the relation 
̃ 5�/2= h̃c �see Eq. �7�	. This cubic equation has
only one real solution, which assumes the approximate
form29

� � a1ms2rm
+2
−1 h̃/h̃c �23�

for h̃� h̃c. For quantity Im
+2
�0� , we have

Im
+2
�0� =� 2�

E���̄0�
exp�E0��̄0�	 ,

where

E0��̄0� = N�a1mh̃�̄0 −
1

2
rm
+2s−2
̃2��̄0

2 −
1

4!
s0

3s−1um
+2
̃��̄0
4
 .

�24�

Expression �24� corresponds to a microscopic analog of the
Landau free energy. The relation �21� with solution of the
equation �22� forms the equation of state of the system. With
allowance for Eqs. �21�, �23�, and �7�, the quantity E0��̄0�
can be presented as

E0��̄0� = NE0
�2�
̃3�� h̃

h̃c

�2�1 − E0
�4�� h̃

h̃c

�2
 . �25�

Here

E0
�2� = a1m

2 s2

2rm
+2
, E0

�4� =
1

12
a1m

2 s5s0
3
um
+2

rm
+2
3 . �26�

Thus, possessing the solution of Eq. �22� and taking into
account the contribution from CV �k with nonzero values of
the wave vector �0�k�Bm
+2�, we can find the free energy
of the regime of long-wave fluctuations

FI = −
1

2
kTNm
+2ln � +

1

2
kT �

k�0

Bm
+2

ln dm
+2�k� − kTE0��̄0� .

�27�

Calculating the second term in Eq. �27� with the help of a
transition to the spherical Brillouin zone and integration with
respect to k, we arrive at the formula

FI = − kTN0s−3
̃3��1

2
ln � + �m
 + 2�ln s −

1

2
I0�


− kTN
̃3�E0
�2�� h̃

h̃c

�2�1 − E0
�4�� h̃

h̃c

�2
 , �28�

where

I0� = ln�D0� + D1�� −
2

3
+ 2

D0�

D1�
− 2�D0�

D1�
�3/2

arctan�D1�

D0�
�1/2

,

D0� = 	��0��f0�E2 − 1�	, D1� = 2	��0���b

s0c
�2

.

The contributions to free energy of the system from all

regimes of fluctuations, obtained above at T�Tc and h̃� h̃c,
allow us to write the total free energy, Eq. �11�, in the form

F�+� = − kTN�ln cosh h� + l0 + 
̃3��l1T + l12T� h̃

h̃c

�2

+ l14T� h̃

h̃c

�4
 + l2h̃2 + l3
̃ + l4
̃2� . �29�

Here

l0 = ln 2 +
1

2
	c��0��̄ + s0

−3e0p,

l1T = s0
−3�e4p + fmp + s−3� fp2 +

1

2
ln � + ln s −

1

2
I0��
 ,

l12T = E0
�2�, l14T = − E0

�2�E0
�4�,

l2 = s0
−3e3p, l3 = s0

−3e1p −
1

2
	c��0��̄

f0

ck1
�0� ,

l4 = s0
−3e2p +

1

2
	c��0��̄� f0

ck1
�0��2

, �30�

and 	c is the inverse critical temperature.
The average spin moment ��+�=−��F�+� /�h�T /N and the

susceptibility ��+�=−��2F�+� /�h2�T /N= ����+� /�h�T can be
found proceeding from the free energy F�+�, Eq. �29�. Their
coefficients are expressed in terms of those of the free en-
ergy.

B. The case of T�Tc and h̃š h̃c

The expression �29� is valid for values of the field h̃

� h̃c only. For describing the behavior of the system in the
region II �see Fig. 1�, we apply the similar technique using a
few modifications. As in the previous subsection, the free
energy consists of the several terms

Fh
�+� = F0 + FCR,h + FTR,h + FI,h. �31�

The main difference between expressions �31� and �11� is
determined by the exit point np. In the case of the strong
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fields, the equality np=nh is valid. The field variable be-
comes dominant for the determination of the system critical

behavior. Thus, for h̃� h̃c, the term FCR,h=−kT ln Q0
−kT�n=1

np ln Qn �where np=nh� has the form

FCR,h = − kTN0�e0p + e1p
̃ + e2p
̃2 + e3ph̃2

− h̃6/5�F10 + F11�h + F12�h
2�	 , �32�

where

�h = 
̃h̃−1/p0 = �h̃c/h̃�1/p0. �33�

It should be noted that the coefficient e4p=−�F10+F11+F12�
in Eq. �14� is formed of coefficients29 in the last three terms

from Eq. �32�. The quantity �h is equal to unity for h̃= h̃c and
reduces to zero with increasing the field. The free energy of
the transition region FTR,h=−kTNnh+1 ln��2Q�P�nh��	 is de-
fined as

FTR,h = − kTN0h̃6/5�fp1c − nh ln s + fp11c�h − fp12c�h
2	 .

�34�

The coefficients

fp1c = fp0 +
1

4
ln u*,

fp11c = f0�0
−1/2E2

−1�1

4
T42

�0� + �6H211� ,

fp12c =
1

2
�f0�0

−1/2E2
−1�2T42

�0��1

4
T42

�0� + �6H211�
do not depend on the field variable. The constants fp0 and
H211 are given in Ref. 29. As one can see, the contributions
to free energy FCR,h and FTR,h �see Eqs. �32� and �34�	 be-
come essential in the region of the strong fields.

The quantity Inh+1 in the term

FI,h = − kT ln Inh+1, �35�

representing the contribution from the long-wave fluctua-
tions, has the form similar to the integral Inp+1 appearing in
Eq. �4�. In contrast to the calculation of the long-wave con-
tribution in the case of the weak fields, we do not perform
the additional step of integration after the exit from the
critical-regime region since the coefficient in the quadratic
term in the exponent of the effective measure density would
be still negative. This quantity Inh+1 is calculated using the
substitution of variables

�k = �k + �h
�N
k. �36�

As a result, we obtain

Inh+1 = exp�E0��h�	 � �d��Nnh+1

�exp�A0
�N�0 −

1

2 �
k�Bnh+1

dh�k��k�−k

−
1

3!
bhNnh+1

−1/2 �
k1,. . .,k3

ki�Bnh+1

�k1
¯ �k3


k1+¯+k3

−
1

4!
ahNnh+1

−1 �
k1,. . .,k4

ki�Bnh+1

�k1
¯ �k4


k1+¯+k4� . �37�

Here

A0 = a1mh̃ − dnh+1�0��h −
1

6
a4

�nh+1��h
3 N

Nnh+1
,

dh�k� = dh�0� + 2	��0�b2k2,

dh�0� = dnh+1�0� +
1

2
�h

2a4
�nh+1� N

Nnh+1
,

bh = �ha4
�nh+1�� N

Nnh+1
�1/2

, ah = a4
�nh+1�, �38�

and

E0��h� = N�a1mh̃�h −
1

2
dnh+1�0��h

2 −
a4

�nh+1�

4!
�h

4 N

Nnh+1

 .

�39�

The quantity �h can be found using the condition
�E0��h� /��h=0. Taking into account the relations dnh+1�0�
=s−2�nh+1�rnh+1, a4

�nh+1�=s−4�nh+1�unh+1, Nnh+1=Ns0
−3s−3�nh+1�,

s−a�nh+1�= h̃2a/5 and carrying out the substitution of the vari-
able

�h = �0h̃1/5, �40�

we arrive at the cubic equation

h̃�a1m − rnh+1�0 −
1

6
unh+1�0

3s0
3
 = 0. �41�

As in the region of the weak fields, the equation �41� has
only one real solution. This solution, nullifying the quantity
A0 from Eqs. �38�, can be approximated by the following

power series in �h�1 �h̃� h̃c� with known coefficients:29

�0 = �0
�0� + �0

�1��h − �0
�2��h

2. �42�

After the substitution �36�, the quadratic term in the expres-
sion of the exponent in Eq. �37� becomes positive and domi-
nates for all k�0. Thus, we can perform the integration in
Eq. �37� with respect to the variables �k except the variable
�0. Next step in our calculations lies in the return to the
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variable �0 with the help of the relation �0=�0−�h
�N. As a

result, the quantity Inh+1 assumes the following form:

Inh+1 = �
k�0

Bnh+1 � �

dh�k�
�1/2� d�0 exp��Na1mh̃�0 −

1

2
dnh+1�0��0

2

−
1

4!

a4
�nh+1�

Nnh+1
�0

4
 . �43�

As in the case of h̃� h̃c, performing the substitution �0
=�N�h, which leads to the appearance of a sharp maximum
of the integrand in

Inh+1 = �
k�0

Bnh+1 � �

dh�k�
�1/2

�N�
−�

+�

e−NE��h�d�h �44�

due to the factor N in the exponent, and using the steepest-
descent method, we find

Inh+1 =� 2�

E���̄h�
e−NE��̄h� �

k�0

Bnh+1 � �

dh�k�
�1/2

. �45�

Here �̄h is the extremum point of the expression

E��h� = − a1mh̃�h +
1

2
dnh+1�0��h

2 +
1

4!
a4

�nh+1� N

Nnh+1
�h

4,

�46�

which defines the fraction of free energy associated with the
order parameter. This point is determined from the condition
of extremum �E��h� /��h=0 or

a1mh̃ − dnh+1�0��̄h −
1

6
a4

�nh+1� N

Nnh+1
�̄h

3 = 0. �47�

Presenting the solution of Eq. �47� in the form

�̄h = �̄h0h̃1/5, �48�

we obtain the same equation �41�, where the role of �0 plays

�̄h0 = �̄h0
�0� + �̄h0

�1��h − �̄h0
�2��h

2. �49�

Taking the logarithm, transiting to the spherical Brillouin
zone, and integrating with respect to k in the expression �45�,
we arrive at the formula for the free energy of long-wave
fluctuations

FI,h = − kTN���nh + 1�ln s −
1

2
I0� +

1

2
ln �
s0

−3 + E00�h̃6/5.

�50�

The quantity I0� has the same form as I0� appearing in Eq.
�28�, but the coefficient D0� is defined as

D0� = rnh+1 +
1

2
s0

3unh+1�0
2.

Expressions �49� and

rnh+1 = r*�1 − �h� ,

unh+1 = u*�1 + f0T42
�0��0

−1/2�h� �51�

allow us to obtain the approximate relations for

E00 = a1m�̄h0 −
1

2
rnh+1�̄h0

2 −
1

4!
s0

3unh+1�̄h0
4 �52�

and for FI,h, Eq. �50�.
Collecting the contributions from all regimes of fluctua-

tions according to Eq. �31�, we can now write the complete
expression for the free energy of the system in the case of

T�Tc and h̃� h̃c

Fh
�+� = − kTN�ln cosh h� + l0 + h̃6/5�l1 + l11�h + l12�h

2�

+ l2h̃2 + l3
̃ + l4
̃2	 . �53�

Here

l1 = E00
�0� + s0

−3�− F10 + fp1c +
1

2
ln � + ln s −

1

2
I00� � ,

l11 = E00
�1� + s0

−3�− F11 + fp11c −
1

2
I01� � ,

l12 = − E00
�2� + s0

−3�− F12 − fp12c −
1

2
I02� � . �54�

The coefficients l0, l2, l3, and l4 are defined in Eqs. �30�. The
quantities E00

�l� and I0l� are the components29 of the approxi-
mate representations

E00 = E00
�0� + E00

�1��h − E00
�2��h

2 �55�

and

I0� = I00� + I01� �h + I02� �h
2, �56�

respectively.
Differentiating the expression �53� for Fh

�+� with respect to
field, we can find the average spin moment and the suscep-
tibility of the system. Using Eq. �53�, the entropy Sh

�+�

=−��Fh
�+� /�T�h and the specific heat Ch

�+�=−T��2Fh
�+� /�T2�h

=T��Sh
�+� /�T�h of the system can be obtain also.

C. The cases of T�Tc, h̃™ h̃c, and T�Tc, h̃š h̃c

A calculation technique for the thermodynamic character-
istics of the system in the regions IV and III �see Fig. 1� is

similar to that elaborated in the case of T�Tc and h̃� h̃c �the
previous section�. In order to obtain explicit dependences for
the thermodynamic functions, we assume that the point of
exit np of the system from the critical-regime region is only
a function of one of variables 
 and h�. Such an assumption

is valid for h̃� h̃c and h̃� h̃c. We choose the variable, which
has the stronger influence on the critical behavior of the sys-

tem. Hence, there are two cases: the weak-field region h̃

� h̃c is characterized by the equality
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np = �
 = −
ln 
̃1

ln E2
− 1, �57�

where the quantity �
 defines the exit point by the tempera-

ture value, and the strong-field region h̃� h̃c is determined
by

np = nh = −
ln h̃

ln E1
− 1, �58�

where nh is the exit point controlled by the field. Here 
̃1

=−
̃. For T�Tc, we have h̃c= 
̃ 1
p0.

Let us consider the case of T�Tc and h̃� h̃c. The contri-
butions to free energy

F�−� = F0 + F̃CR + F̃TR + F̃I �59�

have the following forms:30

F̃CR = − kTN0�e0p − e1p
̃1 + e2p
̃1
2 + e3ph̃2 + ẽ4p
̃1

3�� ,

F̃TR = − kTN0
̃1
3�� f̃ p1 − �
 ln s� ,

F̃I = − kTN�Ẽ022
̃1
3� + a1mh̃�̄� − kTN0
̃1

3��
 ln s . �60�

The term F0 is defined in Eq. �12�, and

ẽ4p = − �F10 − F11 + F12� ,

f̃ p1 = fp0 + H211h2
��
� + 1

4 ln u�

. �61�

The coefficient

Ẽ022 = −
1

2
r�
+1�̄0

2 −
1

4!
u�
+1s0

3�̄0
4 +

1

2
s0

−3 ln �

+ �ln s −
1

2
Ĩ0��s0

−3

as well as the quantities �̄0 and Ĩ0� can by given in the form of
the approximate representations30

Ẽ022 = Ẽ022
�0� − Ẽ022

�1� h̃

h̃c

− Ẽ022
�2� � h̃

h̃c

�2

,

�̄0 = �̄0
�0� − �̄0

�1� h̃

h̃c

− �̄0
�2�� h̃

h̃c

�2

,

Ĩ0� = Ĩ00� − Ĩ01�
h̃

h̃c

+ Ĩ02� � h̃

h̃c

�2

. �62�

The quantity �̄0 characterizes the solution �̄= �̄0
̃1
�/2 of the

corresponding cubic equation

a1mh̃ − d�
+1�0��̄ −
1

6
a4

��
+1� N

N�
+1
�̄3 = 0.

On the basis of Eq. �59�, we obtain the total free energy

F�−� = − kTN�ln cosh h� + l0 + 
̃1
3��l1� + l11�

h̃

h̃c

+ l12�� h̃

h̃c

�2
 + l2h̃2 − l3
̃1 + l4
̃ 1
2� . �63�

Here

l1� = Ẽ022
�0� + s0

−3�ẽ4p + f̃ p1� ,

l11� = a1m�̄0
�0� − Ẽ022

�1� , l12� = − a1m�̄0
�1� − Ẽ022

�2� . �64�

Let us describe the results of the calculation of the total

free energy Fh
�−� in the case of T�Tc and h̃� h̃c. The contri-

butions to free energy of the system as well as the total free
energy are found by analogy with the above-presented case

of T�Tc and h̃� h̃c. Using the equalities30

h̃E1
nh+1 = 1, E2

nh+1 = h̃−1/p0,

E3
nh+1 = h̃−1/5, Nnh+1 = N0h̃6/5

and taking into account the designations 
̃1=−
̃ and �h

= 
̃1h̃−1/p0 = �h̃c / h̃�1/p0, we arrive at the analogous expressions,
but signs before the terms proportional to �h in Eqs. �32�,
�34�, �42�, �49�, �51�, �53�, �55�, and �56� must be replaced
by opposite signs.

Let us now write the final formulas for the total free en-
ergy F�±�, order parameter �average spin moment� ��±�, sus-
ceptibility ��±�, entropy Sh

�±�, and specific heat Ch
�±� of a 3D

uniaxial magnet. Explicit expressions assume the following
forms:

�a� in the weak-field regions �h̃� h̃c�

F�+� = − kTN�ln cosh h� + l0 + l1T
̃3� + l12T
̃3�� h̃

h̃c

�2

+ l14T
̃3�� h̃

h̃c

�4

+ l2h̃2 + l3
̃ + l4
̃2
 ,

F�−� = − kTN�ln cosh h� + l0 + l1��
̃�3� + l11��
̃�3� h̃

h̃c

+ l12��
̃�3�� h̃

h̃c

�2

+ l2h̃2 − l3�
̃� + l4�
̃�2
 ,

��+� = tanh h� + �0h� + �2
�+�
̃�/2h�

h̃c

+ �3
�+�
̃�/2�h�

h̃c
�3

,

��−� = tanh h� + �0h� + �1
�−��
̃��/2 + �2

�−��
̃��/2h�

h̃c

,

��±� = 	�1 − tanh2 h� + �0 + �1
�±��
̃�−�	, � = 2�; �65�

�b� in the strong-field regions �h̃� h̃c�
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Fh
�+� = − kTN�ln cosh h� + l0 + l1h̃6/5 + l11h̃

6/5� h̃c

h̃
�1/p0

+ l12h̃
6/5� h̃c

h̃
�2/p0

+ l2h̃2 + l3
̃ + l4
̃2
 ,

Fh
�−� = − kTN�ln cosh h� + l0 + l1h̃6/5 − l11h̃

6/5� h̃c

h̃
�1/p0

+ l12h̃
6/5� h̃c

h̃
�2/p0

+ l2h̃2 − l3�
̃� + l4�
̃�2
 ,

�h
�±� = tanh h� + �h0

h� + �h1
�h��1/5 + �h2


̃�h��1/5−1/p0

+ �h3

̃2�h��1/5−2/p0,

�h
�±� = 	�1 − tanh2 h� + �h0

+ �h1
�h��−4/5 + �h2


̃�h��−4/5−1/p0

+ �h3

̃2�h��−4/5−2/p0	 ,

Sh
�±� = kN�sh0

+ sh1
h̃� + sh2


̃h̃−� + sh3

̃	 ,

Ch
�±� = kN�ch0

+ ch1
h̃−�	 ,

� =
6

5
−

1

p0
, � = − �6

5
−

2

p0
� . �66�

Here the subscript h corresponds to strong fields. The + and
− signs refer to temperatures above and below Tc, respec-
tively. For each of four regions of the temperature and field

values �T�Tc and h̃� h̃c; T�Tc and h̃� h̃c; T�Tc and h̃

� h̃c; T�Tc and h̃� h̃c�, we obtain and solve some equation
corresponding to the equation of state of the system.The co-
efficients in the expressions for the total free energy are de-
fined by the relations �30�, �54�, and �64�. For the remaining
coefficients in Eqs. �65� and �66�, we have

�0 = 2l2f0
−2, �2

�+� = 2l12Tf0
−2, �3

�+� = 4l14Tf0
−4,

�1
�−� = l11�f0

−1, �2
�−� = 2l12�f0

−2,

�0 = �0, �1
�±� = �2

�±�,

�h0
= �0, �h1

= 6
5 l1f0

−6/5,

�h2
= �6

5
−

1

p0
�l11f0

−�6/5−1/p0�,

�h3
= �6

5
−

2

p0
�l12f0

−�6/5−2/p0�,

�h0
= �h0

, �h1
= 1

5�h1
,

�h2
= �1

5
−

1

p0
��h2

, �h3
= �1

5
−

2

p0
��h3

,

sh0
= l0 + l3

ck1
�0�

f0
, sh1

= l11
ck1

�0�

f0
,

sh2
= 2l12

ck1
�0�

f0
, sh3

= 2�l3 + l4
ck1

�0�

f0
� ,

ch0
= sh3

ck1
�0�

f0
, ch1

= sh2

ck1
�0�

f0
. �67�

As is seen from Eqs. �65�, the equality ��+�=0 is valid for

h�=0. In the case of h̃� h̃c, the last term in the expression for
��+� can be neglected. As a result, the average spin moment
��+� is proportional to h�. The third term, corresponding to
the moment induced by the field h�, determines the main
contribution to ��+�. The first and second terms in the expres-
sion for ��−� are smaller than the third and fourth terms. The
third term of ��−� corresponds to the spontaneous moment of
the system �for h�=0, we have ��−�=�1

�−� � 
̃��/2�, while the
fourth term characterizes the moment induced by the field. In

the case of h̃� h̃c, the main contribution to �h
�±� �see Eqs.

�66�	 is ensured by the term proportional to �h��1/5. The term

sh1
h̃� of the entropy Sh

�±� is more significant than the term

sh2

̃h̃−�. The leading term of the specific heat Ch

�±� is propor-

tional to h̃−�.
Using the explicit expressions presented here, we can in-

vestigate the field dependences of thermodynamic character-
istics of a 3D Ising-like system for various values of the
temperature 
. Our calculations are illustrated by the case of

s0=2, b /c=0.3, �̄=0.05. The field dependences of the aver-
age spin moment and susceptibility for T�Tc and T�Tc are

demonstrated in Fig. 2 �the region of weak fields h̃�0.1h̃c�
and in Fig. 3 �the region of strong fields h̃�10h̃c�. The plots
in Fig. 2 show that the above-mentioned dependences in the

weak fields h̃� h̃c are linear. Our value for the universal ratio
of the susceptibility amplitudes �1

�+� /�1
�−�= l12T / l12��5.85,

determining the ratio of the susceptibilities at temperatures
above and below Tc in the weak-field regions �Figs. 2�c� and
2�d�	, agrees with the other authors’ data around 5 for h=0
�see, for example, Ref. 16�. As we see from Fig. 3, the av-
erage spin moment and susceptibility of the system in the

strong fields h̃� h̃c depend on the temperature weakly �the
scatter of curves for various values of the temperature is
small�. Our estimates for the average spin moment for h�
from the regions of the small and large values of the field30

accord with the results31,32 obtained with the help of Monte
Carlo simulations for the Ising model on a simple cubic lat-
tice with the interaction between nearest neighbors. In our
calculations, this interaction is determined by the set of pa-

rameters s0=2, b /c=0.3, �̄=0.092 �Ref. 25�. Tables I �the
high-temperature region, 
=0.0050� and II �the low-
temperature region, 
=−0.0047� present our results and nu-
merical data from Refs. 31 and 32 corresponding to peaks of
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the probability distributions of the order parameter. The be-
havior of the field dependence of the average spin moment
�h

�Tc� at T=Tc is shown in Fig. 4. The curve 1 demonstrates
our results. The dashed curve 2 corresponds to the results
obtained in Ref. 19, where the 3D Ising model in an external
magnetic field near the critical point is also studied by Monte
Carlo simulations.

Our approach to obtaining explicit expressions for the
thermodynamic characteristics of 3D Ising-like systems in an
external field is approximate. Some discrepancy in Tables I
and II, and Fig. 4 between Monte Carlo results and our over-
estimated values can be connected with our approximate cal-
culation of the partition function confined to the asymmetric
�4 model. Indeed, the Ising model corresponds to the �2m

model approximation, where the order of the model is 2m
�4 �see, for example, Ref. 22�. We suppose that the results
for the more complicated asymmetric �6 model will be
agreed more closely with the presented Monte Carlo data
than the corresponding estimates for the asymmetric �4

model. The previous study22 shows that the sextic measure
density with even powers of the variable in the exponent
only �the �6 model� provides a better quantitative description

of critical properties of a 3D Ising-like system as compared
with the quartic measure density. The average spin moment
for the �6 model20,22,33,34 is smaller than that for the �4 model
and hence is in better agreement with Monte Carlo data.

Our expressions for the thermodynamic characteristics in
the form of a power series in h̃ / h̃c �the region of weak fields�
and �h= �
̃ � h̃−1/p0 = �h̃c / h̃�1/p0 �the region of strong fields� are

valid for h̃� h̃c and h̃� h̃c, respectively. Therefore, for com-
parison of the results, the estimates in Tables I and II are
given for the smallest field values and for the largest field
values from Refs. 31 and 32. At the weak field h̃=0.205h̃c,
our value for ��+� is in good agreement with the correspond-
ing estimate from Ref. 31 �see Table I�. But the difference
between the limiting field h̃c and the fields h̃=4.251h̃c �Table
I�, h̃=0.746h̃c, h̃=4.337h̃c �Table II� can be still deficient for
the satisfactory application of our expansions. This is also
the possible reason of some discrepancy between our data for
the order parameter and numerical results from Refs. 31 and
32. In the region of h̃� h̃c, where the scaling variable is of
the order of unity and a power series of the scaling functions
are not effective, the influences of the temperature and field

FIG. 2. The case of weak fields h̃�0.1h̃c �or h̃�0.1 � 
̃�5�/2, see Eq. �7�	. Field dependences of the average spin moment and susceptibility
of the system for 
= ±0.000 01, ±0.000 05, and ±0.000 10. Parts �a� and �b� of the figure display the average spin moment at temperatures
above and below Tc, respectively. Parts �c� and �d� of the figure show the susceptibility at T�Tc and T�Tc, respectively. Here h�
=h / �kT�= f0h̃ is the dimensionless field, f0 characterizes one of the fixed-point coordinates.
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on the critical behavior of the system are equally important.
Then, the point of exit of the system from the critical regime
is a function of both the temperature and field variables.
However, in this case, we cannot single out the temperature
and field explicitly in the complete expressions for the ther-
modynamic characteristics. Our main task is to obtain ex-
plicit expressions for the total free energy and other thermo-
dynamic characteristics as functions of the temperature, field,
and microscopic parameters of the system. This task was
performed by using the approximation that the exit point was

only a function of one of the temperature and field variables.
Such an approximation is valid in the weak-field �h̃� h̃c� and

strong-field �h̃� h̃c� regions. One chooses the variable,
which has a stronger effect on the critical behavior than the
other one.

It should be noted that the present paper supplements the
earlier works,33,34 in which the effect of an external field on
the critical behavior of a 3D Ising magnet was studied using
the above-mentioned sextic measure density with even pow-

FIG. 3. The case of strong fields h̃�10h̃c �or h̃�10 � 
̃�5�/2, see Eq. �7�	. Behavior of the average spin moment and susceptibility of the
system with increasing field h� for various values of 
. Notation is the same as in Fig. 2.

TABLE I. Estimates for the order parameter of a 3D Ising-like
system in the presence of an external field for the temperature from
the region above Tc �
=0.0050�. The values of ��+� and �h

�+� refer to

fields h̃=0.205h̃c �or h�=0.00013� and h̃=4.251h̃c �or h�=0.0027�,
respectively.

Average spin
moment
T�Tc

Present work, the
collective variables

method

Ref. 31,
the Monte Carlo
method, L3=583

��+� 0.110 0.100

�h
�+� 0.500 0.359

TABLE II. Numerical estimates of the order parameter of the
system for the temperature from the region below Tc �
=−0.0047�.
The case of a zero external field is presented by �h=0

�−� . The values of

��−� and �h
�−� correspond to fields h̃=0.746h̃c �or h�=0.00043� and

h̃=4.337h̃c �or h�=0.0025�, respectively.

Average spin
moment
T�Tc

Present work, the
collective variables

method

Ref. 32,
the Monte Carlo
method, L3=743

�h=0
�−� 0.516 0.289

��−� 0.591 0.335

�h
�−� 0.624 0.420
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ers. In the absence of an external field, maxima points of the
non-Gaussian �quartic� distribution are investigated on the
basis of Euler equations in Ref. 12. The effective distribu-
tions, which permit deriving the equation of state and plot-
ting the temperature �for various values of the field� and field
�for various values of the temperature� dependences of the
order parameter in the �6 model approximation, are analyzed
in Refs. 33 and 34. These papers contain the comparison
with the case of a zero external field. In the presence of any
external field, the average spin moment of the system be-
comes different from zero at every temperature. The discrete
phase-transition point disappears; the transition is smeared.
The temperature dependence of the order parameter pre-
sented in Refs. 33 and 34 graphically makes it possible to see
and to estimate numerically the smear of the phase transition
for some given values of the field, while the field dependence
of the order parameter demonstrates the first-order phase-
transition pattern at 
�0 when the field passes through zero
value. Plots33,34 of the mentioned dependences allow one to
obtain the information about the location of the phase bound-
ary, metastable states, and thermodynamically stable states of
the system.

IV. CONCLUSIONS

Considerable progress in the study of phase transitions
and critical phenomena is made by using the perturbation
theory and numerical methods. But the perturbative frame-
work is generally not well adapted to the variety of the
systems.35 Numerical methods are also not quite appropri-
ated for the complete description of some models, especially
of more complex ones. Since the simulations have to be per-
formed for systems of relatively small sizes, the system is
not very deep into scaling region. Therefore, the nonpertur-
bative RG theory is some alternative way for the following
progress in the research of the large systems with the collec-

tive behavior. Such investigations are performed using the
Wilson-Polchinski exact RG equation �see, for example,
Refs. 35–38�. Our method, which employs the nonperturba-
tive RG theory, is similar to the Wilson-Polchinski RG
method �integration on fast modes and construction of an
effective theory for slow modes�.

The analytic method proposed for describing a 3D
uniaxial magnet near the critical point by using the asymmet-
ric �4 model takes into account the simultaneous effect of the
temperature and field on the behavior of the system. Explicit
expressions for the total free energy and other thermody-
namic characteristics of the system are presented as functions
of the temperature and field in the regions of the weak and
strong fields for temperatures above and below Tc. The de-
scription is based on the first principles of statistical physics
and is naturally realized without any general assumptions in
terms of the variables, which coincide with the accepted
choice of the arguments for scaling functions in accordance
with the scaling theory. As is seen from relations �65� and
�66� as well as from Figs. 2 and 3, the system behavior in the
weak fields is described in general by the temperature vari-
able, but the role of the temperature variable in the case of
the strong fields is not dominant. For the strong fields, the
leading terms of the thermodynamic characteristics are de-
fined by the field variable.

The CV method permits to calculate the partition function
of the system and to obtain not only the universal quantities
�critical exponents� but also analytic expressions for the ther-
modynamic characteristics. The methods existing at present
make it possible to calculate universal quantities to quite a
high degree of accuracy. The advantage of the proposed
method lies in the possibility to perform the calculations on
the microscopic level without any adjustable parameters that
makes this method useful in describing the critical behavior
of a wide class of 3D systems.11,15 The obtained expressions
for the thermodynamic functions allow us to analyze their
dependence on microscopic parameters of the system �the
lattice constant and parameters of the interaction potential�.
The main benefit of these expressions is the presence of re-
lations connecting their coefficients with microscopic param-
eters and the coordinates of the fixed point.

We hope that the proposed method as well as our explicit
representations and plots may provide useful benchmarks in
studying the dependence of the thermodynamic functions of
3D Ising-like systems on the temperature, field, parameters
of the interaction potential, and characteristics of the crystal
lattice.
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