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Magnetic properties of noncentrosymmetric cubic helimagnets �MnSi, etc.� at low T are studied theoretically
using conventional exchange, Dzyaloshinskii-Moriya interaction, anisotropic exchange and magnetic dipolar
interaction. Structure in magnetic field and spin-wave spectrum are considered. In low field g�BH1=��2,
where � is the spin-wave gap, the helix axis k turns along the field. A transition to ferromagnetic state occurs
at g�BHc=Ak2, where A is the spin-wave stiffness at momenta q�k. It is observed that the spin-wave spectrum
is strongly anisotropic: excitations with q �k and q�k have linear and quadratic dispersion at q�k respec-
tively if one neglects the gap �. This is a result of umklapp interaction connecting the spin-waves with
momenta q and q±k. This interaction leads to infinite set of equations for the Green functions. The simplest
n=1 approximation is applicable at q=0 and q�k. Further n=2 approximation gives correct result at q�k.
Results of both approximations are qualitative at q�k. The weak field �H�H1� perpendicular to k deforms the
helix and the second harmonics of the spin rotation appears. The spin-wave gap is a result of the spin-wave
interaction considered in the Hartree-Fock approximation and cubic anisotropy. Properties of the ESR and
neutron scattering are considered. The theoretical results are in agreement with existing experimental data.
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I. INTRODUCTION

Itinerant cubic magnets MnSi, FeGe, FeSiCo, etc. have
attracted a lot of attention due to their specific electronic and
magnetic properties. The former originate from closeness to
quantum phase transition, which is achieved at high pressure
�see Refs. 1 and 3 and references therein�. The corresponding
theory was developed in Ref. 4. The latter stems from the
P213 symmetry which allows Dzyaloshinskii-Moriya inter-
action �DMI� responsible for magnetic helix structure. In cu-
bic crystals the DMI fixes the sense of the helix �right or
left-handed spiral� but cannot determine its direction.5,6 It is
stabilized by very weak anisotropic exchange interaction
�AEI�.7,8

The helix structure is very sensitive to external magnetic
field. Two field-induced transitions have been observed
�Refs. 9–11 and references therein�. In low field it is a tran-
sition to the state with the helix axis k along the field. Then
with the field increasing there is the second transition to the
“ferromagnetic” state. These transitions have been described
by the phenomenological Landau-like theory which contains
a large number of parameters.12,13 It should be noted also that
critical properties of MnSi near transition temperature Tc are
very unusual as well. Corresponding experimental studies
and its theoretical explanation may be found in Refs. 14–16.

In this paper we present theoretical description of low-
temperature properties of the cubic magnets with the DMI.
We microscopically evaluate the ground-state energy and the
spin-wave spectrum. In particular we demonstrate that the
critical fields mentioned above are related to the parameters
of the spin-wave spectrum in agreement with existing experi-
mental data.

This paper is organized as follows. In Sec. II the theoret-
ical model is formulated. Along with the exchange interac-
tion, the DMI and AEI studied in Refs. 7 and 8 we include
also the magnetic dipolar and the Zeeman interactions. Fol-
lowing Ref. 17 we introduce all three spin components in

each lattice point of the helix. Section III is devoted to the
consideration of the classical ground state energy. The helical
wave vector k and critical field along k for the transition to
the ferromagnetic state Hc are determined. In Sec. IV the
spin-wave Hamiltonian is considered. It consists of two
parts. The former includes the spin waves with the same q.
The second describes the umklapp processes mixing the spin
waves with q and q±k which have different energies. It is a
result of the incommensurate helical structure and low sym-
metry of the DMI which breaks the total spin conservation
law.

The umklapp interaction is analyzed in Sec. V. Two types
of the umklapps are considered. The former created by the
field perpendicular to k leads to the first order transition to
the state with k along the field at g�BH�=��2 where � is
the spin-wave gap. The second gives rise to strong aniso-
tropy of the spin-wave spectrum: excitations with momen-
tum along and perpendicular to k have different energies.

Spin configuration in weak perpendicular field is dis-
cussed in Sec. VI. The origin of the spin-wave gap � is
studied in Sec. VII. There are two contributions to �2: the
spin-wave interaction considered in the Hartree-Fock ap-
proximation and the cubic anisotropy. If the latter contribu-
tion is negative and sufficiently strong instead of the helical
magnetic order the spin-liquid state is realized where the
chiral spin fluctuations persist due to the DMI. They can be
studied by polarized neutron scattering. This instability may
be a reason of the quantum phase transition observed under
pressure in MnSi.2,3,10

Possibilities of the electron spin resonance �ESR� and
neutron scattering studies of the above-mentioned phenom-
ena are considered in Sec. VIII. The theoretical results are
summarized and discussed in Sec. IX in connection to exist-
ing experimental data. Some details of calculations are pre-
sented in Appendixes A–D.
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II. MODEL

There are the following principal interactions in cubic
magnets without inversion symmetry: �i� conventional ex-
change interaction, �ii� the DMI, �iii� the AEI, �iv� the mag-
netic dipolar interaction, �v� the Zeeman energy, and �vi� the
cubic anisotropy. The DMI and AEI are responsible for the
helical magnetic structure and its orientation relative the cu-
bic axes respectively.5–8 Weak cubic anisotropy determines
the spin-wave gap and some additional peculiarities of the
helix axis orientation in the magnetic field. We investigate
spin configuration in magnetic field and the spin-wave spec-
trum using the first five interactions. The cubic anisotropy
will be considered in Sec. VII in connection with the origin
of the spin-wave gap.

There are four magnetic ions in the unit sell of the mag-
nets under study. We will consider here the total spin of the
unit sell as a basic magnetic entity, completely neglecting
internal movements of the cell spins and corresponding op-
tical spin-wave branches. Interested in low-energy spin dy-
namics, we use the magnetic density approximation18,19 with
total spin of the unit cell S�R� and usual commutation rela-
tions

�S��R�,S��R�� = i���	S	�R� . �1�

The DMI destroys ferromagnetic order and is responsible for
the long periodical spin-density wave.5–8 For each spin we
determine right-handed local orthogonal coordinate frame

with basic unit vectors 
̂R, �̂R, and �̂R given by17


̂R = ĉ sin � + �â cos k · R + b̂ sin k · R�cos � , �2�

�̂R = − â sin kR + b̂ cos kR ,

�̂R = ĉ cos � − �â cos k · R + b̂ sin k · R�sin � ,

where â
 b̂= ĉ, b̂
 ĉ= â, and ĉ
 â= b̂ and we have

SR = SR

 
̂R + SR

��̂R + SR
� �̂R, �3�

where projections of the spin operators have well known
form

SR

 = S − �a+a�R,

SR
� =

1

i
�S

2
�aR − aR

+ −
�a+a2�R

2S
	 ,

SR
� =�S

2
�aR + aR

+ −
�a+a2�R

2S
	 . �4�

Here S is a parameter connected to the cell magnetization by
M =g�BS /v0 where �B�0, g
2, and v0=a3 is the unit cell
volume. For MnSi magnetic moment per spin 0.4�B is
strongly reduced in comparison with the paramagnetic state
value 1.4�B and the unit-cell spin S=0.2
4=0.8.10

For the above-mentioned principal interactions in the R
space we have

H = HEX + HDM + HAE + HD + HZ,

HEX = −
1

2 � JRR�SR · SR�,

HDM =
1

2 � DRR���− ���SR 
 SR�,

HAE =
1

2 � FRR����xSR
x ���xSR�

x � + ��ySR
y ���ySR�

y � + ��zSR
z �


��zSR�
z �� ,

HD =
�g�B�2

2 �� SR · SR�

�R − R��3
−

3SR · �R − R��SR� · �R − R��
�R − R��5

	 ,

HZ = �BH · � SR. �5�

In cubic crystals the Dzyaloshinskii vector has not a definite
direction and proportional to vector �.5,6 It changes sign if
R↔R� and DRR�=DR�R. Otherwise we would have HDM
=0. In the q space these expressions have the form

HEX =
1

2 � JqSq · S−q,

HDM = � iDqq · �Sq 
 S−q� ,

HAE =
1

2 �
�=x,y,z

Fqq�
2Sq

�S−q
� ,

HD =
�0

2 � ��Sq · q̂��S−q · q̂� − 1/3�Sq · S−q�� ,

HZ = N1/2H · S0. �6�

where N is total number of the cells, Sq=N−1/2�SR
exp�−iq ·R�, Dq=D−q, q̂=q /q, and �0=4��g�B�2 /v0 is the
characteristic energy of the dipolar interaction. The aniso-
tropic part of this interaction contains the tensor q̂�q̂�. At q
=0 it must be replaced by demagnetization tensor N��.19,20

The DMI and AEI are of the first and second order of the
spin-orbit interaction respectively. So we have J�D /a
�F /a2 where a is the lattice spacing. Value of the dipolar
energy S�0 for MnSi will be given in the last section. It is
less than characteristic helical energy Ak2 determined in the
next section.

III. CLASSICAL ENERGY

Replacing in Eq. �3� SR by S
̂R we get the classical
ground-state energy per unit cell in the following form:

Ecl = −
S2

2
�J0 sin2 � + Jk cos2 � + �0/3� − S2D0


�k · �â 
 b̂��cos2 � +
S2F

4
�kx

2�âx
2 + b̂x

2� + ky
2�ây

2 + b̂y
2�

+ kz
2�âz

2 + b̂z
2��cos2 � + Sh� sin � +

S2

2
�0Ncc sin2 � , �7�
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here h� =g�H�, H� is the field component along the c axis and
Ncc is the corresponding component of the demagnetization
tensor. It is important to note that the classical energy de-
pends on the field along c axis only. Meanwhile experiment
shows that the system is very sensitive to weak perpendicular
field.9–11 We will explain below the nature of this quantum
phenomenon.

We are interested by small k only �ka�1� when Jk
J0

− Ak2

S and Dk
D0. As we will see below A is the spin-wave
stiffness constant at q�k. For H� =0 this ground state energy
was studied in Ref. 8. From Eq. �7� for components of the
vector k we get

Ak� +
SF

2
k��â�

2 + b̂�
2� = SD0�â 
 b̂�� �8�

and

Ak2 +
SF

2
I�k� = SD0�k · �â 
 b̂�� , �9�

where I=�k�
2�a�

2+b�
2� is a cubic invariant. The classical en-

ergy may be represented as

Ecl = −
S2

2

J0 +

�0

3
� + �SAk2

2
+

S2FI

4
− S2D0�k · �â 
 b̂��	


cos2 � + Sh� sin � +
S2Ncc

2
�0 sin2 � . �10�

Obviously Ecl is minimal if �k · �â
 b̂��= �k�D0 / �D0�. In this
case the spins rotate in the plane perpendicular to the vector
k. For negative F the minimum is for k along one of the
cubic diagonals and I=2k2 /3. For F�0 the vector k is di-
rected along the cubic edge and I=0.8 In both cases we have

k =
SD0�â 
 b̂�
A + SFI/2

. �11�

For D0�0 and D0�0 we have the right and left-handed
helix respectively.

The classical energy depends on the field projection onto
the vector k �c axis� only and from Eqs. �9� and �10� we
obtain

sin � = �− H�/Hc, H� � Hc

− 1, H� � Hc,
� �12�

where the critical field is given by

g�BHc = hc = Ak2 +
SF

2
I + S�0Ncc �13�

Here the last term is a result of the demagnetization. The
intrinsic critical field is determined by Hc

Int=Hc−4�NccM,
where M is the magnetization in the high-field ferromagnetic
state determined as g�BM =S�0 and g�Hc

Int=hc
Int=Ak2

+SFI /2
Ak2. For H�Hc we have ferromagnetic spin con-
figuration, but according to Eqs. �3� and �4� the perpendicu-
lar, spin-wave components of the spin density remain rotat-
ing. It has to be taken into account in consideration of the
ESR and neutron scattering �see Sec. VIII�.

IV. SPIN-WAVES

In the low-q region the hierarchy of the interactions is
very important. The ferromagnetic exchange J is the stron-
gest one. The DMI and AEI are results of the weak spin-orbit
coupling �. They are of order �J and �2J respectively. Ac-
cording to Eq. �11� we have k��.

We are dealing with incommensurate spin structure where
umklapp processes mix excitations with momenta q and
q±k and different energies. For their consideration it is con-
venient to represent the unit vectors given by Eq. �2� as


̂R = ĉ sin � + �Aeik·R + A*e−ik·R�cos � ,

�̂R = iAeik·R − iA*e−ik·R,

�̂R = ĉ cos � − �Aeik·R + A*e−ik·R�sin � , �14�

where A= �â− ib̂� /2, A ·A=A* ·A*=0, A ·A*=1/2, A
 ĉ
=−iA, A*
 ĉ= iA*, and A
A*= iĉ /2 and we have

Sq = Sq
c ĉ + Sq

AA + Sq
A*

A*,

Sq
c = Sq


 sin � + Sq
� cos � ,

Sq
A = Sq−k


 cos � − Sq−k
� sin � + iSq−k

� ,

Sq
A*

= Sq+k

 cos � − Sq+k

� sin � − iSq+k
� . �15�

Using these expressions it is easy to see that HDM given
by Eq. �6� contains direct and umklapp terms. The former are

proportional to Sq
cS−q

c , Sq−k
A*

S−q+k
A , and Sq+k

A S−q−k
A*

. The latter

contain Sq
cS−q−k

A and Sq
cS−q+k

A*
. They are responsible for

umklapps with q→q±k. The processes with q→q±2k ap-
pear in the SASA and SA*

SA*
terms. Due to the algebra of the

vectors ĉ, A, and A* these double umklapps are in HAE and
HD only and we neglect them below. We will also see that
the perpendicular field initiate processes with q±k also. The
first time the umklapps were studied using phenomenological
approach in Ref. 13.

We evaluate here the direct contribution to the spin-wave
energy. The umklapps will be considered in the next section.
The exchange energy does not contain the umklapps and has
the form

HEX = −
1

2 � ��Jq sin2 � + Jq,k cos2 ��Sq

S−q


 + Jq,kSq
�S−q

�

+ �Jq cos2 � + Jq,k sin2 ��Sq
�S−q

�

+ i�Sq
�S−q


 − Sq

S−q

� �Nq,k cos �

+ �Jq − Jq,k��Sq

S−q

� + Sq
�S−q


 �


sin � cos � − i�Sq
�S−q

� − Sq
�S−q

� �Nq,k sin �� , �16�

where Jq,k= �Jq+k+Jq−k� /2
J0−A�q2+k2� /S and Nq,k
= �Jq+k−Jq−k� /2
−2Aqk /S.

Direct part of HDM is given by
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HDM
d = − � Dq�k · ĉ��Sq


S−q

 cos2 � + Sq

�S−q
� + Sq

�S−q
� sin2 �

− �Sq

S−q

� + Sq
�S−q


 �sin � cos �� + i � Dq�q · ĉ�


��Sq

S−q

� − Sq
�S−q


 �cos � + �Sq
�S−q

� − Sq
�S−q

� �sin �� ,

�17�

where ĉ= �â
 b̂�.22

For the anisotropic exchange we have

HAE
d =

F

2 �
q,�=x,y,z

��c�q��2�Sq

 sin � + Sq

� cos ���S−q

 sin �

+ S−q
� cos �� +

�q�
2 + k�

2��â�
2 + b̂�

2�
2

��Sq

 cos � − Sq

� sin ��


�S−q

 cos � − S−q

� sin �� + Sq
�S−q

� � − 2iq�k��a�
2 + b�

2�


�Sq

 cos � − Sq

� sin ��S−q
� � , �18�

and for the dipolar interaction we obtain

HD
�d� =

�0

2 ���q̂ · ĉ�2�Sq

 sin � + Sq

� cos ��


�S−q

 sin � + S−q

� cos �� +
q�

2

2�q,k�2


��Sq

 cos � − Sq

� sin ���S−q

 cos � − S−q

� sin ��

+ Sq
�S−q

� �� , �19�

where q�
2 =qa

2+qb
2 and �q ,k�−2= ��q+k�−2+ �q−k�−2� /2. In this

expression we have taken into account that the vector k is
perpendicular to the ab plane.

There are two kinds of terms in Eqs. �16�–�19�: �i� Diag-
onal terms proportional to S�S� and �ii� off diagonal terms
containing S�S� with ���. The former are responsible for
the direct contribution to the spin-wave spectrum and the
four-point spin-wave interaction considered in Appendix D.
The latter are not contributed at least in the main order. We
begin with the S
S� terms. Replacing Sq


 by N1/2S�q,0 we
obtain an expression which cancels H�S0

� term in the Zeeman
energy. The remaining part gives the odd point spin-wave
interaction considered in Appendix D. The S
S� and S�S�

terms cancel also by virtue of Eq. �8�. So we can restrict here
to the diagonal contribution only.

In the linear spin-wave theory from Eqs. �4� and �16�–�19�
after rather tedious calculations we obtain

HSW
�d� = ��Eqaq

+aq +
Bq

2
�aqa−q + aq

+a−q
+ �	 , �20�

where at q�1/a

Eq = Aq2 +
1

2

Ak2 +

SFI

2
�cos2 � +

S�0

2


�q̂c
2 cos2 � +

q�
2

�q,k�2
�1 + sin2 ��	

− S�hc sin � + h��sin � , �21�

where h� =g�BH� and hc is determined by Eq. �13�. Using Eq.
�12� one can show that expression in the last brackets is zero
if H� �Hc. For Bq at small q we have

Bq =
1

2

Ak2 +

SFI

2
�cos2 � +

S�0

2

q̂c

2 −
q�

2

�q,k�2
�cos2 � .

�22�

At arbitrary q expressions for Eq and Bq are given in Appen-
dix D.

It is easy to show that the spin-wave energy is given by
�q= �Eq

2 −Bq
2�1/2. For H� �Hc we have Bq=0 and

�q = Aq2 + h� − hc +
S�0q�

2

�q,k�2
. �23�

At H� �Hc the energy has the form

�q = �
Aq2 +
S�0q�

2

�q,k�2
��Aq2 + �Ak2 + S�0q̂c

2�


cos2 � +
S�0q�

2

�q,k�2
sin2 �	�1/2

, �24�

where we neglected small F term in the second brackets. So
we have the gapless excitation with linear dispersion at q
�k. In these equations the factor q�

2 / �q ,k�2 is singular if q
→ ±k and should be replaced by q̂�

2 /2 or N� /2= �Naa

+Nbb� /2 if q�=0. This replacement becomes evident if we
put q= ±k+q�.

At q�k both expressions �23� and �24� may be approxi-
mated by �q
Aq2. The same holds if one takes into account
the umklapp interaction �see Eqs. �35� and �36� below�.

V. UMKLAPP INTERACTION

There are the following umklapp contributions to the
Hamiltonian: �i� Interaction of the perpendicular magnetic
field with S
 spin component. �ii� Interference of the longi-
tudinal �c� and transverse �A and A*� spin components in the
DM and dipolar interactions. All these contributions mix ex-
citations with q and q±k. The dipolar interaction contains
also the �AA� and �A*A*� terms which mix waves with q
and q±2k. We neglect this contribution.23 We neglect the
AEI umklapps also.

The umklapp part of the Hamiltonian consists of terms
odd and even in operators a and a+. It is convenient to write
out general expression for both of them and then extract the
bilinear part which contribute to the spin-wave spectrum and
linear one considered in the next section in connection with
the perpendicular field problem. The full umklapp Hamil-
tonian has the form

HU = HZ
U + HDM

U + HD
U,
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HZ
U = − h · A�S−k

� sin � − iS−k
� + � aq+k

+ aq cos ��
− h · A*�Sk

� sin � + iSk
� + � aq−k

+ aq cos �� ,

HDM
U + HD

U = � ��− 2D0�q · A� + �0�ĉ · q̂��q̂ · A��Sq
cS−q

A

+ �2D0�q · A*� + �0�ĉ · q̂��q̂ · A*��Sq
cS−q

A*
� ,

�25�

where the spin components Sc, SA, and SA*
are given by Eq.

�15�. It is important to note that the umklapp Hamiltonian
contains the components of the magnetic field and the spin-
wave momentum perpendicular to the helix axis c only. So
the umklapps cannot change spin-wave spectrum with q �k.

The term S�q,0 in the expression for Sq
c leads to demagne-

tization of the perpendicular field if H��0. It appears in
nonspherical samples. In this case −h ·A is replaced by

P = − �h · A + S�0NcA sin �� , �26�

where NcA= �Nca− iNcb� /2 is off-diagonal component of the
tensor N��. This unusual feature must be elucidated. The
tensor N�� is diagonal if the coordinates are along the prin-
cipal axes of the ellipsoidal sample. If k is not along one of
these axes the off-diagonal components of N�� appear. The

�q,±k terms in Sq
A,A*

do not contribute to HU due to the con-
dition q ·A=0. As a result for the bilinear spin-wave part of
HU we obtain

HSW
U = � ��P cos � + R−q−k�1 − sin �� − Rq�1 + sin ���


aq+k
+ aq + �P* cos � + R−q

* �1 − sin ��

− Rq−k
* �1 + sin ���aq−k

+ aq + Rq�aqa−q−k�1 − sin ��

− a−q
+ aq+k

+ �1 + sin ��� + R−q
* �a−q

+ aq−k
+ �1 − sin ��

− aqa−q+k�1 + sin ���� �27�

where

Rq =
S cos �

2
�− 2D0�q · A� + �0�ĉ · q̂��q̂ · A�� . �28�

From these equations we see that the umklapp interaction
contributes to the spin-wave energy at H� �Hc only where
cos ��0 and do not affect excitations with q along the helix
axis k. At the same time for H� �Hc we have Bq=0 in Eq.
�20� and zero-point vibrations disappear.

For consideration of the umklapp interaction we will use
equations of motion

�GA,B��� + G�H,A�,B��� = ��A,B�� , �29�

where H=HSW
�d� +HSW

U and the Green functions are given by

GA,B��� = − i�
0

�

ei�t��A�t�,B�0��� = − �A,B�� �30�

where �A ,B�� coincides with conventional determination of
the generalized susceptibility.

We will use below the following notations:

Gaq,aq
+ = Gq, Gaq±k,aq

+ = G±1,

Fa−q
+ ,aq

+ = Fq, Fa−q�k
+ ,aq

+ = F±1. �31�

Neglecting the umklapp interaction we have

Gq��� =
Eq + �

�2 − �q
2 ; Fq��� = −

Bq

�2 − �q
2 , �32�

where Eq, Bq, and �q are given by Eqs. �21�–�24�. For H�

�Hc the function F is zero.
Using Eq. �29� we obtain infinite set of equations which

contain along with conventional Green functions G and F the
functions G±nk and F±nk where n=1,2 , . . . . Below we con-
sider mainly n=1 approximation. Its validity will be dis-
cussed later. As a result we obtain six linear equations for
functions �31� �see Appendix A�. In general from their solu-
tion is very complicated. So we will consider two limiting
cases: q→0 and q�k.

The q→0 case. Corresponding equations are analyzed in
Appendix B. Neglecting the dipolar interaction we obtain the
final result for weak perpendicular field in the form

Gq��� =
�Ak2/2�cos2 � + �

�2 − �q
2 + �h�

2 /2�cos4 �
,

Fq��� = −
�Ak2/2�cos2 �

�2 − �q
2 + �h�

2 /2�cos4 �
, �33�

where h�
2 = �g�B�2�Ha

2+Hb
2�. We neglected here the small

terms proportional to h�
2 in numerators as well as small con-

tribution of the mode with the energy �
�k �see Appendix
B�. The functions G± and F± are of order of h� and are
evaluated in Appendix B also. In these expressions the
square of the spin-wave energy in the transverse field at q
=0 is given by Eq. �B5�

�0
2�H�� = �2 − �h�

2 /2�cos4 � , �34�

where we assume existence of the spin-wave gap �. Its ori-
gin will be considered in Sec. �7�. For the gapless spin waves
�0

2�H�� is negative for any H� and magnetic subsystem is
unstable. It means that the helix axis k must turn and stand
along the field. For finite gap �, the spin-wave spectrum
remains stable up to h�=g�BH1=��2 and then the first or-
der transition occurs to the parallel state. In the intermediate
case, when H��0 there is rather complex behavior governed
by the equation of state derived in the next section. Similar
situation takes place in conventional antiferromagnets: If the
field is along the sublattice magnetization the first order spin-
flop transition occurs at g�BH=� where � is the spin-wave
gap. For the inclined field there is rather complicated behav-
ior consisting of the sublattice rotation accompanied by the
first order transition.24

Rotation of the helix axis was observed in9 FeGe and in
MnSi.10,11 In both cases H1 is much less than Hc. For MnSi
the transition to parallel state happens at H��0.1 T and
Hc
0.6 T. It is the reason for the n=1 approximation �see
discussion at the end of Appendix B�.

The q�k case. As above we consider the first-order
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umklapps connecting q and q±k and restrict ourself to q�k
case where the dipolar umklapps are absent �see Eq. �28��.
We put also H=0 and neglect the spin-wave gap �. Then we
discuss briefly the role of small q�. We demonstrate also that
n=2 approximation does not change qualitatively the n=1
results.

If q�k we have two interacting modes with q and q±k
which energies according to Eq. �24� are given by

�q = Aq��q�
2 + k2�1/2

�q±k = A��q�
2 + k2��q�

2 + 2k2��1/2. �35�

The excitation �q is the gapless and linear in q at q�k. The
gap of the double degenerated mode is equal to Ak2�2. The
umklapp interaction lifts this degeneracy �see Appendix C�
and we have three different modes. One of them remains
nonrenormalized and coincides with the gapped mode in Eq.
�35� and two other are given by

�± = Ak2
1 +
4q�

2

k2 +
q�

4

k4 ±�1 +
8q�

2

k2 +
17q�

4

k4 +
8q�

6

k6 �1/2

,

�36�

where the plus mode has the same gap as in Eq. �34� but
other dependence on q�.

The nonrenormalized mode is irrelevant as corresponding
expressions for the Green functions given by Eqs. �C5�� do
not have poles at this energy.

The gapless mode is strongly renormalized and at small
q� we have quadratic dispersion with �−=Aq�

2 /2. At the
same time for q=q� the energy is given by Eq. �24�: �q�

=Aq��q�
2+k2�1/2. We see that umklapps give rise to strong

anisotropy of the spin-wave energy in q space: the excita-
tions with q along and perpendicular to the helix vector k
have different energies. As was shown in Sec. III the vector
k is directed along the cubic diagonal or edge depending on
the sign of the anisotropic exchange. So really we have an-
isotropy of the spin-wave spectrum with respect to the crys-
tal axes. This anisotropy disappears if H�Hc. We do not
consider here its evolution at lower fields.

General expression for arbitrary directed q is very com-
plex. But it becomes simple for small q�,� �k. In this case
from Eq. �C3� we get

�− = A�q�
4 /2 + k2q�

2�1/2. �37�

Cancellation of the q�
2 term in the expression for �−

2 is the
most striking feature of n=1 approximation. So we have to
discuss its validity. Using the same argumentation as in Ap-
pendix B one can show that in the case of the gapless mode
if q��k any further approximation affects the higher powers
of q� �q�

2 �n=1�, q�
4 �n=2�, q�

6 �n=3�, and so on�. In Ap-
pendix C this statement is confirmed in n=2 approximation
and instead of Eq. �37� we have

�− = A�3q�
4 /8 + k2q�

2�1/2. �38�

At the same time in both approximations the value of the gap
equal to Aq�

2 �2 remains unchanged in the gapped modes
given by Eqs. �36� and �37� �see Eq. �C8��.

Similar argumentation takes place at q��k and for �

Aq2 we have 1/q� expansion. All three modes have the
same asymptotic behavior Aq2 and the n=1 approximation
gives correctly the first 1 /q� correction to energies of both
� modes �see Eqs. �C4� and �C10��. Unfortunately at q�

�k and ��Ak2 the results of n=1 approximation are quali-
tatively correct only. The n=1 umklapp renormalization is
shown in Fig. 1 where the solid and dot-dashed lines corre-
spond to minus and plus modes determined by Eq. �36� and
the dashed line is the gapless mode with q �k.

VI. SPIN CONFIGURATION IN PERPENDICULAR
MAGNETIC FIELD

The terms linear in operators a and a+ cancel in the direct
part of the Hamiltonian given by Eqs. �16�–�19� due to equi-
librium conditions for the classical energy as is explained in
Sec. IV. The interaction with perpendicular field contains op-
erators a±k and a�k

+ but we have no conditions for their can-
cellation. For this part of the interaction from �25� we get

HZ
U = P
S

2
�1/2

�− a−k�1 − sin �� + ak
+�1 + sin ��� + H.c.

�39�

This expression may be considered as perturbation which
gives additional contribution to the ground-state energy and
nonzero average values of the transverse spin components
�SR

�,��. But we will use more general method, which leads in
the first approximation to the same results. We consider op-
erators a±k and a±k

+ as c numbers. Corresponding c number
terms appear in Eqs. �20� and �27� and we obtain contribu-
tion to the ground-state energy in the following form:

FIG. 1. Spin-wave dispersion for different directions of the
wave-vector q. The vector q is along the helix axis k �dashed line�,
gapless and gapped branches for q�k �solid and dot-dashed lines
respectively�. Three curves do not merge at q�k due to corrections
to the asymptotic law �q=Aq2 �see Eqs. �34�, �35�, �C4�, and
�C10��.
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E1 = P�S/2�ak
*�1 + s� − a−k�1 − s�� + �Pc − R0�1

+ s��ak
*a0�Pc + R0�1 − s��


a0
*a−k + R0�a0a−k�1 − s� − a0

*ak
*�1 + s�� + H.c.

+ Ek��ak�2 + �a−k�2�

+ Bk�aka−k + ak
*a−k

* � + E0�a0�2 + B0�a0
2 + a*2�/2,

�40�

where s=sin �, c=cos �, R0= �S /2��0NcA cos �, and in the
classical limit we have a+=a*.

The energy E1 is minimal at the obvious equilibrium con-
ditions �E1 /�a0,±k

�*� =0 which lead again in the n=1 approxi-
mation to six linear equations. Corresponding matrix coin-
cides with M given by Eq. �B2� at �=0 and we get equation

M�0�U = V , �41�

where two columns are given by

U = �a0,a0
*,a−k,ak

*,ak,a−k
* � ,

V = „0,0,− P*�S/2�1 − s�,− P*�S/2�1 + s�,P�S/2�1 + s�,

P�S/2�1 − s�… . �42�

For R0=0 solution of Eq. �41� is given in Appendix B and
using the equilibrium conditions we get

E1 =
P

2
�S

2
��ak + ak

*��1 + s� − �a−k + a−k
* ��1 − s�� + c.c.,

�43�

and for the field depended part of the ground-state energy we
obtain

E = −
Sh�

2

2hc
−

Sh�
2 �2

2Ak2�1 + cos2 ����2 − �h�
2 /2�cos4 ��

,

�44�

where the first term is the magnetic part of the classical en-
ergy �10� for H�Hc.

The helix axis has to rotate at H��H1. According to
experimental data.9,11 this rotation was observed at H��Hc.
So we can put cos2 �=1 and obtain

E =
Sh2

2Ak2�− cos2 � −
sin2 �

2�1 − h2 sin2 �/�2�2��	 , �45�

where � is the angle between the helix axis k and the field.
For small h� this energy is minimal at �=0, i.e., for the field
along k. The real direction of the helix axis is determined by
competition between the magnetic energy and anisotropic
exchange as well as the cubic anisotropy considered in the
next section �see Eq. �51��. Equation �45� is not valid if H�

close to H1 as it was derived in the linear approximation and
the amplitudes a and a* given by �B7� should be small.

The perpendicular field deforms the helix structure. The
higher harmonics and the uniform magnetization along H�

appear. In the n=1 approximation the static contribution to
the transverse spin components have the form

SR = iAeik·R�Sk
�eik·R + S−k

� e−ik·R� + c.c., �46�

where iS±k
� =�S /2�a±k−a�k

* � and we put �=0. From this ex-
pression using Eqs. �B7� we obtain the transverse uniform
magnetization25

SU
� = −

Sh��2

2Ak2��2 − h�
2 /2�

. �47�

The second harmonic of the helix structure induced by the
perpendicular field is given by

SR
� = −

S�2

Ak2��2 − h�
2 /2�

�A�A · h�e2ik·R + A*�A* · h�e−2ik·R� .

�48�

As we have mentioned above corresponding second-order
Bragg reflections were observed in Refs. 9 and 11.

VII. CUBIC ANISOTROPY AND THE GAP PROBLEM

We postulated above existence of the spin-wave gap. Now
we demonstrate that there are at least two contributions to
the square of the gap: cubic anisotropy and interaction be-
tween spin-waves considered in the Hartree-Fock �HF� ap-
proximation. The former may have arbitrary sign and the
latter is positive. So different contributions to the gap may
compete. Changing the sign and strength of the cubic aniso-
tropy for example by pressure one can get the quantum phase
transition from the ordered to the spin-liquid state. It is a
possible explanation of such transition observed in
MnSi.2,10,26

Expression for the gap at arbitrary H� is very complicated.
So we present here results for H=0 and H�Hc. We begin
with the cubic anisotropy. The single ion cubic anisotropy
has the form

V = K�
R

�Sx,R
4 + Sy,R

4 + Sz,R
4 � . �49�

Using Eqs. �4�, �14�, and �15� for zero magnetic field ��
=0� we obtain

V = 6S4K �
�=x,y,z

�A��4 + 6S3K �
q,�=x,y,z

�2�A��2ĉ�
2aq

+aq

+ ��A��2ĉ�
2 − 2�A��4��aqa−q + aq

+a−q
+ �� , �50�

and for the part of the classical energy which depends on the
helix orientation we have

Ecl =
S2F

4 �
�=x,y,z

k�
2�â�

2 + b̂�
2� +

3S4K

8 �
�=x,y,z

�â�
2 + b̂�

2�2,

�51�

where the first term is the AEI contribution determined by
Eq. �10�.

The spin-wave terms in Eq. �50� give additional contribu-
tions to Eq and Bq in Eq. �20� which are given by

�Eq = 12S3K � ĉ�
2�A��2, �Bq = 12S3K � �ĉ�

2�A��2 − 2�A��4� ,

�52�

and for the anisotropic part of the spin-wave gap we have
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�cub
2 =

3

2
S3Khc �

�=x,y,z
�â�

2 + b̂�
2�2, �53�

where hc=E0+B0 is given by Eq. �13�. This equation for the
gap holds at q=0 when q̂c

2→Ncc. For small q we must re-
place hc by hc

Int+S�0q̂c
2. So at q=0 and q�0 the gap de-

pends on the sample form and angle between q and the helix
axis, respectively. We see that �cub

2 is positive for K�0 only.
In ferromagnets this sign of K corresponds to the easy direc-
tions along the cubic diagonals.

Let us consider now the classical energy and the gap for
orientations of the helix vector k along �1,1,1�, �1,0,0�, and
�1,1,0� directions labeled as 1, 2, and 3, respectively. We can

choose ĉ1= �1,1 ,1� /31/2, â1= �1,−1,0� /21/2, and b̂1= �1,1 ,

−2� /61/2; ĉ2= �1,0 ,0�, â2= �0,1 ,0�, and b̂2= �0,0 ,1�; ĉ3

= �1,1 ,0� /21/2, â3= �1,−1,0� /21/2, and b̂3= �0,0 ,1�. For the
classical energy we have

Ecl�1,1,1� =
S2Fk2

6
+

S4K

2
, Ecl�1,0,0� =

3S4K

4
,

Ecl�1,1,0� =
S2Fk2

8
+

9S4K

16
. �54�

From these expressions we see that structures �1,1,1� is real-
ized if S2Fk2�3S4K /2. Otherwise we have �1,0,0� structure.
The �1,1,0� structure is impossible as two conditions Ecl3
�Ecl1 and Ecl3�Ecl2 contradict one another. These expres-
sions are derived at T=0. However interplay between two
anisotropy energies must determine the helix direction at all
T and explain the transition from �1,0,0� to �1,1,1� structure
in FeGe with decreasing T.9

Corresponding expressions for the gap are given by

�cub�1,1,1�
2 = 4S3Khc, �cub�1,0,0�

2 = 6S3Khc,

�cub�1,1,0�
2 = �9/2�KS3hc. �55�

We consider now the contribution to the gap appearing as
a result of the interaction between spin waves. It is well
known that the total spin conservation law forbids the spin-
wave gap in Heisenberg magnets. The DMI violates this law
and the gap appears by the same way as in the case of the
pseudodipolar interaction in CuO2 planes in cuprates27 and
dipolar interaction in ferromagnets.28 The four and three
spin-wave interactions can contribute to the gap. Both are
examined tn Appendix D. The former is considered in the
Hartree-Fock �HF� approximation and the latter as the
second-order perturbation. It is zero due to special structure
of the triple interaction. From Eqs. �53� and �D9� we obtain
the final result

�2 =
3S3Khc

2 � �â�
2 + b̂�

2�2 +
Ak2hc

4SN � Dq

D0
. �56�

In strong field H�Hc we have cos �=0, the spin-wave
interaction does not contribute to the gap and

Ecl =
S�0Ncc

2
− Sh� + S4K � ĉ�

4,

� = h� − hc + 4S3K � �− ĉ�
4 + 3

2 ĉ�
2�â�

2 + b̂�
2�� . �57�

For the cases listed above the contributions of the cubic an-
isotropy to the classical energy and to the gap are given by

�Ecl�1,1,1� =
KS4

3
, �Ecl�1,0,0� = KS4, �Ecl�1,1,0�

KS4

2
,

��1,1,1� =
8KS3

3
, ��1,0,0� = − 4KS3, ��1,1,0� = KS3.

�58�

VIII. EPR AND NEUTRON SCATTERING

Theory of the polarized neutron elastic scattering from
helical magnetic structures was developed many years ago
and confirmed experimentally for MnSi2,11,29 and FeGe.9

Corresponding expression for the second harmonic scattering
in the perpendicular field may be easily evaluated by stan-
dard method30 using Eq. �48�.

The EPR and the inelastic magnetic neutron scattering are
described by the spin susceptibility. We outline here some of
its features. For simplicity we use the n=1 approximation.

Using definition �30� we obtain the following general ex-
pression for the susceptibility:

����q,�� = �Sq
c ,S−q

c ��ĉ�ĉ� + �Sq
A,S−q

A*
��A�A�

*

+ �Sq
A*

,S−q
A ��A�

*A� + �Sq
c ,S−q

A ��ĉ�A�

+ �Sq
A,S−q

c ��A�ĉ� + �Sq
c ,S−q

A*
��ĉ�A�

*

+ �Sq
A*

,Sq
c��A�

* ĉ� + �Sq
A,S−q

A ��A�A�

+ �Sq
A*

,S−q
A*

��A�
*A�

* , �59�

where �A ,B�� is the generalized susceptibility �AB��� and
operators Sq

� are determined by Eq. �14�. The first three terms
describe the direct processes. All others give the umklapp
contribution. We will use below the linear spin-wave theory
and consider two limiting cases H=0 and H�Hc. The main
attention will be paid to direct part of the susceptibility. The
umklapp part will be discussed briefly in the end of this
section.

Zero-field case. There are two contributions to the suscep-
tibility: along k and in the ab plane. For the first using Eqs.
�14� and �31� we have31

�cc�q,�� = − �S/2��Gq��� + Gq�− �� + 2Fq���� . �60�

In the EPR case when q=0

�cc��� = −
S�2

hc��2 − �2�
. �61�

This susceptibility describes responds to the external ac field.
Connection between external and intrinsic susceptibilities is
given by well known equation �see for example Ref. 32�

��� = ���
Int − 4��0���

Int N�����, �62�

and for �cc
int we obtain the same equation as for �cc with

replacement hc by hc
Int in Eq. �61� and in the expression for
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�2. It should be mentioned that there has to be very small
contribution of the �1 mode �more precisely �+ mode�. It
appears if in Eq. �B9� we retain terms proportional to �E0

−B0��R�2=�2�R�2 / �E0+B0�. Moreover in n=2 approximation
the �2 mode has to appear also. But we neglect both these
contributions.

For q�k the susceptibility is strongly anisotropic in q
space. For q �k the umklapp interaction is zero and we have

�cc�q�,�� = −
SAq�

2

�2 − �q�

2 , �63�

where �q�

2 =Aq�
2�A�q�

2+k2�+S�0q̂�
2�.

With increasing of q� three different modes appear. How-
ever at q�=0 there are two modes �see Appendix C� given by
Eqs. �36� and using Eqs. �5� we get

�cc�q�,�� = −
SAq�

2

�+
2 − �−

2� �+
2 − �1

2 + A�2q�
2 + k2�

�2 − �+
2

+
�1

2 − �−
2 − A�2q�

2 + k2�
�2 − �−

2 	 , �64�

where �1 is given by the second line in Eq. �35�. In the n
=2 approximation additional modes appear and so on. How-
ever amplitudes of these modes decrease with n at least for
q��k �see the end of Appendix B�.

Consider now the second two terms in Eq. �59�. By the
same way as above we get

���
AA*

�q,�� = ���� − ĉ�ĉ����q��� −
i

2
���	ĉ	Cq��� , �65�

where we put â�â�+ b̂�b̂�=���− ĉ�ĉ� and â�b̂�− â�b̂�

=���	ĉ	. The susceptibility now acquire antisymmetric or
chiral part. It is a result of the DMI.30 Perpendicular and
chiral susceptibilities are determined as

��q = �q+k��� + �q−k���, Cq��� = �q+k��� − �q−k��� ,

�66�

where

�Q��� =
S

8
�2FQ��� − GQ��� − GQ�− ��� . �67�

Chiral part of the susceptibility is now q odd as it should be
in the case of the DMI and H=0.30 Functions Im �� and
Im C determine parts of the neutron scattering cross section
independent on the neutron polarization P0 and proportion to
it respectively �see for example Ref. 30�.

In the EPR case when q=0 the susceptibility is deter-
mined by the Green functions �32� at Q=k as according to
Eq. �28� the umklapp interaction is zero. The singular terms
q̂c

2 and q�
2 / �q ,k�2 in Eqs. �20�, �22�, and �24� must be re-

placed by Ncc and N� /2=Naa+Nbb, respectively �see expla-
nation below Eq. �24��. As a result we obtain

���
AA*

��� = −
1

2
���� − ĉ�ĉ��

S�2Ak2 + S�0Ncc�
�2 − �1

2 , �68�

where

�1 = �2�Ak2�2 + S�0Ak2 + �S�0�2NccN�/2�1/2, �69�

and C=0.
For q�0 as above we consider two cases: q �k and q�k.

In the first case we have

�� = −
S

4

 Z−

�2 − �−
2 +

Z+

�2 − �+
2�,

C = −
S

4

 Z−

�2 − �−
2 −

Z+

�2 − �+
2� , �70�

where Z±=A�k±q��2+S�0 and �±
2 =A�k±q��2�A�k±q��2+Ak2

+S�0�.
For q�k using �C5� we obtain

�� = −
S

4��+
2 − �−

2�� Z+

�2 − �+
2 +

Z−

�2 − �−
2	 , �71�

where �± are given by Eq. �35�, Z±= �2A2q�
2 �2k2

+q�
2 ��±A��±

2 −�1
2��k2+q�

2 � and C=0.
We discuss now briefly off-diagonal terms in Eq. �59�.

They are a result of the umklapp interaction and has to be
less than that considered above. At q=0 the ĉA and AA
terms are proportional to off-diagonal components Nca�b� of
the demagnetization tensor in the first and the second degree,
respectively �see Eq. �B10��. Possibility of their experimental
study is a special problem which is beyond the scope of this
paper. At q�0 the umklapp terms are very complicated and
we do not analyze them here also.

Ferromagnetic state �H�Hc� In the longitudinal cc chan-
nel there are the excitations of two spin-waves only which
are beyond our consideration. By the same way as above for
the transverse susceptibility we obtain

���� = −
S

2
���� − ĉ�ĉ��
 1

� − �q+k − i�
−

1

� + �q−k + i�
�

−
iS

2
���	ĉ	
 1

� − �q+k − i�
+

1

� + �q−k + i�
� , �72�

where the spin-wave energy is given by Eq. �23� and the
second term represents the chiral �antisymmetric� part of the
susceptibility. According to general theory30 this part appears
in presence of an axial vector interaction. In the considered
case we have two such interactions: the Zeeman energy and
the DMI. Corresponding axial vectors ĉ and H have the same
direction and different t parity: ĉ and H are t even and t odd,
respectively. As a result we have more complex symmetry
properties than that considered in Ref. 30. The simple H case
when Re C and Im C are � odd and even, respectively, is
realized at q�H and q=0 only.

At q=0 the last term in �23� contains the demagnetization
and �k=Ak2+S�0�Naa+Nbb� /2+g�B�H−Hc�. Experimen-
tally this contribution could be measured using circularly
polarized ac field. For q�0 the neutron scattering has to be
maximal at q= ±k in contrast to conventional ferromagnets.
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IX. SUMMARY AND DISCUSSION

We begin with a short survey of the main results pre-
sented above. We have used the following interactions: the
conventional isotropic exchange, the DMI, the anisotropic
exchange, the magnetic dipolar interaction, and the Zeeman
energy. In the classical approximation these interactions de-
termine the form of the helix and the critical field Hc for the
transition to the ferromagnetic spin configuration. This field
depends on the sample form due to the demagnetization.

The linear spin-wave theory was developed. It was shown
that the spin-wave spectrum depends strongly on the mag-
netic field. At H�Hc we have quadratic spectrum with the
gap linearly increasing with the field �see Eq. �23��. Below
Hc the spectrum is gapless. It is strongly anisotropic due to
incommensurate helical structure and low symmetry of the
DMI. As a result if the momentum q has a component per-
pendicular to the helix vector k umklapp processes appear
which connect the spin waves with momenta q and q±k
which have different energies. For arbitrary q the spin-wave
energy has a very intricate form. It is determined as a solu-
tion of infinite set of linear equations connecting the states
with q and q±nk where n=1,2 , . . . . Restriction to n=1
leads to six equations which general solution remains very
complicated. For q�k there are two modes given by Eq.
�36�. One has the gap equal to Ak2�2 where A is the spin-
wave stiffness at q�k. The second mode is the gapless with
quadratic dispersion at small q. Both gapless branches �par-
allel and perpendicular to k� and the gapped one are shown
in Fig. 1. At q�k all branches have the same asymptotic Aq2

but different corrections to it. The n=2 approximation do not
change these results qualitatively and for q�k and H=0 the
spectrum has a simple form given by Eq. �38�. Further ap-
proximations �n�2� cannot change this expression.

The classical energy depends on the field component
along the helix axis k only. However it was shown experi-
mentally that rather weak perpendicular field H��Hc turns
the helix along the field.9,11 This quantum phenomenon is a
consequence of the spiral spin structure when the angle be-
tween spin and the field depends on the lattice point. As a
result we get the umklapps again and the spin-wave spectrum
in the gapless case becomes unstable at infinitesimal perpen-
dicular field. So we must suppose existence of the gap � and
the spectrum is stable if g�BH����2 �see Eq. �33��. This
perpendicular field deforms the helix. The magnetization
along H� and the second harmonic of the spin rotation ap-
pear �see Eqs. �47� and �48��. The latter was observed in
Refs. 9 and 11.

We considered two contributions to the gap: cubic aniso-
tropy and interaction between spin waves. The first contribu-
tion is proportional to the strength K of the cubic anisotropy.
The second appears as a result of breaking of the total spin
conservation law by the DMI. It is positive and disappears in
the ferromagnetic state at H�Hc. But in this region there is
the field-induced gap determined by Eq. �23�.

In ferromagnets the sign of K determines the direction of

the easy axis. In our case the helical structure is stable if �2

given by Eq. �56� is positive. Otherwise we have the spin
liquid with chiral spin fluctuations appearing due to the
DMI.30 So there is a question: If change sign of �2 is a
reason of the transition to the disordered state in MnSi at
high pressure? This problem demands further experimental
and theoretical study.

The helix structure leads to peculiar features of the ESR
and neutron scattering. In antiferromagnets the ESR fre-
quency is equal to the spin wave gap. In the helical systems
due to the umklapps along with this frequency there are more
higher resonant excitations corresponding to the spin-waves
with q=nk where n=1,2 , . . . . At H�0 the chiral channel
appears. It may be observed using circular polarized ac field.

Below Hc several modes depending on the relative orien-
tations of the momentum transfer q and the helix axis k can
be studied using the neutron scattering. The chiral channel at
H=0 and q�0 can be studied by polarized neutrons. In
strong field the ferromagnetic spin configuration is realized
but inelastic neutron scattering has to be maximal at q= ±k.

Up to now detailed experimental work was done in the
case of MnSi compound only. We now compare some of
known experimental results obtained at ambient pressure
with the predictions of our theory and discuss possibilities of
the further experimental studies. The principal parameters
are: lattice spacing a=4.558 Å, Tc
29 K, k
0.035 Å−1,
saturated magnetization M =0.4�B /a3
0,016 T �4�M
=0.20 T�, critical field10 Hc=0.5÷0.6 T and spin-wave stiff-
ness A
52 meV Å2.33 From these data and Eq. �13� we ob-
tain Hc
Ak2 / �g�B�
0.55 T. This value coincides with ex-
perimentally observed critical field. For more precise
comparison one must measure all parameters including the
demagnetization Ncc using single sample.

To the best of my knowledge the ESR in MnSi was stud-
ied in Ref. 34 only. Several resonances were observed but
only one was studied qualitatively as a function of the mag-
netic field. Its frequency in zero field is equal to 0.93 T.
Using Eq. �69� and taking into account that S�0=4�g�BM
we obtain 0.85 T. The agreement is within the error bars.
According to Eq. �23� at H=Hc the frequency is close to
0.6 T
Hc and then increases linearly with H. This behavior
coincides with results of Ref. 34 too. Further experimental
studies are necessary. First of all it is essential to observe the
gap � and its dependence on the perpendicular field, which
according to Eq. �34� should be �= ��2− �1/2�

�g�BH��2 cos4 ��1/2. The observation of the umklapp reso-
nances at �2k and �3k would be important also.

Predicted anisotropy of the spin-wave energy must be
verified by inelastic neutron scattering.

The theory developed in this paper explains some experi-
mental findings. It was developed in the linear spin-wave
approximation. The spin-wave interaction was used for
evaluation contribution to the gap only. We also did not
evaluate some experimentally observed quantities such as
specific heat, temperature dependence of the site magnetiza-
tion, electrical resistivity, and their dependence on magnetic
field. Corresponding results will be published elsewhere.
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APPENDIX A: EQUATIONS OF MOTION

Using Eqs. �27�, �29�, and �31� in the n=1 approximation
for the Green functions �30� we obtain

�� − E�G − BF − �Pc + R−q�1 − s� − Rq−k�1 + s��G−

+ �R−q + Rq−k��1 + s�F− − �P*c + R−q−k
* �1 − s�

− Rq
*�1 + s��G+ − �Rq

* + R−q−k
* ��1 − s�F+ = 1,

BG + �� + E�F + �R−q + Rq−k��1 − s�G− + �Pc + Rq−k�1 − s�

− R−q�1 + s��F− − �Rq
* + R−q−k

* ��1 + s�G−

+ �P*c + Rq
*�1 − s� − R−q−k

* �1 + s��F+ = 0,

− �P*c + R−q
* �1 − s� − Rq−k

* �1 + s��G − �R−q
* + Rq−k

* ��1 − s�F

+ �� − E−�G− − B−F− = 0,

− �R−q
* + Rq−k

* ��1 + s�G + �P*c + Rq−k
* �1 − s� − R−q

* �1 + s��F

+ B−G− + �� + E−�F− = 0,

− �Pc + R−q−k�1 − s� − Rq�1 + s��G + �Rq + R−q−k��1 + s�F

+ �� − E+�G+ − B+F+ = 0,

�Rq + R−q−k��1 − s�G + �Pc + Rq�1 − s� − R−q−k�1 + s��F

+ B+G+ + �� + E+�F+ = 0, �A1�

where s=sin �, c=cos �, E�B�=E�B�q, E�B�±=E�B�q±k, and
functions E and B are determined by Eqs. �21� and �22�.

In matrix form these equations are given by

M�q,�� = I , �A2�

where column I= �1,0 ,0 ,0 ,0 ,0�. Determinant of the matrix
M is even function of � and has the following general form:

Det�M� = ��2 − �q0
2 ���2 − �q+

2 ���2 − �q−
2 � . �A3�

As Det�M� is the denominator in the expressions for the
Green functions they have three poles at the renormalized
spin-wave energies. However at q�k two initial spin-wave
energies are equal and only two renormalized branches are
physically relevant. Hence the Green functions must have
two poles. That it is the case is demonstrated below in Ap-
pendixes B and C. There are five renormalized branches in
the n=2 approximation �see Appendix C� and so on.

General expressions for �q0
2 and �q±

2 are very complex. We
consider below two main cases: �i� Small q→0 and �ii� H
=0, q�k.

APPENDIX B: THE q\0 CASE

From Eqs. �21� and �22� neglecting small contribution of
the anisotropic exchange we have

Eq = Aq2 + �Ak2 cos2 ��/2 + �S�0/2�q̂c
2 cos2 �,

Bq = �1/2��Ak2 + S�0q̂c
2�cos2 � ,

E1 = Ak2�2 + cos2 ��/2 + �S�0/2�


�q̂c
2 cos2 � + �q̂�

2 /2��1 + sin2 ���,

B1 = �1/2��Ak2 + �S�0/2��q̂c
2 − q̂�

2 /2��cos2 � , �B1�

where E1=Ek and B1=Bk. From Eq. �28� we get Rq
= �S�0 /2��ĉ · q̂��q̂ ·A�cos � and Rk=0. If q�0 we must re-
place q̂c

2, q̂�
2 and �ĉ · q̂��q̂ ·A� by Ncc, Naa+Nbb, and �Nca

− iNcb� /2, respectively. The matrix M now has the form

�
� − Eq − Bq − Pc − R�1 − s� R�1 + s� − P*c + R*�1 + s� − R*�1 − s�

Bq � + Eq R�1 − s� Pc − R�1 + s� − R*�1 + s� P*c + R*�1 − s�
− P*c − R*�1 − s� − R*�1 − s� � − E1 − B1 0 0

− R*�1 + s� P*c − R*�1 + s� B1 � + E1 0 0

− Pc + R�1 + s� R�1 + s� 0 0 � − E1 − B1

R�1 − s� Pc + R�1 − s� 0 0 B1 � + E1

� . �B2�
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For the determinant of this matrix using Program Math-
ematica 5 we obtain

Det�M� = ��2 − �1
2����2 − �1

2���2 − �q
2� − 4�P�2�E0E1 + B0B1

− �P�2 cos2 � + �2�cos2 � − 8�R�2�E0 − B0��E1 + B1�

+ 4�PR* + P*R���2 + �E0 − B0��E1 − B1�

− 2�P�2 cos2 ��sin � cos � − 8�R�2�E0 − B0��E1

− B1�sin2 � + 16�P�2�R�2�1
2 sin2 � cos2 �� , �B3�

where at q=0 we have to replace �0
2=E0

2−B0
2 by �2 �see Secs.

V and VII, and Appendix D�.
We assume that P, R, and � are small in comparison with

Ak2
g�BHc which is the main parameter of the theory. In
this approximation we have

Det�M� = ��2 − �1
2����2 − �1

2���2 − �2� − 4�P�2�E0E1 + B0B1

+ �2�cos2 � − 8�R�2�2E1�1 + sin2 �� + B1 cos2 �

E0 + B0
	 .

�B4�

As E0,1�B0,1�Ak2�S�0 we can neglect the last term in
square brackets if h���S�0Nc� / �Ak2� where N�= �Na

2

+Nb
2�1/2. In this case we get

�0
2 = �2 −

h�
2 �Ak2 + S�0Ncc�cos4 �

2Ak2 + S�0N� cos2 �

 �2 −

h�
2 cos4 �

2
,

�+
2 = �1

2 + h�
2 �1 +

�Ak2 + S�0Ncc�cos2 �

2Ak2 + S�0N� cos2 �
	cos2 �


 �1
2 +

h�
2 �2 + cos2 ��

2
cos2 � , �B5�

where �1 is given by Eq. �69�.
Corresponding expressions for the Green functions are

given by

G��� = Z−1��� + E0���2 − �1
2� + �h�

2 /2��E1 − ��� ,

F��� = − Z−1B0��2 − �1
2 − �h�

2 /2�B1 cos2 �� ,

G−��� = Z−1�h+/2���2 − �1
2 + E0E1 + B0B1

− �h�
2 /2�cos2 ��cos � ,

F−��� = − Z−1�h+/2��B0E1 + B1E0 + ��B1 − B0��cos � ,

�B6�

where Z= ��2−�+
2���2−�0

2�, h±= �ha± ihb� /2, and one gets G+

and F+ replacing h+ by h− in the expressions for G− and F−.
Neglecting the dipolar interaction we obtain Eq. �33�. We see
that Green functions do not contain the pole at �2=�1

2.
In the same approximation solution of Eq. �41� for the

spin deviations frozen in the perpendicular field is given by

ak = −�S

2

�A · h��1 + cos2 � + sin ���2

Ak2�1 + cos2 ����2 − �h�
2 /2�cos4 ��

,

a−k =�S

2

�A* · h��1 + cos2 � − sin ���2

Ak2�1 + cos2 ����2 − �h�
2 /2�cos4 ��

,

a0 = a0
* =�S

2

h�
2 �E0 − B0�sin � cos �

2Ak2��2 − �h�
2 /2�cos4 ��

. �B7�

The H=0 case. From Eq. �B4� we have now

Det�M� = ��2 − �1
2���2 − �0

2���2 − �+
2� , �B8�

where

�0
2 = �2�1 −

�S�0�2�Nca
2 + Ncb

2 �
�Ak2 + S�0Ncc��2Ak2 + S�0N��	 
 �2,

�+
2 = �1

2 +
�2�S�0�2�Nca

2 + Ncb
2 �

�Ak2 + S�0Ncc��2Ak2 + S�0N��

 �1

2. �B9�

Corresponding expressions for the Green functions are given
by

G��� = Z−1��� + E0���2 − �1
2� + 4�R�2�E1 + B1�� ,

F��� = − Z−1�B0��2 − �1
2� + 4�R�2�E1 + B1�� ,

G−��� = Z−1R*�� + E0 − B0��� + E1 + B1� ,

F−��� = − Z−1R*�� + E0 − B0��E1 + B1 − �� , �B10�

where R= �S�0 /4��Nca− iNcb�, G+=−�R /R*�G−, and F+

=−�R /R*�F−. Note that now it is addition sign minus in ex-
pressions for G+ and F+ in comparison with the R=0 case.

Let us discuss now the validity of the n=1 approximation.
In the sequence of equations for the Green functions at q
=0 and small ��Ak2 contributions from ±nth terms are of
order max�P ,R0� /�nk�max�P ,R0� / �nAk2��1. As a result in
the nth approximation determinant Dn�M� is the nth power
polynomial of the ratio �max�P ,R0� /Ak2�2. Corresponding
expression for �0

2 has the same structure and we can restrict
ourselves to n=1 approximation. Similar consideration holds
in two other cases considered in main body of the paper: �i�
q��k, ��Ak2, and �ii� q�k, �
Aq2.

APPENDIX C: THE qœk CASE

It is convenient now to use dimensionless variables X
=� / �Ak2�, Y = �q�� /k, V=q� /k, and U=−�qa− iqb� /k. In these
variables we have M = �Ak2�6m and for m we get
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�
X − W2 − 1

2 − 1
2 U 0 U* 0

1
2 X + W2 + 1

2 0 U 0 U*

U* 0 X − W2 + 2V − 3
2 − 1

2 0 0

0 U* 1
2 X + W2 − 2V + 3

2 0 0

U 0 0 0 X − W2 − 2V − 3
2 − 1

2

0 U 0 0 1
2 X + W2 + 2V + 3

2 ,

� , �C1�

where W2=Y2+V2.
General expression for Det�m� is very complicated. For

V�1 we have

Det�m� = �X2 − �1
2��X2 − �+

2��X2 − �−
2� ,

�±
2 = 1 + 4Y2 + Y4 ± �1 + 8Y2 + 17Y4 + 8Y6�1/2 + 4V2,

�C2�

where �1
2= �Y2+1��Y2+2� is the energy at q�±k in the di-

mensionless units. For small Y and V we have

X−
2 =

Y4

2
+ V2, X+

2 = 2 + 4Y2. �C3�

Asymptotic expressions for �± at q��k are given by

�± = Aq�
2 ± �2kq�. �C4�

For the Green functions in dimensionless units we have

G�X� = Z−1��X + Y2 + 1/2��X2 − �1
2� + 2Y2�Y2 + 3/2 − X�� ,

F�X� = − Z−1�X2 − �1
2 + 2Y2�/2,

G−�X� = − Z−1�Ya + iYb��− �X + Y2 + 1/2��X + Y2 + 3/2�

+ 2Y2 + 1/4� ,

F−�X� = Z−1�Ya + iYb��2X − 1�/2, �C5�

where Z= �X2−�−
2��X2−�+

2� and G+�F+�= �G−�F−���Ya

− iYb� / �Ya+ iYb�. We see that at q� =0 �V=0� the factor X2

−�1
2 cancels in the expressions for the Green functions.
To illustrate that n=1 results are at least qualitatively cor-

rect we consider now the n=2 approximation. In this case the
matrix M = �Ak2�10m and for m we have

�
X− − 1

2 − 1
2 U 0 U* 0 0 0 0 0

1
2 X+ + 1

2 0 U 0 U* 0 0 0 0

U* 0 X− − 3
2 − 1

2 0 0 U 0 0 0

0 U* 1
2 X+ + 3

2 0 0 0 U 0 0

U 0 0 0 X− − 3
2 − 1

2 0 0 U* 0

0 U 0 0 1
2 X+ + 3

2 0 0 0 U*

0 0 U* 0 0 0 X− − 9
2 − 1

2 0 0

0 0 0 U* 0 0 1
2 X+ + 9

2 0 0

0 0 0 0 U 0 0 0 X− − 9
2 − 1

2

0 0 0 0 0 U 0 0 1
2 X+ + 9

2

� , �C6�

where X�=X�Y2. The determinant of m is given by

Det�m� = 1600X2 − 1760X4 + 564X6 − 44X8 + X10 + �7760X2

− 4868X4 + 524X6 − 15X8�Y2 + �− 600 + 9279X2

− 2462X4 + 167X6 − 3X8�Y4 + �− 585 + 3686X2

− 597X4 + 22X6�Y6 + �− 519 + 866X2 − 107X4

+ 3X6�Y8 + �− 528 + 128X2 − 7X4�Y10

+ �− 144 + 24X2 − X4�Y12. �C7�

We see that according to argumentation in Sec. V we have
cancellation of the Y2 term. There is the Y2X2 term only.

The equation Det�m�=0 determines now five spin-wave
energies generated by �q

2 =Y2�Y2+1�, �k
2 = �Y2+1��Y2+2�, and
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�2k= �Y2+4��Y2+5�. We consider below the three lower
branches only.

Small Y case. From Eq. �C6� for the gapless branch we
have X2=3Y4 /8 and the factor 1 /2 in Eqs. �C3� and �36� has
to be replaced by 3/8. Higher approximations with n�2
cannot change this result.

Consider now the branches connected to �k. For X2
2
the first three terms in Eq. �C7� give 648�2−5904�Y2

+9398Y4=0, where �=X2−2. Solutions of this equation are
given by

X2 = 2 +
37Y2

18
= 2 + 2.1Y2, X2 =

127Y2

18
= 2 + 7.1Y2.

�C8�

We again obtain small changes of the numerical coefficients.
Y �1 case. For large Y we can write X=WY2 and asymp-

totically W→1. Retaining only three main terms in powers
of Y we obtain the dispersion equation

�W − 1�3 −
8�W − 1� + 15�W − 1�2

Y2 +
40

Y4W2 = 0. �C9�

Its solutions are given by

X± = Y2 ± Y�2, X1 = Y2 + 5
2 . �C10�

So corrections to the main asymptotic of �± modes remain
the same as in n=1 approximation and the irrelevant �1 mode
have small correction to the main Aq�

2 term in complete
agreement with the argumentation presented in the end of
Appendix B.

APPENDIX D: THE SPIN-WAVE INTERACTION AND THE
GAP

The DMI breaks the total spin conservation law. As a
result the spin-wave interaction in the Hartree-Fock approxi-
mation contribute to the gap. In this approximation momenta
q�1/a are important, we can neglect umklapps and instead
of Eqs. �21� and �22� use the following expressions:

Eq = S�L0 − �Lq + Jq/2��, Bq = S�Lq − Jq�/2, �D1�

where

Lq = Jq,k + 2Dq�k · ĉ� , �D2�

and we neglect the AEI and the dipolar interaction.
The interaction Hamiltonian consists of the parts V4 and

V3 describing four and three spin-waves interactions, respec-
tively. There are also the fifth and sixth order terms. We
neglect them as they give further 1 /S corrections and contain
small numerical factors. Using Eqs. �16� and �17� we get

V4 = �1/2N� � ��L3 − L3−1�a1+2+3
+ a−3

+ a1a2

+ �J3 − L3�a1+2+3
+ �a−3

+ + a3�a1a2/2� , �D3�

where 1 ,2 ,3=q1,2,3.

This interaction is non-Hermitian and the Hartree-Fock
corrections to the E, B coefficients in Eq. �20� are determined
as �cf. Ref. 27�

�Eq = � �2V4

�aq
+�aq

�, �Bq = � �2V4

�aq
+�a−q

+ �,

�Bq
+ = � �2V4

�a−q
+ �aq

+� , �D4�

and �B+��B*. After simple calculations we get

�Eq = 1/N � ��L1 + Lq + J1 + Jq − 2L1−q − 2L0�n1/2

+ �Jq − Lq + 2J1 − 2L1�f1/4� ,

�Bq = 1/N � ��Lq + Jq�/2 − Lq−1�f1,

�Bq
+ = 1/N � ���L1 + J1�/2 − Lq−1�f1

+ ��J1 − L1�/2 + Jq − Lq�nq� , �D5�

where

nq = �aq
+aq� =

Eq − �q

2�q
, fq = �aqa−q� = �a−q

+ aq
+� = −

Bq

2�q
.

�D6�

Using Eqs. �33� one can easily obtain these expressions by
standard method.27,35

For the spin-wave gap we have now

�SW
2 = �E0/N� � ��J1 − L1�n1/2 − �L0 − �J1 + L1�/2�f1� .

�D7�

Neglecting the DMI we get n1= f1=0 and J1−L1=0. So the
first term in this equation is small and may be omitted. If 1
�k we have L0− �L1+J1� /2
�1 /S and using �D6� we get

�SW
2 = �E0/4N� � ��J1+k + J1−k�/2 − J1 + 2D1�k · ĉ�� .

�D8�

We have �J1±k=0 and taking into account Eq. �11� we obtain
the final result

�SW
2 =

Ak2hc

4SN � D1

D0
. �D9�

Let us consider now the three spin-wave interactions. Us-
ing Eqs. �4�, �16�, and �17� we obtain

V3 = �1/N� � Cqa1+2
+ a2�a1 − a−1

+ � , �D10�

where Cq=−�2S�Dq�q · ĉ�+Nq,k /2�. It is the Hermitian op-
erator and has to be tackled using ordinary perturbation
theory.35 It is easy to show that in the second order corre-
sponding contribution to the gap is zero due to q oddness of
Cq.
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