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The quasiharmonic approximation has been applied to the potential hydrogen storage material LiBH4 and its
decomposition products. Whereas the lattice constants that minimize the DFT potential energy give good
agreement with the experimentally observed values, minimizing the quasiharmonic free energy with respect to
the lattice constants results in a significant overestimation. The enthalpy of dehydrogenation of LiBH4, includ-
ing vibrational effects, is calculated to be 59±1 kJ/mol H2 at 0 K, or 62.5±1.1 kJ/mol H2 at 298 K.
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I. INTRODUCTION

An area of active research is the search for practical hy-
drogen storage materials.1–8 An important aspect of assessing
potential hydrogen storage materials is the accurate determi-
nation of the change in enthalpy of the system upon hydro-
gen release. Through the van’t Hoff equation, the magnitude
of the enthalpy change largely determines the pressure and
temperature conditions at which hydrogen storage systems
based on the material can operate.1

For many materials density functional theory9–11 �DFT� or
other electronic structure methods can give a good prediction
of the reaction energy of decomposition reactions. However,
these methods are restricted to calculating the total potential
energy change for the relevant reactions. Electronic structure
theories cannot directly calculate the contribution of the zero
point energy �ZPE� to the total enthalpy of the system with-
out further analysis. The change in potential energy is a good
approximation to the observable low temperature enthalpy
change when the total ZPE of the reactants and products are
approximately equal, and thus cancel. However, for many
systems, and hydride storage systems in particular, the ZPE
of the reactants and products are significantly different.12

Hence including vibrational ZPE is important in these sys-
tems, with the ZPE-corrected reaction enthalpy change dif-
fering from the reaction potential energy change by a sizable
amount.

The vibrational degrees of freedom that potentially affect
the calculated enthalpy changes of reactions also control
thermal effects, such as thermal expansion and phase transi-
tions. Thermal expansion is driven by the system seeking the
minimum Gibbs free energy as the temperature changes.13

Phase transitions can be predicted by examining the Gibbs
energy as a function of temperature. Of two competing
phases, the most stable and hence usually the observed struc-
ture at any particular temperature is the phase with the lowest
free energy. The temperature at which the free energy of the
two phases are equal is the transition temperature.

The Gibbs free energy of a crystal under constant pressure
conditions �explicitly including only vibrational entropy� can
be written as

G = E0 + pV + Fvib, �1�

where E0 is the potential energy, p is the external pressure, V
is the volume, and Fvib is the vibrational free energy. Only

Fvib depends explicitly on the temperature. The Fvib term also
includes the vibrational ZPE, remaining finite as the tem-
perature approaches zero. In this 0 K limit the free energy is
identical to the enthalpy, H. For consistency with finite tem-
perature calculations and in the spirit of Eq. �1� we continue
to denote the zero temperature, ZPE-corrected enthalpy as G
and refer to it as the free energy. For a periodic treatment of
the crystal, all extensive properties of the system �that is, all
quantities in the above equation except the external pressure
p� are expressed in quantities per unit cell or per formula unit
�hereafter expressed F.U.� and the relevant vibrations are
phonons. Both E0 and Fvib depend on the volume of the unit
cell of the crystal, giving explicit volume dependence to the
free energy, G�V�, at any particular temperature. The varia-
tion with volume of E0 and Fvib is in general anisotropic so
that the total free energy depends on the unit cell shape as
well as on its volume. Thus writing the conventional lattice
parameters as a vector a= �a ,b ,c ,� ,� ,��, one can write
G�a� for the free energy, showing the explicit dependence on
the lattice parameters rather than just the volume. While a
may be constrained by the symmetry of the point group of
the crystal, we maintain this general notation G�a� for the
free energy calculated with the lattice parameters treated as
independent variables, not determined solely by the volume
�as discussed below�.

Exact calculation of the free energy for an anharmonic
crystal is difficult. Instead, the quasiharmonic approximation
is often used.14 In the quasiharmonic approximation, for any
particular set of lattice parameters the correct potential en-
ergy for the system with relaxed atomic positions is used in
conjunction with the harmonic vibrational free energy at that
configuration. Thus some anharmonic effects are included
through the potential energy, the changes induced in the
atomic positions by the changes in the lattice parameters, and
the lattice parameter dependence of the harmonic frequencies
of the calculated vibrational modes. Usually the harmonic
vibrational modes are softened as the size of the unit cell is
increased.

Specifying the lattice parameters allows the straightfor-
ward optimization of the atomic positions by potential mini-
mization. The phonon density of states, g���, under the in-
fluence of the interatomic interactions at that particular
configuration, can then be calculated by a number of tech-
niques. Ab initio phonon densities of states can be calculated
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using the so-called direct method15 or from linear response
theory.16 Once the phonon density of states is known the free
energy of the harmonic phonons at temperature T can be
calculated as13

Fvib � Fvib
har = rkBT�

0

�

g���ln�2 sinh� ��

2kBT
��d� , �2�

where r is the number of degrees of freedom, kB is the Boltz-
mann constant, and � is the Planck constant divided by 2�.
For periodic boundary conditions Fvib

har is calculated for the r
degrees of freedom per unit cell.

The method described above can be applied within a
number of frameworks. The vibrational analysis can be per-
formed at the lattice parameters that minimize the potential
energy. This approach can give a ZPE correction to calcu-
lated energies,12,17–20 but has been more commonly applied
to study phonon dispersion.21–26 To model thermal
expansion27–31 and phase transitions20,30–32 the unit cell must
be allowed to change, possibly as a function of temperature,
though often it seems the volume dependence is neglected
for temperature-dependent transitions.

To obtain the true constant pressure prediction for the
quasiharmonic approximation, one should find the lattice pa-
rameters a that minimize the free energy G�a�, by varying
the lattice parameters as independent variables. Any aniso-
tropy in Fvib

har is thus included explicitly rather than letting
only the potential energy determine the cell shape. However,
analyzing the gradient of G with respect to a is relatively
difficult, as most implementations cannot evaluate the de-
rivatives of g���, depending as they do on the derivatives of
the atomic positions and force constants with respect to the
lattice parameters. �Gradients of the free energy are available
when using certain model potentials.33� For this reason the
quasiharmonic approximation is often applied as a “volume-
only method,”27,34–36 in which G�V� is minimized 	as op-
posed to G�a�
. In this approach the vibrational contribution
to the free energy is evaluated for a particular temperature at
the lattice parameters that minimize the potential energy at a
particular volume. That is, G�V� is shorthand notation for
G	a†�V�
, where a†�V� is the vector of lattice parameters that
minimizes the potential energy under the condition that the
volume V remains constant. Repeating this calculation �mini-
mization of the potential energy and calculating the free en-
ergy for that configuration� for a number of volumes yields a
volume-dependent free energy curve for the target tempera-
ture. The volume that gives the minimum free energy on this
curve for each temperature is then taken as the equilibrium
volume and the corresponding, potential energy minimizing
lattice parameters are taken to describe thermal expansion.
No attempt is made to find a lower free energy by varying
elements of a beyond those that minimize the potential en-
ergy for a given volume. This approach assumes that the
contribution of the vibrational free energy to the total energy
is isotropic. Note that the volume-only method is equivalent
to the full minimization of G�a� in the case of cubic crystals,
where there is a one-to-one correspondence between the vol-
ume and the only independent lattice parameter �being the
lattice constant of the cubic lattice�.

In this work we investigate the potential hydrogen storage
material LiBH4.37,38 This material contains 18.4% hydrogen
by mass �13.8% available without the high-temperature de-
composition of LiH� and decomposes via the reaction

LiBH4 → LiH + B + 3
2H2. �3�

The room temperature structure is well established as an
orthorhombic Pnma structure. A number of previous studies
have investigated LiBH4 and the reaction described in Eq.
�3� using DFT.12,17,39–41 In these studies the geometry that
minimized the potential energy broadly reproduced the ex-
perimentally derived structure. Some differences were evi-
dent, with the calculations predicting regular 	BH4
− tetrahe-
dra while the experimental fits suggest distorted tetrahedra.
The enthalpy of dehydrogenation 	Eq. �3�
 has been calcu-
lated both with and without ZPE effects included.12,39 In both
sets of published results the reaction energy calculated from
differences in total potential energy 	75 kJ/mol H2 �Ref. 12�,
71 kJ/mol H2 �Ref. 39�
 was larger than that derived from
experimental data42 �69 kJ/mol H2� while applying ZPE cor-
rections calculated from the harmonic phonon density of
states at the potential minimum geometry yielded a predicted
enthalpy change 	56 kJ/mol H2 �Ref. 12�, 52 kJ/mol H2
�Ref. 39�
 smaller than that derived from experimental data.

In the following section we give some details of our com-
putational method. Sections III and IV describe our determi-
nation of the equilibrium lattice parameters for LiBH4, LiH,
and �-boron in the quasiharmonic approximation, including
full free energy minimization. The reaction enthalpy for the
decomposition of LiBH4 is presented in Sec. V, while the
final two sections present some further discussion of the re-
sults and our conclusions.

II. COMPUTATIONAL DETAILS

The potential energy of the crystals was calculated using
Kohn-Sham DFT.9–11 The VASP program43,44 was used to
evaluate the total potential energy �the electronic and ion-ion
energies� and its derivatives. Projector augmented wave
�PAW� potentials45–47 were used to represent the ionic poten-
tials. The PW91 generalized gradient approximation �GGA�
exchange-correlation functional48 was used in general, with
the local density approximation49 �LDA� also being used in
specified cases.

For the LiBH4 structure at the experimental geometry50

and using the PW91 functional, a plane-wave cutoff of
1000 eV and a 6	6	6 Monkhorst-Pack k-point grid51 gave
total energies converged to within about 1 meV per crystal-
lographic unit cell. The same k-point sampling and a reduced
plane-wave cutoff of 800 eV gave a similar level of conver-
gence for the LDA calculations. For the other phases consid-
ered �LiH, �-boron, and H2� parameters were also selected to
give convergence of the total energy at the experimental ge-
ometry to within about 1 meV. Lithium 1s electrons were
included in the active space.

The free energies of the crystals were evaluated from the
phonon densities of states calculated using the direct
method15 implemented in PHONON.52 The direct method cal-
culates the phonon density of states g��� of a crystal from
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the dynamical matrix constructed from the second deriva-
tives of the total potential energy with respect to the atomic
positions. The second derivatives are generally calculated by
differencing, using the forces calculated for the crystal with
atoms displaced from their minimum potential positions.
While the direct method can be used to elucidate LO/TO
splitting using elongated supercells,53 no attempt was made
to incorporate LO/TO splitting at the 
 point in this work.
We do not expect this to lead to a significant error, as only a
small region of reciprocal space would be affected by any
such splitting which would have a very small effect on the
Brillouin zone integration that leads to the phonon density of
states, and thus the free energy.

The required supercell sizes for the phonon calculations
were determined by examining the magnitude of the force
constants at the edges of the supercells and by comparison
with results from supercells extended in one direction. A
48-atom 1	2	1 supercell was used for the phonon calcu-
lations on orthorhombic LiBH4 and a cubic 64-atom 2	2
	2 supercell was used for LiH. For the covalent lattice of
�-boron the crystallographic unit cell containing 12 atoms
was found to be sufficiently large for the phonon calcula-
tions.

The implementation of the direct method that we used did
not allow the evaluation of the gradient of the vibrational
free energy. Thus the lattice parameters had to be optimized
manually. Generally an alternating direction method was
used, where steps were taken along one direction in lattice
parameter space until the free energy along that direction
was approximately minimized, before shifting to a new di-
rection. Only a small number of iterations �cycling through
the three degrees of freedom of the orthorhombic lattice�
were required. Far from the minimum an explicit evaluation
of the gradient of the free energy by differencing was found
to be effective for determining search directions, making the
procedure more steepest descent like.

Note that at external pressures similar to atmospheric
pressure or less, changes in the pV term of Eq. �1� are neg-
ligible. A 10% change in the volume of LiBH4 results in a
change in the pV contribution to G of 0.003 meV/F.U. at
101 kPa. This is orders of magnitude smaller than changes in
G due to other considered effects.

III. LiBH4 LATTICE CONSTANTS

The free energy of the Pnma phase of LiBH4 at 0 K was
minimized using the potential energy and forces calculated
with the LDA and PW91 functionals. The three lattice con-
stants of the orthorhombic unit cell were varied as described
above until the lattice constants that gave the minimum free
energy were found. The tolerance to which the lattice con-
stants were optimized was based on the estimated uncer-
tainty in the free energy calculations. The free energy uncer-
tainty was estimated by inspection of the variation in the
calculated free energy with respect to a number of param-
eters, most notably the size of the atomic displacements used
to evaluate the second derivatives of the potential, and from
the Monte Carlo convergence involved in the evaluation of
g��� with the direct method.

For the PW91 functional the optimal lattice constants
were also calculated with the volume-only method, where
Fvib

har is assumed to be isotropic. This method has the advan-
tages of being much less computationally demanding than
the full search described above, and of providing predictions
of thermal expansion without further calculations. The free
energy curves from the volume-only approach are shown in
Fig. 1. In this figure the solid lines show a spline interpola-
tion of the discrete free energy calculations, from which the
minimum energy volume for each temperature was deter-
mined. This thermal expansion trajectory is shown as the
dotted curve.

The lattice constants determined using various methods
are presented in Table I. In this table, the lattice constants
labeled “Min. E0” are those determined by stress minimiza-
tion �with simultaneous atomic relaxation� on the DFT po-
tential energy surface. This is the type of “optimal” lattice
parameter usually reported from periodic electronic structure
theory calculations for crystals. The lattice constants labeled
“Min. G�a�” are those that minimize the quasiharmonic free
energy after manually searching the lattice constant space.
Those labeled “Min. G�V�” are from the volume-only
method calculations, where the a :b :c ratios as the unit cell
increases in volume are not influenced by Fvib.

When compared to the experimentally-determined lattice
constants, the traditional Min. E0 lattice constants present a
familiar scenario with respect to the exchange-correlation
functional.54 The LDA calculations produce lattice constants
smaller than the experimentally-determined ones by a few
percent, while the GGA PW91 results reproduce the experi-
mental results well �with a slight tendency toward overesti-
mation�. However, adding the effect of zero point vibration
in the quasiharmonic approximation changes that picture
considerably. Both the LDA- and PW91-derived unit cells
increase in volume on the addition of zero point effects, by
6% and 8%, respectively. While this increase is not sufficient
to bring the LDA results into accord with the experimental
lattice constants, the PW91 results can no longer be consid-
ered obviously superior to the LDA results. If one ignores
any isotope effect and takes the consistently smaller LiBD4
lattice constants determined at 10 K by Wenger et al.55 to be
a more accurate representation of the 0 K situation being
modeled than the room temperature LiBH4 results of Soulié
et al.,50 the cell volume predicted by the LDA calculations is

FIG. 1. �Color online� Free energy curves of LiBH4 calculated
using the volume-only method.
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more accurate than that predicted by the PW91 calculations.
It is clear that the volume-only approach to minimizing G

gives a free energy greater than or equal to that found by
manual optimization; the two approaches only match if the
zero point vibration effect is isotropic. This was borne out by
the free energies actually calculated, with the free energy
found at the manually-optimized G�a� minimum represent-
ing a 5% greater relaxation from the free energy at the E0
minimum than that found at the volume-only G�V� mini-
mum. In addition, the volume-only method predicts gener-
ally larger lattice constants than those at the true quasihar-
monic free energy minimum, even further from the
experimental values.

Wenger et al.55 measured the rate and anisotropy of ther-
mal expansion of Pnma LiBD4. They found anisotropic ex-
pansion, with the a lattice constant increasing nearly linearly
with temperature at a faster rate than the b and c constants.
The b and c lattice constants exhibited complex behavior
above 300 K. At 302 K the a constant had increased by 1.8%
from its 10 K value, while the b and c constants both in-
creased only 0.5%, yielding a total volume increase of 2.8%.

The quasiharmonic free energy minimum at 300 K was
determined from PW91 DFT results by manually searching
the lattice constant space. The resultant lattice constants are
shown graphically in Fig. 2, along with the volume-only
method results. Lattice constant increases at 300 K of
�6±2�%, �2±2�%, and �0±2�% were observed for a, b, and
c, respectively. Thus the quasiharmonic method does predict
the experimentally observed preferential increase in the a
lattice constant on heating, but significantly overestimates
the degree of expansion. Though not reflecting the true
quasiharmonic free energy minimum, the volume-only
method gives percentage increases in the lattice constants at
300 K that are in closer accord with the experimental in-
creases than the free energy minimum: 2.5%, 1.3%, and
0.9% increase for a, b, and c, respectively.

In this work the total ZPE of LiBH4 was calculated to be
106.5±0.1 kJ/mol per unit cell at the potential minimum, in
good agreement with the previous results of 108 kJ/mol cal-
culated by Łodziana and Vegge17 and 103 kJ/mol calculated
by Miwa et al.12 At the free energy minimum lattice con-

stants this value dropped slightly to 104.9±0.1 kJ/mol.
The calculated internal coordinates of the atoms and se-

lected interatomic distances are shown in Tables II and III for
three sets of lattice constants: those that minimize the poten-
tial energy and those that minimize the free energy G�a� at
0 K and 300 K. It can be seen from Table II that the atomic
coordinates that minimize the potential energy do not depend
strongly on the lattice constants in the region of the various
minima, as one would expect. Two Li-B distances are shown
in Table III, being distances between atoms connected by a
line nearly parallel to the a axis �denoted 	100
� and con-
nected by a line lying in a plane nearly parallel to the �100�
plane �denoted 	011
�. Consistent with previous DFT
studies,12,17,39 the calculated B-H distances do not show the
strong distortion of the 	BH4
− tetrahedra that is observed in
published fits to powder diffraction patterns38,50 �though re-
cently a fit to neutron diffraction data was obtained without
the strong distortion55�. Note that bond length extension due
to anharmonicity in the potential along B-H stretching
modes is not captured in the quasiharmonic approximation,

TABLE I. Lattice constants �Å� and cell volume �Å3� for orthorhombic LiBH4. Calculated free energy
minimum values are for 0 K.

a b c Volume

PW91 Min. E0 7.193 4.387 6.713 211.8

Min. G�a� 7.55±0.07 4.52±0.04 6.71±0.04 229±6

Min. G�V� 7.68 4.51 6.76 234

LDA Min. E0 6.983 4.203 6.350 186.4

Min. G�a� 7.07±0.03 4.31±0.03 6.46±0.03 197±3

Expt. LiBH4
a 7.179 4.437 6.803 216.7

LiBD4
b 7.116 4.406 6.673 209.2

aX-ray powder diffraction, room temperature, Ref. 50.
bNeutron powder diffraction, 10 K, Ref. 55.

FIG. 2. �Color online� Calculated lattice constants of Pnma
LiBH4 upon heating. Solid lines show results from the volume-only
method. Black crosses show the manually minimized lattice con-
stants at 0 K and 300 K.
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where atomic positions are determined solely by the position
of the minimum potential energy. The interatomic distances
of Table III show that the geometry of the 	BH4
− tetrahedra
is not particularly sensitive to the free energy driven expan-
sion of the lattice, which is consistent with the significantly-
covalent bonding within the 	BH4
− tetrahedra being much
stronger than the primarily ionic bonding between Li+ ions
and 	BH4
− tetrahedra. Thus one may expect that the 	BH4
−

tetrahedra remain stable as LiBH4 is heated through the ob-
served polymorphic transition and toward, possibly even be-
yond, the melting temperature. Such hydride tetrahedra sta-
bility has recently been observed56 for the related complex
metal hydride NaAlH4.

IV. LiH AND �-BORON LATTICE PARAMETERS

Clearly, the solid LiH and boron phases can also show a
quasiharmonic free energy dependence on the lattice param-
eters. The rock salt structure LiH case is computationally
simple to deal with from the point of view of minimizing the
free energy, with the structure of the crystal being completely
specified by a single lattice constant. There is no distinction
between the volume-only method and any other quasihar-
monic free energy minimization. The potential energy and
the quasiharmonic free energy can be calculated from a scan
of the lattice constant. Performing such a scan indicates that
while the potential energy is minimized for a lattice param-
eter of 4.018 Å, the minimum of the 0 K quasiharmonic free

TABLE II. Internal atomic coordinates for LiBH4 �space group Pnma, #62�.

Site Minimum x y z

Li, 4c E0 0.1575 0.25 0.1114

G�a�, 0 K 0.1557 0.25 0.1127

G�a�, 300 K 0.1512 0.25 0.1158

Expt.a 0.1568 0.25 0.1015

B, 4c E0 0.3071 0.25 0.4255

G�a�, 0 K 0.3170 0.25 0.4196

G�a�, 300 K 0.3291 0.25 0.4154

Expt.a 0.3040 0.25 0.4305

H1, 4c E0 0.9080 0.25 0.9277

G�a�, 0 K 0.9130 0.25 0.9327

G�a�,300 K 0.9173 0.25 0.9354

Expt.a 0.900 0.25 0.956

H2, 4c E0 0.4010 0.25 0.2728

G�a�, 0 K 0.4073 0.25 0.2700

G�a�, 300 K 0.4146 0.25 0.2631

Expt.a 0.404 0.25 0.280

H3, 8d E0 0.2062 0.0258 0.4251

G�a�, 0 K 0.2202 0.0293 0.4192

G�a�, 300 K 0.2386 0.0342 0.4147

Expt.a 0.172 0.054 0.428

aX-ray powder diffraction, room temperature, Ref. 50.

TABLE III. Selected atom-atom distances �Å� for LiBH4.

Minimum B-H1 B-H2 B-H3 Li-B “	100
” Li-B “	011
” B-B

E0 1.224 1.228 1.222 2.533 2.536 3.676

G�a�, 0 K 1.224 1.229 1.225 2.543 2.594 3.696

G�a�, 300 K 1.226 1.230 1.229 2.585 2.669 3.749

Expt.a 1.035 1.250 1.286 2.542 2.521 3.706

aX-ray powder diffraction, room temperature, Ref. 50.
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energy occurs for a lattice parameter of 4.14±0.02 Å. Again
the uncertainty is based on estimates of the variation of the
free energy with the calculation parameters. The potential
energy minimum lattice constant is smaller than the experi-
mental value57 of 4.07 Å and the free energy minimum lat-
tice constant is again larger. While the increase in lattice
constant on the inclusion of ZPE is of a similar magnitude to
that calculated previously for LiH,58–60 the final lattice con-
stant calculated in this work was larger than previous deter-
minations using similar methods. The lattice constants of
4.112 Å published by Barrera et al.59 �PBE exchange-
correlation functional� and 4.09 Å published by Herbst and
Hector60 �PW91 exchange-correlation functional� are both
closer to the experimental value than the present result.

�-boron exhibited a much weaker ZPE effect on the 0 K
structure than that observed for LiBH4 and LiH. The expan-
sion of the cell volume in going from the potential energy
minimum to the free energy minimum was just 1.3%, com-
pared to more than 10% for LiBH4 and 9.4% for LiH. The
difference can be rationalized on the basis that one would
expect a greater ZPE effect in less rigid materials, combined
with the observation that the bulk modulus of boron61 is an
order of magnitude larger than that of41 LiBH4 or LiH.57

Possibly due to this low ZPE-driven expansion, the volume-
only approach gave a structure virtually indistinguishable
from the true quasiharmonic free energy minimum structure.
Thus only one free energy minimum structure is listed in
Table IV, which gives all the calculated structural param-
eters. Both the potential energy minimum and free energy
minimum structures agree approximately equally well with
the experimentally-derived structure. Note that no uncer-
tainty is listed in Table IV for �, the rhombohedral angle. As
the profile of the quasiharmonic free energy was quite flat as
� was varied, this degree of freedom was not explored be-
yond the degree required to unambiguously identify the
angle giving the minimum free energy. The uncertainty in
this parameter, based on the observed variation of the free
energy with respect to the phonon calculation parameters, is
believed to be of the order of 0.1°.

V. ENTHALPY OF DEHYDROGENATION

The enthalpy change of the reaction described in Eq. �3�
has been published previously by Miwa et al.12 �PBE func-
tional, 75 kJ/mol H2 without ZPE corrections, 56 kJ/mol H2
with ZPE correction� and by Frankcombe et al.39 �PW91
functional, 71 kJ/mol H2 without ZPE corrections,
52 kJ/mol H2 with approximate ZPE correction�. Both of

these calculations were performed at the potential energy
minimum.

The potential energy difference at the potential energy
minimum structures calculated in this work was 81 kJ/mol
H2. Adding the effect of ZPE at this geometry yields a value
for the enthalpy change at 0 K of 59±1 kJ/mol H2. Calcu-
lating the internal energy of the solid phases at 298 K and
incorporating ideal gas and rigid rotor contributions for hy-
drogen at 101.3 kPa, the standard enthalpy change was de-
termined to be 62.5±1.1 kJ/mol H2. These values compare
to the experimentally derived, room temperature value of
68.9 kJ/mol H2.42 Note that the H2 ZPE contribution
�25.7 kJ/mol� was calculated by fitting a quadratic function
to the potential energies calculated for H2 molecules of vari-
ous bond lengths in a box of edge length 12 Å. Note also that
the difference between the potential energy change calcu-
lated previously using the same PW91 functional39 and that
calculated in this work may be due to differences between
the ultrasoft pseudopotentials of the former and the PAW
atomic potentials used in this work.62

To be consistent with the quasiharmonic approach the en-
thalpy change should be calculated at the lattice parameters
that minimize the quasiharmonic free energy. However the
energetic effect of the free energy minimization—as opposed
to the structural effect—was quite small. While the potential
energy difference at the free energy minimum structures was
very slightly larger, a small increase in the calculated ZPE
difference �primarily due to the LiH ZPE change outstripping
that of LiBH4� meant that the calculated low pressure en-
thalpy change was not effected, coming out again at
59±1 kJ/mol H2.

VI. DISCUSSION

While the LiBH4 lattice constants that minimize the po-
tential energy using the PW91 GGA exchange-correlation
functional agree well with the experimentally determined lat-
tice constants, the free energy-minimizing lattice constants
are considerably larger. The lattice constants obtained by
minimizing the potential energy calculated with the LDA
functional were shorter than the experimentally derived lat-
tice constants, as expected. Including ZPE effects in the
quasiharmonic approximation increased these lattice con-
stants toward the experimental values. Indeed, the lattice
constants given in Table I indicate that the PW91 and LDA
functionals give values with similar levels of agreement to
the experimental values. Only in the c lattice constant can the
PW91 results be said to be superior to those calculated with

TABLE IV. Lattice constant �Å�, rhombohedral angle and internal coordinates for �-boron �space group
R3m, #166�.

a � B1 x B1 z B2 x B2 z

Min. E0 5.0492 58.08° 0.0101 0.6541 0.2209 0.6309

Min. G�a� 5.07±0.01 58.1° 0.0099 0.6545 0.2203 0.6317

Expt.a 5.057 58.06° 0.0104 0.6573 0.2206 0.6323

aReference 65.
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the LDA, with the free energy minimizing lattice constant
being of the order of 0.1 Å shorter than the experimental
value determined by Soulié et al.,50 compared to the LDA
lattice constant being around 0.35 Å shorter. Indeed, the a
lattice constant determined using the LDA lies significantly
closer to the experimental value than that determined using
the PW91 functional.

This work fits with a trend observable in the literature. It
is well established that GGA functionals usually predict
larger lattice constants that minimize the potential energy
than the LDA, often giving better agreement with experi-
mental values.54 The addition of vibrational effects by mini-
mizing the free energy usually leads to larger lattice
constants.27,29–31,58,59,63 Thus one should carefully assess cal-
culations that show good agreement with experimental lattice
constants if vibrational effects have not been included. Par-
ticularly for compounds containing light elements where
ZPE effects are strong, inclusion of vibrational effects are
likely to lead to larger lattice constants which may decrease
the agreement with experimental data. This has recently been
demonstrated for a range of alkali hydrides.59

There is considerable anisotropy in the harmonic free en-
ergy with respect to the material lattice constants. This is
reflected in the different lattice constants determined by
treating the free energy as a function of volume only �with
the a :b :c ratios being determined by the underlying poten-
tial energy surface� or by minimizing G�a� with respect to a,
b, and c. This should come as no surprise given the differ-
ences in the lattice constants—the a /b ratio is greater than
1.6—and the lack of equivalent directions in the orthorhom-
bic Pnma space group.

There is also experimental evidence of anisotropic free
energy. Thermal and isotope effects in the lattice constants
are due to differences in the vibrational contribution to the
free energy. Thus experimental indications of anisotropy in
the free energy come directly from the measured anisotropic
expansion of LiBD4 reported by Wenger et al.55 and indi-
rectly from the changes in lattice constant between LiBH4
and LiBD4. While the a and b lattice constants for 10 K
LiBD4 determined by Wenger et al.55 were contracted by less
than 1% from the room temperature LiBH4 lattice constants
of Soulié et al.,50 the c lattice constant is reduced by nearly
2% by the combined thermal and isotope effects, indicating
considerable anisotropy in the vibrational free energy depen-
dence on the lattice constants. Apparently experimental indi-
cations such as these are regularly ignored in applications of
the quasiharmonic approximation to noncubic crystals,
where the minimum of the “volume only” free energy G�V�
is often taken to be the minimum free energy �see, for ex-
ample, Ref. 27�. In fairness, it should be pointed out that
applying volume-only minimization of the free energy is
likely to yield lattice parameters closer to the true quasihar-
monic free energy minimum than those from conventional
potential energy or stress minimization, at considerably less
computational cost than doing full free energy minimization.

The uncertainties in the calculated free energies expressed
in this work are based on the observed variation in the cal-
culated free energy with the calculation input parameters.
The lattice constant uncertainty is based on this free energy
uncertainty. A drawback of this approach is that no consid-

eration is taken of the relative weaknesses of the two calcu-
lated components of the total free energy: the DFT potential
energy and the direct method vibrational free energy. As can
be seen from Fig. 3, the dependence of the total free energy
on the lattice constants is the sum of the dependence of the
potential energy and the vibrational free energy on the lattice
constants. Two lattice constant dependences of opposite sign
combine to give a much shallower curve, magnifying the
sensitivity of the position of the minimum to the accuracy of
the energy calculations. These two components are calcu-
lated using very different techniques, so one cannot expect
cancellation of errors between them. Any inaccuracy in the
lattice constant dependence of one of the two components
will have a significant effect on the lattice constant depen-
dence of the total free energy, and thus on the determined
equilibrium lattice constants. No analysis of the sensitivity of
the calculated equilibrium lattice constants on such inaccu-
racies has been attempted in this work.

LiBH4 is known to undergo a phase transition on
heating,37,38,50,64 with the transition temperature being around
380 K. There is considerable speculation as to the structure
of the high-temperature phase, with the experimentally-fit
P63mc structure being shown to be unstable in DFT
calculations.12,17,39 Nonetheless, for any high temperature
structure candidate theoretical determination of the phase
transition temperature can be performed by calculating the
equilibrium free energy as a function of temperature for the
ground state Pnma and high temperature structures. The pre-
dicted transition temperature is given by the point at which
the two free energies are equal. Thermal expansion should be
included in such a calculation. Given the magnitude of the
expected 0 K free energy differences between the ground
state and candidate high temperature structures �of the order
of 20 meV/F.U.�,17 the uncertainties in the lattice constants
obtained in this work and the corresponding uncertainties in
the calculated free energies �of the order of 5 meV/F.U.�,
we feel that a critical assessment of the errors involved in
performing a phase transition temperature prediction for
LiBH4 using the quasiharmonic approximation would yield
an uncertainty in the calculated transition temperature so
large as to make such a prediction of questionable value.
Uncertainties of up to ±100 K should be expected, which
would tend to make any predictions qualitative only.

FIG. 3. �Color online� The change in potential energy �E0�, vi-
brational free energy at 0 K �ZPE,Fvib� and total free energy of
LiBH4 	G�a�
 as a function of the lattice constant a. b=4.475 Å and
c=6.713 Å held fixed.
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VII. CONCLUSION

The quasiharmonic approximation is one of the few viable
approaches to calculating the free energy of a crystal from
first principles. In all the phases considered in this work
�orthorhombic LiBH4, �-boron, and LiH�, minimizing the
free energy with respect to the lattice parameters resulted in
a ZPE-corrected unit cell larger than that given by the tradi-
tional, potential-energy minimizing lattice parameters. These
free-energy minimizing lattice parameters are in principle
more relevant for comparison to experimental data. With this
in mind it may be appropriate to reassess some of the
claimed successes of DFT with GGA exchange-correlation
functionals in predicting material lattice constants.

Treating the lattice parameters, rather than the cell vol-
ume, as independent variables in the free energy minimiza-
tion, thus including the effect of anisotropy in the vibrational
free energy, is important for complex crystals such as LiBH4.
Treating the locus of the lattice parameters with increasing
unit cell volume as being defined only by the potential en-
ergy leads to a significantly different prediction for the equi-
librium lattice parameters as a function of temperature. Cor-
rectly minimizing the free energy is, however, significantly
more computationally demanding. The free energy minimi-

zation process would be considerably easier were computa-
tional implementations developed that could evaluate the de-
rivatives of the phonon density of states with respect to the
lattice parameters, and thus the vibrational contribution to
the stress tensor.

The 0 K enthalpy of dehydrogenation of LiBH4 was cal-
culated to be 59±1 kJ/mol H2, including ZPE effects.
Though slightly larger than that obtained in previous calcu-
lations, this value was not influenced by whether it was
evaluated at the potential energy minimum structures of the
relevant compounds or at the correct low temperature free
energy minimum structures. At standard conditions of room
temperature and atmospheric pressure the enthalpy change
was calculated to be 62.5±1.1 kJ/mol H2, in good agree-
ment with the corresponding experimental value of
68.9 kJ/mol H2.
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