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The anisotropic interactions between molecules in the heteronuclear hydrogen solids are discussed with
stress on their properties of importance for the orientational and translational lattice dynamics. A specific
interaction component for homonuclear species, which originates from crystal-field interactions, is suggested
and evaluated, in addition to the well-known similar specific component that originates from the isotropic
potential due to the shift of the center of mass respective to the charge distribution center. The energy
parameters of both specific interaction components have been accurately evaluated and renormalized to ac-
count for zero-point translational vibrations. The dispersion laws of the J=1 roton excitation in solid HD and
DT have been calculated. The bandwidths of the J=1 roton excitation are 1.16 cm−1 in HD and 0.59 cm−1 in
DT.
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I. INTRODUCTION

Hydrogen is perhaps the most studied element. Finest de-
tails of molecular interactions have been elucidated in ex-
perimental and theoretical studies.1–3 Yet, among the molecu-
lar hydrogen isotopomers, the heteronuclear species HD and
DT �especially, the latter� are by far less studied than their
homonuclear counterparts. In particular, this concerns the an-
isotropic components of the interactions between the hetero-
nuclear species. Although the interaction potential, if referred
to the axis between the centers of electron charge distribu-
tions, is basically the same for any two isotopic molecular
species,4 the rotational and translational dynamics of inter-
acting heteronuclear molecules in the solid are appreciably
affected by the asymmetry of the species involved. This
asymmetry entails, in particular, specific anisotropic intermo-
lecular forces, nonexistent between homonuclear species.
One of such specific anisotropic interactions was suggested
and theoretically studied by Van Kranendonk.1 However, his
consideration lacks completeness, which would not allow the
effects that are determined by those specific interactions to
be fully investigated. In addition, the energy parameters even
of the known1 specific interaction have not been evaluated,
even without quantum-crystal renormalization. These spe-
cific interactions play an important role in many unusual
properties of the heteronuclear hydrogen solids. In particular,
these specific interactions determine the unusual shape of the
pure rotational IR and Raman bands in the heteronuclear HD
and DT solids.5,6 The aim of this paper is to present a com-
plete set of these specific interactions and their possible role
in solid-state effects inherent only in the isotopic hydrogen
crystals made of heteronuclear species.

The paper is structured as follows. Section II presents
concisely a general theory of the interactions between HD
molecules, including the specific anisotropic components.
Here we derive a specific interaction component, which orig-
inates from the rank-2 crystal field energy. The relevant tech-
nical details of the pertaining expansions can be found in
Appendix A. In Sec. III, for the purpose of solid-state appli-
cations, we evaluate the relevant interaction energy param-
eters with account of zero-point lattice vibrations. Again, the

pertaining technical details can be found in Appendix B,
where we extend the approach suggested by Harris7 to obtain
an explicit analytical expression for the renormalization of
the second derivatives of effective angle-dependent poten-
tials. We further consider the spectrum of the J=1 roton
excitation, which exists only in heteronuclear hydrogen sol-
ids. Hereinafter, for the sake of brevity we will focus on HD,
adding where needed remarks about DT.

II. ANISOTROPIC INTERACTIONS

As mentioned above, the interaction between any hydro-
gen isotope molecules does not depend on the species in-
volved, which is a consequence of the fact that the chemical
forces that bind any two hydrogen isotope atoms into a mol-
ecule are strong enough to suppress the internal quantum
nature of the nuclei in the intramolecular-vibration ground
state. As a result, the electron charge distribution around the
molecule is for all practical purposes the same irrelevant of
the species. This distribution has an ellipsoidal symmetry
with respect to the midpoint of the internuclear axis. On the
other hand, both rotational and translational dynamics are
naturally referred to the center of mass, which is shifted from
the charge distribution center by s �see Fig. 1�, equal to re /6
in the HD molecule and re /10 in the DT molecule where
re=0.74116 Å is the equilibrium internuclear spacing in the

FIG. 1. Two interacting HD molecules. The center of mass dis-
tance vector R is dynamically meaningful; the vector between geo-
metric centers, R�, is the reference axis for the basic potential; the
shifts s are oriented as the respective molecular axes w and w�.
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hydrogen molecule in its vibron ground state. Although mea-
sured for the H2 molecule,8 re is virtually the same in any
isotopic species for the reason above. Making use of Van
Kranendonk’s reasoning1 and knowing the basic intermo-
lecular potential V referred to the axis connecting the geo-
metrical centers of the two electron charge distribution ellip-
soids, we can expand V in s /R, where R is the distance
between the centers of mass �see Fig. 1�.

The basic potential, referred to the axis through ellipsoid
midpoints, can be divided in the standard way

V = v�R�� + Van�R�,w1,w2� , �1�

where R��R�n� is the vector connecting the symmetry cen-
ters of the interacting molecules; v�R�� is the central �isotro-
pic� part of the interaction potential; and wi are the unit
vectors along the molecular axes. The anisotropic part of the
potential

Van�R�,w1,w2� = V1�R�,w1� + V1�R�,w2� + V2�R�,w1,w2�
�2�

includes the terms V1, which are functions of the angle vari-
ables of only one of the interacting molecules, and the term
V2 which depends on both sets of angle variables. The latter
term can be represented in the form

V2�R�,w1,w2� = �
N

�N�R��„�C2�w1� � C2�w2��N · CN�n��… .

�3�

Here �N�R�� are the respective energy parameters which are
functions of R�; CMm�a� are the spherical harmonics in Ra-
cah’s representation; the direct and scalar products of irre-
ducible tensors �such as spherical harmonics� are defined as
usual9

�CK�a� � CL�b��Mm � �
klm

CKk,Ll
Mm CKk�a�CLl�b� , �4�

„CK�a� · CK�b�… � �
k

CKk�a�CKk
* �b� = PK�a · b� , �5�

where CKk,Ll
Mm are the Clebsch-Gordan coefficients and PK is

the Legendre polynomial. Among the energy parameters
�N�R��, the one with N=4 is almost entirely due to the elec-
trical quadrupole-quadrupole �EQQ� interaction. The other
parameters �0�R��, �2�R�� as well as the non-EQQ part of
�4�R�� are one to three orders of magnitude smaller com-
pared to the EQQ part of �4�R��. The values of �N�R�� as
functions of R� can be found in Van Kranendonk’s book.1

Each of the “crystal-field” terms V1 in Eq. �2� has the
form

Vcf � V1�R�,w1� + V1�R�,w2�

= B�R��„P2�n� · w1� + P2�n� · w2�… . �6�

The energy parameter B�R�� has two contributions, from the
short-range repulsive and long-range attractive forces. The
most consistent analysis of the parameter B�R�� and the rel-
evant estimates of the contributions can also be found in Van
Kranendonk’s book.1

For the case of heteronuclear molecules we need to refer
the whole potentials to the axis which goes through both
molecular centers of mass �see Fig. 1�. Then the potential in
Eq. �1� in the new frame can be expanded in the ratio s /R.
Expansion is convenient to perform using the so-called gra-
dient formula, see Appendix A, Eq. �A2�. If only the first,
isotropic term v�R�� in Eq. �1� is taken, this expansion to the
second order in s /R is1

v�R�� � v�R� +
s2

3
�v� +

2v�

R
	 + V11 +

s2

3
�v� −

v�

R
	

�
P2�n · w1� + P2�n · w2��

− sv�
�n · w1� − �n · w2�� , �7�

where the prime means differentiation with respect to R and
n denotes the unit vector along the vector between the mo-
lecular centers of mass R�Rn. The two first terms in Eq. �7�
represent the corrected isotropic potential; the terms in the
second and third lines are the crystal-field interactions, re-
spectively, of rank 2 and 1, the former being a correction to
the main rank-2 crystal field interaction of Eq. �6�. The term
V11, which ensures hopping from site to site, can be written
as

V11 = �
N=0,2

�N�R�„�C1�w1� � C1�w2��N · CN�n�… . �8�

Here the energy parameters �N�R� are1 
we introduce the
superscript �V� to distinguish from another contribution to
the hopping Hamiltonian�

�0
�V��R� =

s2

�3
�v� +

2v�

R0
	 , �9�

�2
�V��R� = s2�2

3
�− v� +

v�

R0
	 . �10�

Notice that the same combinations of v�R� and v� appear in
the other second-order parts of the expansion in Eq. �7�.

The heteronuclear hydrogen molecules have nonzero
static electric dipole moments and the corresponding dipole-
dipole interaction has the same form as the N=2 term in Eq.
�8�. The experimental value of the HD dipole moment �, as
derived from pure rotational spectra of gaseous HD, is10 �
=8.47�10−4 D. Theory11 gives a close value of 8.51
�10−4 D. The dipole moment evaluated11 for DT is even
smaller �2.83�10−4 D�. This means that the magnitude of
the parameter �2

���
�2 /R3 in the respective analog of Eq.
�8� is of the order of 10−3 cm−1, which, as will be shown
below, is three orders of magnitude smaller than that esti-
mated from Eq. �10�.

When applied to the EQQ interaction in Eq. �3�, the same
procedure does not result in terms like Eq. �8�. This is be-
cause the EQQ Hamiltonian has a special �multipole� form of
the type CNn�n� /RN+1. Indeed, as can be verified with the aid
of Eq. �A2�, expansion of the EQQ interaction leads only to
increasing ranks of the spherical harmonics of both argu-
ments w1 and w2.
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Let us examine the basic rank-2 crystal-field potential of
Eq. �6�. The energy V1 itself was, in principle, obtained as a
result of an expansion of the isotropic potential in the ratio
d /R, where d is half of the internuclear separation rs in the
molecule. The expansion in s /R, considered here, is an inde-
pendent one and, as such, should be applied to all terms of
the expansion in d /R. Contrary to the statement of Van
Kranendonk,12 expansion of this potential Vcf�R�� does re-
sult, in particular, in an interaction of the same algebraic type
as V11 in Eq. �8�. Within the frame of our approach we
should also include a contribution, which comes from the
fourth-order term of the expansion of V�R�� in d /R. Our
estimates, however, show that these terms result in 3–9%
corrections to �N

�V� for HD and therefore may be neglected.
A complete formula for the expansion of Eq. �6� up to

second order terms in s /R is given in Appendix A. In this pa-
per we are especially interested in the contribution that is
algebraically similar to the hopping interaction V11 in Eq.
�8�. The pertaining energy parameters, defined similarly as in
Eqs. �9� and �10�, are 
we mark them with the superscript
�B��

�0
�B� = −

4s2

5
�2

3
�B� +

2B�

R0
−

6B

R2 	 , �11�

�2
�B� =

4s2

5�3
�B� +

5B�

R0
+

3B

R2 	 . �12�

Here we note that the contributions to the above and similar
quantities from the other terms of the anisotropic interaction
potential V2 in Eq. �3� are nonzero but negligible compared
to the respective parameters �N

�V� or �N
�B�. Therefore we ignore

them in our further considerations.
The parameters �N

�B� in Eqs. �11� and �12� should be
summed with the similar quantities that originate from the
isotropic potential, Eqs. �9� and �10�, to yield the net values
of the total � parameters:

�N = �N
�V� + �N

�B�; N = 0,2. �13�

The values of �N for HD are given in Table I, both nonrenor-
malized and renormalized for zero-point lattice vibrations
�see Sec. III�. One can see that the contribution from the
crystal-field interaction, Eq. �6�, is quite appreciable and can-
not be disregarded.

III. QUANTUM-CRYSTAL RENORMALIZATION OF
ENERGY PARAMETERS

In quantum crystals such as any isotopic hydrogen solid
the quantities appearing as energy parameters in Hamilto-
nians should be averaged over zero-point vibrations. We will
use the approach suggested by Harris7 for the evaluation of
the operating values of similar energy parameters in solid H2
and D2. This approach is based on Nosanow’s idea that when
calculating the cluster-expansion ground-state energy the ex-
act dynamic problem can be solved to a good approximation
by assuming that the particles interact via an effective poten-
tial Veff�R�, which can be constructed from the true “bare”
potential V�R� as follows:

Veff�R� �
�V�R��

�1�
, �14�

where the averaging operator is defined as

�¯� =� dr1dr2 ¯ �2��r1 − R����2��r2 − R + R���f2�r12�

�15�

�see Fig. 1�. The functions in Eq. �15� are chosen in the form

��r� = �A/��3/4 exp�− Ar2/2� , �16�

f�r� = exp
− �V�r�� , �17�

where the function ��r� accounts for the spread of the wave
function and f�r� does not allow the isotropic potential to
become unphysically large as r tends to zero. The constants
A and � have been found13 for H2 and D2 by minimizing the
ground-state energy of the crystal. We note here that the
constant � may be considered7 independent of the hydrogen
molecule species. However, since we use an interaction
potential14 different from the Lennard-Jones one used by
Harris, we put in Eq. �17� the constant � instead of K used by
Harris assuming a Lennard-Jones potential. The constant �,
which is expected to vary but slightly from one isotopomer
to another, has been recalculated from the K=0.2406 value:

� =
K

4�
= 0.0023405, �18�

where � is the Lennard-Jones energy constant for the hydro-
gen molecule. The parameters A in Eq. �16� for HD �AR2

=52.51� and DT �AR2=69.44� were chosen assuming the
quantity RA−1/2 to be a linear function of the molecular mass
and based on the respective values7 AR2=46.5 for H2 and
60.5 for D2. Variation of A within a reasonable interval does
not change qualitatively the final results. The equilibrium
spacing R in zero-temperature zero-pressure solid HD with

TABLE I. Renormalized and nonrenormalized values of the en-
ergy parameters and renormalization ratios for solid HD. All ener-
gies are in cm−1.

Energy
parameter Renormalized Nonrenormalized Ratio

V0 −14.363 −20.682 0.694

RV0� −13.673 63.298 −0.216

R2V0� 248.829 668.841 0.372

B 1.699 −0.0731 −23.235

RB� −24.029 −14.207 1.691

R2B� 404.401 217.683 1.858

�0
�V� 0.413 0.241 1.709

�2
�V� −0.621 −0.169 3.679

�0
�B� −0.252 −0.138 1.825

�2
�B� 0.149 0.075 1.976

�0 0.161 0.103 1.554

�2 −0.472 −0.093 5.052
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account of the 1% deviation from �8/3 of the c /a ratio at
zero temperature was chosen to be an average of two val-
ues15 �in-plane and out-of-plane shortest distances� R
=3.701 Å. The nearest-neighbor distance for solid DT, R
=3.564 Å, was estimated from the DT molar volume as
quoted by Souers.16

In our calculations we employed the energy parameters of
the isotropic interaction potential as suggested by Silvera and
Goldman.14 Estimates obtained with a more accurate recent
isotropic potential17 do not deviate significantly from all the
relevant values shown in Tables I and II. The energy param-
eters for the function B�R� in Eq. �6� were taken from Ref. 1.
Details of the renormalization procedure can be found in
Appendix B.

In Tables I and II we compare the nonrenormalized and
renormalized values of the basic energy functions V�R� and
B�R� as well as their first and second derivatives for HD and
DT, respectively. The general conclusion is that the renor-
malization ratios are appreciable for both isotopes and for all
the energy parameters considered. For RV� and B in HD and
for RV� in DT the renormalized values even have an opposite
sign. This is because those quantities are close to zero for the
respective equilibrium R values; the averaging procedure
with a comparatively broad probability function ��R� brings
in contributions of the predominantly opposite sign from the
region �with r�R� where both functions are steeper than left
of the point R. The contributions �N

�B� from the crystal-field
energy to the total �N are in all cases opposite in sign to �N

�V�.
Knowing �N, we can calculate the dispersion law for the

J=1 roton excitation. The wave function of the rotational
ground state of solid HD can be written as a product of the
individual J=0 single-particle wave functions

	GS = �
i

�0,i� , �19�

where i numerates the molecules. Let �1m , j� denote the state
in which molecule j is in the excited state with J=1 and Jz

=m where m=1,0 ,−1. If no coupling between rotational mo-
menta is present, the total state with a single J=1 excitation
at j is described by the wave function

	EX = �1m, j��
i�j

�0,i� . �20�

In the presence of the anisotropic interaction V11 like that in
Eq. �8� with �N as in Eq. �13�, the correct delocalized excited
state �1m� can be written as

�1m� Þ �
i,


�
m=−1

1

Um�Ri
��1m,Ri
� . �21�

Here Um�Ri
� is the wave function describing the hopping
motion of the J=1 excitation through the crystal and we took
explicitly into account the actual �hcp� structure of both HD
and DT by virtue of which the lattice vector carries the el-
ementary cell number J and the sublattice label 
. According
to Bloch’s theorem the wave function U can be written in the
form

Um�R j
� = Am
�k�ei�k·Rj
�. �22�

The amplitudes A are the solutions to the set of secular
equations1

�
m�
�

Hm
,m�
��k�Am�
��k� = E�k�Am
�k� , �23�

where

Hm
,m�
��k� = �
j

�1m,R0
�V11�1m�,R j
��e
ik·�Rj−R0� �24�

with V11 from Eq. �8�. In the nearest-neighbor approximation
we have

Hm
,m�
��k�

=
1

3�
j

eik·�Rj−R0�

� ��2�− 1�m�C1m1m�
2m−m�C2m−m�

* �n j
� −
�0

�3
��m − m��� .

�25�

This matrix element simplifies for the case k � z. Then

Hm
,m�
��k� = ��m − m��hm
,m�
�, �26�

where ���
�

h


�m� = −

2�0

�3
−

�2

�6

3�− 1�m + 1

2
, �27�

h
�
�m� = �−

2�0

�3
+

�2

�6

3�− 1�m + 1

2 �
�kz� . �28�

Here 
�kz�=cos kzc /2 and c is the lattice parameter along
axis z. Now the dispersion law can be found in analytical
form:

E0
�+� = −

2
�3
���0 +

�2

�2
	 − ��0 −

�2

�2
	
�kz�� , �29�

TABLE II. Renormalized and nonrenormalized values of the
energy parameters and renormalization ratios for solid DT. All en-
ergies are in cm−1.

Energy
parameter Renormalized Nonrenormalized Ratio

V0 −15.768 −22.766 0.693

RV0� −32.27 44.819 −0.720

R2V0� 955.331 648.51 1.473

B 2.353 0.627 3.755

RB� −31.996 −23.436 1.365

R2B� 698.846 313.403 2.230

�0
�V� 0.222 0.184 1.207

�2
�V� −0.349 −0.213 1.636

�0
�B� −0.175 −0.074 2.362

�2
�B� 0.109 0.0396 2.756

�0 0.0471 0.110 0.428

�2 −0.240 −0.174 1.381
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E±1
�+� = −

1
�3
��2�0 −

�2

�2
	 − �2�0 +

�2

�2
	
�kz�� , �30�

E0
�−� = −

2
�3
���0 +

�2

�2
	 + ��0 −

�2

�2
	
�kz�� , �31�

E±1
�−� = −

1
�3
��2�0 −

�2

�2
	 + �2�0 +

�2

�2
	
�kz�� . �32�

Here the subscript denotes the cyclic z-projection of the ro-
tational momentum; the superscript denotes the parity under
the inversion in the midpoint between two nearest neighbors
from different adjacent hexagonal planes. The positive-parity
mode is triply degenerate at k=0. The infrared active
negative-parity excitation with E±1

�−� was observed18–20 in IR
spectra of solid HD, the absorption coefficient agreeing well
with theoretical estimates.21 The combination

2�0 +
�2

�2

proves for HD to be two orders of magnitude smaller com-
pared to the other three combinations in Eqs. �29�–�32�,
which results in two doubly degenerate virtually dispersion-
less branches �see Fig. 2�. The dispersion curves lie �Fig. 2�
between the two k=0 extremes, E0

�+��0� and E0
�−��0�, i.e., the

density of states is concentrated around the center of the
band. The width of the J=1 roton band, �E, for HD is

�E = �E0
�−��0� − E0

�−��±1�� = �6�2, �33�

which amounts to 1.16 cm−1 in solid HD. The J=1 roton
bandwidth in solid DT is almost twice as narrow �about
0.59 cm−1�. It is interesting that the energy position of the
IR-active mode E±1

�−� equal in solid HD to −0.385 cm−1 is in
qualitative agreement with the negative shift �−0.28 cm−1�

suffered by the infrared line R�0� when crossing the melting
point from liquid to crystal.20

IV. CONCLUSIONS

It is shown that a substantial contribution to the specific
anisotropic interaction components, caused by the asymme-
try of HD and DT molecules and which are important for the
rotational �orientational� and translational dynamics of these
solids, comes from the crystal field of rank 2. The relevant
energy parameters for both specific anisotropic interaction
components have been evaluated and renormalized to ac-
count for zero-point translational vibrations in these quantum
crystals. The renormalized values of all energy constants �pa-
rameters� differ substantially from the initial nonrenormal-
ized values. Exemplary dispersion curves have been calcu-
lated for the J=1 roton excitation for solid HD and DT; the
corresponding bandwidths are found to be 1.16 cm−1 for HD
and 0.59 cm−1 for DT.
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APPENDIX A: EXPANSIONS

Since we deal with Hamiltonians, that is, scalars or ten-
sors of rank 0, it is convenient to transform the known gra-
dient formula9,22 to another form. Algebraically, in virtue of
being a scalar, any Hamiltonian can be represented as a sum
of the following terms:

H = F�r�„Cl�m� · Tl… , �A1�

where r=rm is the distance radius vector and Tl is a rank-l
irreducible tensor independent of r. In our case �see defini-
tions in Sec. II� r=R�=R+a where the vector a=s�w2

−w1� is small. Application of the standard gradient formula8

to H in Eq. �A1� gives for the first-order correction

�
�

a���H�� =� l + 1

2l + 1
�F� −

l

R
F	„Cl+1�n� · �a � Tl�l+1…

−� l

2l + 1
�F� +

l + 1

R
F	

�„Cl−1�n� · �a � Tl�l−1… , �A2�

where � denotes cyclic coordinates. Further expansion can
be performed by applying the same formula.

The relevant expansion12 for the isotropic interaction en-
ergy v�R�� is given above in Eq. �7�. Expansion of the
crystal-field energy, Eq. �6�, can be performed in a similar
way with the aid of the gradient formula, Eq. �A2�. After
some algebra we obtain the following expression:

Vcf�R�� = Vcf
�0� + Vcf

�1� + Vcf
�2�. �A3�

Here Vcf
�0�=Vcf�R�, where R is the nearest-neighbor distance

FIG. 2. The dispersion curve for the J=1 roton excitation in
solid HD. The wave vector k is parallel to the crystallographic axis
c. The thick lines are for twofold degenerate modes; the dot lines
are for nondegenerate modes.
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�between centers of mass�. The other two terms are the first-
order and second-order corrections in s /R. The former can be
represented in the form

Vcf
�1� = �

N=1,3
�N

�1�
„TN

�1��w1,w2� · CN�n�… , �A4�

where

�1
�1� = −�2

5

s

R
�RB� + 3B� , �A5�

�3
�1� =�3

5

s

R
�RB� − 2B� , �A6�

and

T3
�1��w1,w2� = �C2�w1� � w2�3 − �C2�w2� � w1�3

+ �3/5
C3�w2� − C3�w1�� , �A7�

T1
�1��w1,w2� = �C2�w1� � w2�1 − �C2�w2� � w1�1

− �2/5
w2 − w1� . �A8�

The second-order term Vcf
�2� is more complicated than Vcf

�1�

or the second-order term in the expansion of the isotropic
interaction potential, Eqs. �7� and �8�. We give below Vcf

�2� in
complete form without separating it into irreducible tensor
components:

Vcf
�2� = �

M=1,3; N=0,2,4

MN�R�TMN�w1,w2� . �A9�

Here

TMN = „ˆ�C2�w1� + C2�w2� � a�M � a‰N · CN�n�… ,

�A10�

where, again, a=s�w2−w1� and the following R-dependent
components are nonzero:


10�R� =� 1

30
s2�B� +

5B�

R
+

3B

R2 	; �A11�


12�R� = −� 1

15
s2�B� +

2B�

R
−

6B

R2 	; �A12�


32�R� = −� 9

140
s2�B� +

2B�

R
−

6B

R2 	; �A13�


34�R� =� 3

35
s2�B� −

5B�

R
+

8B

R2 	 . �A14�

Separation of the relevant hopping Hamiltonian of the form
similar to that in Eq. �8� is performed routinely to yield the
energy parameters as given in Eqs. �11� and �12�.

APPENDIX B: DERIVATIVES OF EFFECTIVE
POTENTIALS

The potential energy of a molecular crystal, which is a
scalar, can be represented in the form

E��R�� = 1/2�
ij

�
Ll

TLl
* ��a��VL�Rij�CLl�nij� , �B1�

where Rij =Rijnij is the intermolecular radius vector and
TLl

* ��a�� is an l-component of a tensor of rank L and neither T
nor its vector arguments a depend on the intermolecular dis-
tance. As shown by Harris,7 application of the averaging pro-
cedure of Eqs. �15�–�17� to any term from Eq. �B1� with
different L and l, namely, VL�R�CLl�n� results in an effective
quantity of the form

Ueff�R� = ṼL�R�CLl�n� �B2�

with

ṼL�R� = �1�−1M̂L
V�R�� . �B3�

The operation

M̂N
¯� =
A3/2

�2�
�

0

�

r2drf2�r�

��
−1

1

PN�x� ¯ exp�−
1

2
A2�r2 + R2 − 2Rrx�� ,

�B4�

where PN�x� is the Legendre polynomial, was derived by
proceeding7 from Eqs. �15�–�17�. Notice that in Eq. �B2� the
averaging with the weight functions specified above does not
affect the angular dependence of the anisotropic interaction,
if it is represented by an irreducible tensor of a unique rank.

Following Harris’ reasonings,7 the effective derivatives of
the potentials are to be found as derivatives of the effective
potential in Eq. �B2� rather than applying a similar averaging
procedure to the derivatives of the source, nonrenormalized
potential in Eq. �B1�. Then, by applying the gradient formula
to the effective potential we can obtain the corresponding
expression where only functions of R should be averaged in
a proper way, like in Eq. �B2�. We thus arrive at the follow-
ing expression for the first derivative �Harris’ formula7 in a
different representation�

R
�Ṽn�R�

�R
=

AR2

�1� � n + 1

2n + 1
M̂n+1� r

R
Vn� +

n

2n + 1
M̂n−1� r

R
Vn�

− Ṽn�R�M̂1� r

R
�� . �B5�

Here A is defined in Eq. �16�; Vn is the R-dependent param-
eter appearing in the initial �nonrenormalized� potential to-
gether with the rank-n spherical harmonic.

Then, continuing the procedure, we derive the expression
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for the second derivative of the effective potential in the
same way as the first derivative above

R2�2Ṽn�R�
�R2 =

A2R4

�1� � �n + 1��n + 2�
�2n + 1��2n + 3�

M̂n+2
�r/R�2Vn�

+
2n2 + 2n − 1

�2n − 1��2n + 3�
M̂n
�r/R�2Vn��

+
A2R4

�1�
n�n − 1�

�2n + 1��2n − 1�
M̂n−2
�r/R�2Vn�

−
AR2

�1�
M̂1
�r/R��R

�Ṽn�R�
�R

−
A2R4

3�1�2 Ṽn�R��2M̂2
�r/R�2� + M̂0
�r/R�2�� . �B6�
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