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Wannier-Stark ladder in the linear absorption of a random system with scale-free disorder
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We study numerically the linear optical response of a quasiparticle moving on a one-dimensional disordered
lattice in the presence of a linear bias. The random site potential is assumed to be long-range correlated with
a power-law spectral density S(k) ~ 1/k%, a>0. This type of correlation results in a phase of extended states
at the band center, provided « is larger than a critical value «, [F. A. B. F. de Moura and M. L. Lyra, Phys. Rev.
Lett. 81, 3735 (1998)]. The width of the delocalized phase can be tested by applying an external electric field:
Bloch-like oscillations of a quasiparticle wave packet are governed by the two mobility edges, playing now the
role of band edges [F. Dominguez-Adame et al., Phys. Rev. Lett. 91, 197402 (2003)]. We demonstrate that the
frequency-domain counterpart of these oscillations, the so-called Wannier-Stark ladder, also arises in this
system. When the phase of extended states emerges in the system, this ladder turns out to be a comb of
doublets, for some range of disorder strength and bias. Linear optical absorption provides a tool to detect this

level structure.
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I. INTRODUCTION

Since 1998,! there exists an increasing interest in studying
the localization properties of the quasiparticle wave func-
tions in one-dimensional (1D) disordered systems with a
long-range-correlated site potential landscape.’>’Random
sequences, having a power-law spectral density S(k)~1/k“
with >0, result in a phase of extended states at the band
center, provided « is larger than a critical value «,."!" This
finding contradicts the widely admitted conclusion of the
one-parameter scaling theory of localization?® that all states
of noninteracting quasiparticles in one and two dimensions
with time reversal symmetry are localized (see Refs. 24-27
for an overview). As a matter of fact, a great deal of work is
being devoted to put the correlation-induced low-
dimensional localization-delocalization transition on solid
grounds.

It is worthwhile to notice that long-range correlations with
spectral density of the form 1/k* are widely presented in
nature, both in vitro and in vivo (see, e.g., Refs. 28 and 29,
and references therein). This type of correlation gives rise to
the “fractal geometry of nature” introduced by Mandelbrot.*
Importantly, in 1992 it was conjectured that the long-range
power-law correlations exist in nucleotide sequences in
DNA 31534 This conjecture opened prospectives to quantify
nature in vivo with critical exponents.> It was argued also
that long-range correlations in DNA sequences can explain
the long-distance charge transport in these systems,!%:18.20-36
The 1/k% law has also its trace in energy level statistics.'> All
said above unambiguously testifies that studying the proper-
ties of disordered systems with long-range-correlated disor-
der is an attention grabbing task.

It is known since seminal papers by Bloch?’ and Zener?
that an electron moving in a periodic potential and subjected
to a uniform electric field is localized due to the Bragg re-
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flection. It performs a periodic motion, known as Bloch
oscillations,>*® which is characterized by an angular fre-
quency wg=eFd/fh and a spatial extension Lgz=W/(eF),
where —e is the electron charge, F is the applied electric field
strength, d denotes the spatial period of the potential, and W
stands for the band width. The Bloch oscillations were ob-
served as oscillations of electronic wave-packets in semicon-
ductor superlattices*'=4¢ (see for an overview Ref. 47), and
later on as a periodic motion of ensembles of ultracold
atoms*®#° and Bose-Einstein condensates® in tilted optical
lattices. The multiplicity of observable physical phenomena
related to electron Bloch oscillations increases even more
when a semiconductor superlattice is subjected to joint elec-
tric and magnetic fields, perpendicular or tilted.>'~>>

Recently, it was demonstrated that 1D disordered systems
with the 1/k“ spectral density support Bloch-like oscillations
of quasiparticles.'® It was also shown that these oscillations
provide a tool to measure the energy width of the delocalized
phase arising at a> a,.. More specifically, the two mobility
edges, which separate the phase of extended states from the
two phases of localized ones, were found to play the role of
effective band edges, i.e., it is the width A of the mobility
band who determines the spatial extension LZ:A/ (eF) of
Bloch oscillations. Therefore, this width can be measured in
biased disordered lattices.

In this work we report further progress along this line by
considering the frequency-domain counterpart of the Bloch
oscillations, the so-called Wannier-Stark ladder (WSL)° (see
Refs. 57 and 58 for brief historical surveys). The WSL is
characterized by a series of equidistant quasistationary levels
separated by an energy U=f wg=eFd. The progress in semi-
conductor growth techniques made it possible to firmly es-
tablish the existence of ladder level structures in semicon-
ductor superlattices’® 2 as well as in S-doped super-
lattices.>%* There exists evidence that moderate uncorrelated
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disorder does not destroy the required phase coherence to see
the WSL in continuous (many band) models.®> We focus on
the one-band approximation and demonstrate that in our sys-
tem the WSL also arises, in spite of the underlying random-
ness. Strong correlations in the disorder facilitate the obser-
vation of the WSL. At > «,, when the phase of extended
states emerges at the center of the band, the WSL may
present a comb of doublets, reflecting the doublet energy
structure of the unbiased system.®® To work out the problem,
we numerically calculate the absorption spectrum varying
the correlation exponent «, the disorder strength, and the
magnitude U of the bias.

The outline of the paper is as follows. In the next section,
we present our model which is based on a tight-binding
Hamiltonian of a quasiparticle, moving in a long-range-
correlated potential landscape and subjected to a linear bias.
In Sec. III we recall the basic physics of the linear absorption
spectrum in the absence of both bias and correlations in dis-
order. The central parts of the paper are Secs. IV and V,
where the results of numerical simulations of the absorption
spectrum profile in disorder-correlated systems are shown.
We begin with a brief discussion of the absorption spectrum
behavior upon increasing the disorder correlations in bias-
free systems (Sec. IV), proceeding in Sec. V onto the absorp-
tion in biased lattices. We discuss in detail its dependence on
the driving parameters of the model (bias magnitude, disor-
der strength, and correlation exponent «) and provide an evi-
dence of that the correlations in disorder facilitate the occur-
rence of the WSL. Finally, Sec. VI concludes the paper.

II. MODEL

We consider a biased tight-binding model with diagonal
disorder on an otherwise regular 1D open lattice of spacing
unity and N sites (N is assumed to be even). We assign to
each lattice site two levels (ground and excited states) with
transition energy &, and consider optical transitions between
them. The model Hamiltonian is

1

N N-
H=2 [Sn— U(n—y)}lanﬂ— 2 (mn+1]+|n+1)
=1

n=1 2 n=

x{n). (1)

Here, |n) denotes the state in which the nth site is excited,
whereas all the other sites are in the ground state. The energy

of the state |n) €n=g+ €,, 1s assumed to have a stochastic
part &, generated according to'

¥ 2mkn
g,=0C,>, Tcos(—+¢k>, (2)
i ko N

where C,= dE(Eivizlk‘“)‘l/ 2 is the normalization constant and
b1, ..., Pyp are N/2 uncorrelated random phases uniformly
distributed within the interval [0,27]. The distribution (2)
has zero mean (g,)=0 and standard deviation (si)1/2=cr,
where (---) indicates averaging over realizations of random
phases ¢,. The quantity o will be referred to as magnitude of
disorder. The stochastic sequence (2) is characterized by a
correlation function
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which is long ranged, except for the particular value of the
exponent a=0, when (g,&,)=0°5,,, O,, being the Kro-
necker 6. The site energies in this case are uncorrelated. Cor-
relations, however, arise as soon as a# 0. Thus, for a<<1,
they are power-law-like, i.e., the correlation function (3) de-
cays as [n—m|®"L. If a>> 1, the term with k=1 in the series
(3) is dominant, and (e,e,)=(1/2)d>C>cos[2m(n—m)/N],
implying full correlation of the on-site energies.

The term —U(n—N/2) in the Hamiltonian (1) describes
the linear bias. We will not necessarily relate it to the pres-
ence of an external uniform electric field, as in the case of an
electron moving in the conduction band.®’ The bias can also
be an intrinsic property of the system, as it takes place in
dendritic species (see, e.g., Ref. 68, and references therein).
In this case, the Hamiltonian (1) models a 1D Frenkel exci-
ton in a disordered lattice with energetic bias. Finally, the
intersite transfer integrals in Eq. (1) are restricted to nearest
neighbors, and it is set to —1 over the entire lattice. Also, we

set £=0 hereafter without loss of generality.

As we already mentioned in the Introduction, in the ab-
sence of bias (U=0), the above model supports a phase of
extended states at the center of the band, provided the corre-
lation exponent « is larger than a critical value a.. At «
< a, all the states are localized, which implies that the model
under consideration undergoes an LDT with respect to the
correlation exponent «. In Ref. 1, where the above model of
disorder was introduced, the disorder magnitude was set to
o=1, and the critical value «, was found to be a.=2. It may
seem that a,. depends on o. However, it was demonstrated
later on that =2 is the universal critical value for the LDT
to occur in this model, independently of ¢.!” Another pecu-
liarity of this model, having a direct relationship to the spe-
cific form of the random potential (2) as well as to its local-
ization properties, is that the absorption spectrum at a> a,
=2, i.e., in the presence of the phase of extended states,
reveals a double-peaked structure (see Ref. 66 and Sec. 1V).

III. ABSORPTION SPECTRUM

The quantity subjected to calculation throughout this pa-
per will be the absorption spectrum defined as

1 N N 2
AB)=~ E( W) SE-E,) ), (4)
=1

=1 \n

where the E, and ¢, are the eigenenergies and eigenfunc-
tions, respectively, obtained after diagonalization of the
Hamiltonian (1). The quantity F,=(="_,4,,)? is the dimen-
sionless oscillator strength of the vth state.

In order to gain insight into the effects of long-range cor-
relations in disorder and the bias on the absorption, we first
recall the basic features of the absorption spectrum in the
absence of both (a=0 and U=0). Uncorrelated diagonal dis-
order results in localization of all the states?® and in the ap-
pearance of Lifshits tails in the density of states (DOS), out-
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side the bare quasiparticle band which ranges from E=-2 to
E=2. Since we set negative sign of the hopping integral, the
low-energy part of the DOS (with E around -2) is of impor-
tance for the linear optical absorption. The majority of states
lying in this region are localized at different (weakly over-
lapped) segments. Some of them are bell-like, i.e., without
nodes within localization region, while the other and higher
(band) states resemble standing waves with nodes.%’ The
bell-like states dominate the optical absorption because they
accumulate oscillator strengths large compared to those of
the other states. They result from localization on fluctuations
of the site potential, which have a well-like envelope.”® The
typical size of such potential wells N* determines the exten-
sion of the bell-like states, while the depth o/ VN governs
the width of the absorption spectrum (see below). Notice that
the potential depth is VN” times as small as the bare magni-
tude o. This effect is known as the exchange (or motional)
narrowing: fluctuations of a stochastic site potential of alter-
nating signs are averaged out by a quasiparticle rapidly mov-
ing (due to a large exchange interaction/>> o) within a re-
gion of size N*.0%71-74

The absorption spectrum is peaked slightly below the bare
band edge E=-2 and represents an inhomogeneously broad-
ened line with a Gaussian-like red and a Lorentzian-like blue
tail (see, e.g., Ref. 71). The localization size of the optically
dominant states N* and the full width at half maximum
(FWHM) of the absorption ¢ are estimated as’?

2/3
a3
o = \2; 6772(3712) . (5b)

To conclude this section, note that both short-range and
power-law long-range correlations in disorder result in de-
creasing the localization length of the band edge states?>74
and, subsequently, increasing the absorption line width.%6:74
In contrast, this is not the case for correlations which are
stronger than power-law-like. An example is a sequence (2)
at a>>1 (see the next section).

IV. UNBIASED SYSTEM

We first discuss the absorption spectrum of the unbiased
system (U=0), aiming to separate the effects of bias from
those related to the disordered nature of the model. Figure 1
represents the absorption spectra calculated for two values of
the correlation exponent, =1 and a=4. By convention, we
will refer to these two cases as weakly and strongly long-
range correlated disorder, respectively. The results were ob-
tained by numerically diagonalizing the Hamiltonian (1) for
chains of size N=500 with open boundary conditions. The
disorder magnitude was set to o=1. Averaging over 3 X 10*
realizations of the disorder were applied in Eq. (4) for each
value of a.

From Fig. 1 we observe that in the case of weak correla-
tions in disorder (a=1), the absorption spectrum consists of
a single inhomogeneously broadened asymmetric line. Its red
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FIG. 1. Absorption spectra of an ensemble of unbiased chains
(U=0) with N=500 sites calculated for two values of the correla-
tion exponent «, shown in the plot. In both cases, the magnitude of
disorder is o=1. Each curve was obtained after averaging over
3 X 10* realizations of disorder.

and blue tails can be fitted by a Gaussian and Loretzian,
respectively. The spectrum is peaked slightly below the low-
energy band edge E=-2 and has the FWHM ¢ ~2.2 which
is approximately three times larger than that in the limit of
uncorrelated disorder (a=0), Eq. (5b). This tendency is in
full accordance with that we mentioned in the preceding sec-
tion.

The absorption line shape, however, changes dramatically
when disorder is strongly long-range correlated (a=4). The
higher-energy peak in the absorption spectrum starts to build
up when the correlation exponent « exceeds the critical value
a,=2 or, in other words, when a phase of the extended states
emerges in the center of the band.%® Its appearance implies
that states deep inside the band gain large oscillator
strengths. This is in contrast to the case of uncorrelated dis-
order, where higher states have a vanishingly small oscillator
strength.”!"72

A simple explanation of this anomaly is based on the fact
that for sufficiently large values of «, the first term in the
series (2) is dominant, while the others are considerably
smaller. Consequently, the site potential for a given realiza-
tion is cosinelike (harmonic with k=1), perturbed by a col-
ored noise (harmonics with k=2). Then, the whole lattice
can be represented as a two weakly coupled sublattices with
different site energy (see Ref. 66 for more details). Optical
transitions to the band edge states of these two sublattices
give rise to a double-peaked structure of the absorption spec-
trum. Remarkably, the higher-energy peak monitors the up-
per mobility edge of the delocalized phase.®

V. BIASED SYSTEM
A. Qualitative picture

In disorder-free systems, switching the bias on results in
dynamical (Bloch) localization of all the states®’ within the
localization size Lg=4/U, where 4 is the band width in di-
mensionless units. The Bloch localization is accompanied by
the subsequent reorganization of the energy spectrum of the
system, which becomes ladderlike with the level spacing
U.® This structure is revealed in photoluminescence>®% and
photoconductivity®® spectra as a series of equally spaced
peaks. Disorder broadens the peaks and makes them unre-
solved. Below we derive a relationship between magnitudes
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of disorder o and bias U, which governs the occurrence of
the WSL in disordered systems.

Briefly, our reasoning is as follows (a detailed study will
be published elsewhere’®). According to the exchange nar-
rowing concept (see the discussion in Sec. III and Refs. 69
and 71-74), a quasiparticle confined within a chain segment
of size Ly sees a disorder of a reduced magnitude o/\Lg,
with o the strength of the bare disorder. Therefore, the re-
sulting inhomogeneous broadening of the WSL levels can be
estimated, similarly to Eq. (5b), as

2
op= =7 _ a'vT]. (6)

VLg

In order to resolve the ladder structure, the inhomogeneous
width oz must be smaller than the level spacing U. This
brings us to the condition

o<\U, (7)

which governs the occurrence of the WSL in 1D disordered
systems. We will refer to the relationship (7) as to the limit of
strong bias.

Now, we turn to discussing the opposite sign of inequality
(7), which we will name the low or/and moderate bias limit.
At nonzero bias, each site gets an additional energy —U(n
—N/2). Thus, the energy difference between the edge sites
(magnitude of the total bias) is about UN. It is to be com-
pared first of all to the absorption line width ¢ in the ab-
sence of bias. Apparently, at UN< o, i.e., when the poten-
tial drop across the whole system is much smaller than the
width, the effect of bias on the absorption is negligible. On
the contrary, the bias is expected to broaden the absorption
spectrum when UN>o". Indeed, optically dominant (bell-
like) states in this case will be distributed from [-UN/2 to
UN/2], giving rise to almost constant absorption within this
energy range.

Such a scenario, however, holds as long as UN' <o, ie.,
provided the typical potential drop across the potential wells
supporting bell-like states is smaller than the typical well
depth ¢ in bias-free systems. At UN">¢", the picture of
localization in the potential wells does not work anymore.
The localization of states now is governed by a complicated
interplay of disorder and bias, which is hard to handle quali-
tatively. Nevertheless, we can still claim that the FWHM of
the absorption spectrum will be on the order of magnitude of
the total bias UN. On further increasing the bias, we fall in
the regime of the WSL, VU > ¢. Our numerical simulation
confirm this qualitative picture, as shown below.

Note that the above reasonings can be applied without any
remarks to both uncorrelated and weakly correlated disorder
(@<1). In the limit of strong correlations (a>> 1) the picture
requires corrections which we discuss in Sec. V C.

B. Low and moderate bias

In Fig. 2 we plotted the absorption spectra calculated for
disordered biased chains of N=100 sites, choosing the disor-
der strength o=1 and the bias magnitude U=0.01. Averaging
over 10° realizations of disorder were performed in Eq. (4).
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FIG. 2. Absorption spectra of biased chains (U=0.01) with
N=100 sites calculated for two values of the correlation exponent
a, shown in the plot. The magnitude of disorder is o=1. Each curve
was obtained after averaging over 10° realizations of disorder.

Two values of the correlation exponents were considered,
a=1 and a=4. As o> U, we are not in the WSL regime.
Furthermore, at U=0.01 the overall potential drop UN=1 is
smaller than the FWHM in the absence of bias, o =2.2 (see
Fig. 1). As a consequence, the effect of bias is weak, leading
only to a unnoticeable broadening of the spectra and smooth-
ing the shape of the doublet (at a=4) as compared to the
bias-free conditions (compare to Fig. 1).

Figure 3 presents the results of the simulations for a larger
magnitude of the bias, U=0.1, keeping all other parameters
unchanged. Still, o> \U that is not in favor of the WSL.
However, the total bias UN=10 is now larger than the bias-
free FWHM =2.2. Therefore, for both values of the correla-
tion exponent a=1 and @=4 the absorption spectrum shows
a plateaulike shape and a large broadening, with the FWHM
~10 equal to the total bias. These trends are in full agree-
ment with our qualitative reasoning presented in the preced-
ing section.

C. Strong bias

Aiming to find fingerprints of the WSL in the optical ab-
sorption spectra, we further increased the magnitude of the

0.10
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0.05

0.00
0.10

A(E)

0.05

0.00

FIG. 3. Absorption spectra of biased chains (U=0.1) with
N=100 sites calculated for two values of the correlation exponent
a, shown in the plot. The magnitude of disorder is o=1. Each curve
was obtained after averaging over 10° realizations of disorder. In-
sets show enlarged views of the spectra within the grey boxes.
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FIG. 4. Same as in Fig. 3, but for a bias U=0.5.

bias. Figure 4 shows the spectra calculated for the bias mag-
nitude U=0.5. As before, chains of N=100 sites were used in
the simulations and two values of the correlation exponent «
were considered, a=1 and a=4. The disorder strength was
set to o=1, and averaging over 10° realization of disorder
was performed in Eq. (4).

We observe (the upper panel) that at a=1<a@,=2 the
spectrum remains structureless that is consistent with the es-
timate (7): still o> U, i.e., the WSL cannot be resolved.
However, for strong correlations in disorder, when a=4
> a,=2, the spectrum presents a periodic pattern which is
not masked by the stochastic disorder fluctuations (see the
inset in the lower panel). Most important, the period of the
modulation is exactly equal to U=0.5. To illustrate our state-
ment more, we depicted in Fig. 5 the oscillator strength F, as
a function of the eigenenergy E, for a=4. It is clearly seen
the periodicity in energy with a period equal to U=0.5 as
well as the similarity of the corresponding oscillator
strengths. We checked out that the pattern with the same
spacing also holds for larger systems, i.e., its period is not a
consequence of finite size effects. Therefore, we claim that
the periodic pattern found in the simulations results from the
occurrence of the WSL in the energy spectrum of the system.

An explanation of the occurrence of the WSL in the
strong correlation regime (a=4) is based on the already

3

F(E)
[ AN

!
-30 -20 -10 0 10 20 30

FIG. 5. The oscillator strength distribution for the set of param-
eters as in lower panel of Fig. 4.
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FIG. 6. Same as in Fig. 3, but for a disorder magnitude o=0.2.
The inset shows an enlarged view of the center of the band.

mentioned one in Sec. IV in fact: the site potential (2) for a
given realization of disorder is cosinelike (harmonic with k
=1), perturbed by a colored noise (harmonics with k=2).
This implies that the magnitude of the actual disorder is at
least by a factor of 27%? smaller than the bare value o the
inequality (7) turns out to be fulfilled for the reduced disor-
der. In other words, strong correlations in disorder facilitate
the occurrence of the WSL.

Finally, we calculated the absorption spectrum profile for
magnitudes of disorder =0.2 and bias U=0.1, when the
inequality (7) holds even in the absence of correlations in
disorder (a=0). The results, obtained for =0 and a=35 are
depicted in Fig. 6 (upper and lower panels, respectively).
One observes that the absorption spectrum shows a resolved
structure for both values of «, which, however, is heteroge-
neous. The central part of the spectrum is of our primary
interest because it reveals a periodic pattern.

At a=0 (uncorrelated disorder), the pattern consists of
equally spaced single peaks with the spacing exactly equal to
U=0.1 (see the inset). This again allows us to associate the
peaks with the occurrence of WSL in the energy spectrum of
the system. The FWHM of a single peak is about 0.06 that is
in good agreement with Eq. (6). We also checked out that the
pattern did not appear if o=0.4~=+U=0.45, in full accor-
dance with our reasonings presented in Sec. V A. These re-
sults corroborate those found in Ref. 65 for random Kronig-
Penney models.

In the case of strongly correlated disorder (a=5), each
single peak of the central pattern splits into a doublet, as is
seen from the inset in the lower panel. The origin of the
doublets can be traced back to the behavior of the unbiased
system, where the absorption line shape exhibits a doublet
structure provided a> a,=2 (see Sec. IV and Ref. 66). Fig-
ure 6 points out that the splitting also occurs in the presence
of bias.

To conclude we comment on the peculiarities of the red
and blue sides of the absorption spectrum. We associate them
with finite size effects. Indeed, these parts of the energy
spectrum are formed by the states localized close to the sys-
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tem ends. Because of that, the corresponding eigenfunctions
differ from those at the band center.

VI. SUMMARY AND CONCLUDING REMARKS

We numerically studied the linear optical absorption of a
quasiparticle moving on a 1D disordered lattice subjected to
a linear bias of magnitude U. The random site potential was
set to have a power-law spectral density S(k)~ 1/k®, which
gives rise to long-range correlations in site energies.

The absorption spectrum of the unbiased lattice (U=0)
was found to present a single peak in the weakly correlated
limit, when the correlation exponent a<<a,.=2, with a,=2
the critical value for the occurrence of a phase of extended
states in the center of the band. For strongly correlated dis-
order, at a> a.=2, the absorption line shape turned out to
exhibit a double-peaked structure, characteristic for this type
of long-range correlations.%

Switching the bias on does not change much the outlined
behavior provided the magnitude of overall bias UN does not
exceed the absorption bandwidth of the unbiased system. At
higher magnitudes of bias, the absorption spectrum starts to
broaden, independently of the magnitude of the correlation
exponent a. Its profile gets a top hat shape, being almost flat
at the center of the absorption band and having the FWHM
on the order of UN. Such a scenario holds as long as the
disorder magnitude o< JU.
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On further increasing the magnitude of the bias, a periodic
pattern is found to build up at the center of the (already
wide) absorption band. Its period is equal to U, as for the
Wannier-Stark ladder in an ideal lattice, and independent of
the system size N. Therefore, we attribute the pattern found
to the Wannier-Stark quantization of the energy spectrum in
the disordered lattice.

The occurrence of the Wannier-Stark pattern is facilitated
by the presence of correlations in disorder. In the limit of
strong correlations (a>a,=2), each Wannier-Stark level
represents a doublet, reflecting the doublet structure of the
absorption spectrum of the unbiased system.

To conclude we note that in our study we did not explic-
itly relate the bias to the presence of an external uniform
electric field. Therefore, our conclusions can be equally ap-
plied both to 1D disordered electrons, moving in a uniform
electric field, and to 1D disordered Frenkel excitons, where
energetic bias can be an intrinsic property of the system.
Dendrimers represent one of the examples.®
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