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Yield stress discontinuity in a simple glass
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Large-scale molecular-dynamics simulations are performed to study the steady-state yielding dynamics of a
well-established simple glass. In contrast to the supercooled state, where the shear stress, o, tends to zero at
vanishing shear rate, 7, a stress plateau forms in the glass which extends over about two decades in shear rate.
This strongly suggests the existence of a finite dynamic yield stress in the glass, o*(T)=o(T;y—0)>0.
Furthermore, the temperature dependence of o suggests a yield stress discontinuity at a critical temperature of
T.=0.4 in agreement with recent mode coupling theory predictions. The corresponding qualitative change of
the flow curves enables us to bracket the critical temperature 7, of the theory from above and from below. We
scrutinize and support this observation by testing explicitly for the assumptions (affine flow, absence of
flow-induced ordering) inherent in the theory. Furthermore, while qualitative similarity is found between the
viscosity and the final relaxation time of stress fluctuations, significant quantitative differences are observed in

the nonlinear regime.
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Soft glassy materials under shear exhibit a rich phenom-
enology. In the dilute regime, at temperatures corresponding
to the liquid state, forced Rayleigh scattering experiments'
show an increase of the diffusion constant upon shearing
(shear thinning). At higher densities, experiments show evi-
dence for shear thinning due to the presence of freely slip-
ping two-dimensional crystalline layers.?

On the other hand, studies of disordered suspensions of
hard spheres show that shear thinning and shear melting phe-
nomena may also occur in the absence of an ordered
structure.® Similar observations have also been made in light-
scattering echo studies of (disordered) dense emulsions.*
Brownian dynamics simulations show that shear thinning in
concentrated colloidal suspensions is related to the fact that,
in the limit of low shear rates, the main contribution to the
shear stress originates from the Brownian motion of colloidal
particles and that this contribution decreases with shear rate
v (Ref. 5).

Recently, Berthier et al. studied numerically a driven spin
glass and showed that shear thinning can be understood in
terms of an acceleration of inherently slow system dynamics
by the external drive.® Within this approach, the glassy stress
depends on the shear rate via a power law (no dynamical
yield stress). The “soft glassy rheology model” (SGR) of
Sollich et al.” extends the minimal “trap model” originally
introduced by Bouchaud?® in order to take into account the
effect of an external drive. The theory contains a noise tem-
perature, x, which controls the distance from the glass tran-
sition at x=1. For 1 <x<2, a power-law decrease of the
stress with applied shear rate is found, whereas in the
jammed state (x<<1), a continuous onset of a dynamic yield
stress is predicted, o*=0(y—0)=1-x (within the SGR,
both the dynamic yield stress and the effective noise tem-
perature are expressed in dimensionless units). Starting from
the well-studied mode coupling theory (MCT) of the glass
transition,” Fuchs and Cates'? build upon the idealized pic-
ture that, in a supercooled liquid, nearest neighbors of a par-
ticle form a cage which progressively solidifies, eventually
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leading to a complete arrest of all particles as the glass tran-
sition is reached. This defines the (ideal) glass transition of
MCT, and the temperature at which this transition is pre-
dicted is called the mode coupling critical temperature, 7.
The effect of shear then enters by the advection of density
fluctuations. Fluctuations of a given length scale are ad-
vected towards progressively shorter length scales so that
particles need explore smaller regions in order for density
correlations to decay. The interesting prediction of a yield
stress discontinuity at the (ideal) glass transition was made.
A related MCT approach to the fluctuations around the
steady state has recently been proposed by Miyazaki and
Reichman.!! The issue of yield stress discontinuity, however,
could not be addressed in that approach.

The present work is largely motivated by these qualita-
tively differing predictions about steady-state flow curves of
sheared glasses. Large-scale molecular-dynamics simulations
are performed to study the steady-state yielding dynamics of
a well-established simple glass.

Berthier and Barrat® performed molecular-dynamics
simulation studies of the present model (see below) under a
homogeneous shear showing, e.g., that, in a range of low
shear rates, time-shear superposition and space-time factor-
ization theorems hold, thus suggesting that generic properties
related to the glass transition “generalize” to the nonequilib-
rium situation of a homogeneous shear. However, due to a
rather limited range of shear rates, results presented in Ref. 6
did not allow a clear answer as to whether the present model
exhibits a yield stress or not.

In this paper, we focus exactly on this aspect, namely an
analysis of the dynamic yield stress and its behavior at the
(ideal) glass transition. For this purpose, we performed
molecular-dynamics simulations of a generic glass former, a
80:20 binary mixture of Lennard—Jones (LJ) particles (whose
types we call A and B) at a constant total density of p=1.2
in a cubic box of length L=10 (N=1200 particles). A and B
particles interact via Upy(r)=4€,4(dap/ 1)~ (d,p/r)°],
with Q’,BZA,B, €AB=1'56AA’ GBBZO.SEAA, dAB:O'SdAA’
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dgp=0.88d 4, and mg=m,. The potential was truncated at
twice the minimum position of the LJ potential, r.=2.245.
The parameters €, 4, das, and m, define the units of energy,
length, and mass. All other quantities reported in this paper
are expressed as a combination of these units. Equations of
motion are integrated using a discrete time step of dr
=0.005.

Equilibrium properties of this model system have been
studied extensively in Ref. 12. In particular, it is shown that
the equilibrium dynamics of the model can be well described
by the “ideal” MCT (Ref. 9) with a critical temperature of
T.=0.435.

Results are averaged over ten independent runs. For this
purpose, ten independent samples are equilibrated at a tem-
perature of T=0.45 (above T,) and serve as starting configu-
rations for all simulated temperatures and shear rates. The
temperature is controlled via Nosé—Hoover thermostat.'? It is
set from 7=0.45 to the desired value at the beginning of
shear, whereby only the y component of particle velocities is
coupled to the heat bath (x being the streaming and z the
shear gradient directions; see also below).

The temperature quench is done only in one step, i.e.,
without a continuous variation from T, to T,.,4. However,
as the numerical value of T is changed, it takes a time of the
order of the velocity autocorrelation time for the new tem-
perature to be established. During this period of time the
Maxwell distribution of velocities undergoes changes in or-
der to adapt itself to a distribution determined by the new
temperature. This time is of order unity (in reduced units)
and quite short compared to all other relevant time scales in
the problem.

Previous studies of the stress-strain relation of the same
model showed that the initial transient behavior is limited to
strains below 50% (Ref. 14). Indeed, by shifting the time
origin in measurements of various correlation functions, we
verified that the time translation invariance was well satisfied
in sheared systems for strains larger than 50%. We neglected
strains y<<100% before starting the measurements. Unless
otherwise stated, all simulations reported below had a length
corresponding to a strain of 7.8 (780%). In the steady state,
correlation functions were averaged both over independent
runs and over time origins distributed equidistantly along
each simulation run. The shear stress is calculated using the
virial expression’® o= 1/L3<Efvv,~xviz+%2f; jxiszi,->, where
(---) stands for statistical averaging, v; is the velocity of ith
particle, x;;=x;—x;, and F_; the z component of the force of
particle j on i.

Recently, it was found that the present model may exhibit
shear localization in the glassy state if the shear rate is im-
posed by using a conventional Couette cell with moving ato-
mistic walls.'* However, in the present analysis we are inter-
ested in effects of a spatially constant shear rate, a basic
ingredient of all theories briefly addressed above. Therefore,
we do not use atomistic walls but apply the so-called
SLLOD algorithm combined with the Lees—Edwards bound-
ary condition.'”> With this simulation method, we do indeed
observe a linear velocity profile in all studied cases.

Within the SLLOD algorithm, the equations of motion
along the streaming direction are modified in order to take
the effect of a homogeneous shear into account. In the

zij
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present case, the streaming velocity is in the x direction
while its (linear) variation is along the z direction. As already
mentioned, the SLLOD algorithm is combined with the
Lees—Edwards boundary condition. The latter consists of
moving the periodic image of the simulation cell on the top
(bottom) with a constant velocity of V (-=V). This naturally
defines the shear rate y=V/L.

In addition to the use of the SLLOD algorithm, the y
component of the particles’ momenta is coupled to the heat
bath in order to impose a constant temperature. This results
in the following set of equations for the particle coordinates
(x,y,z) and momenta (p,,p,.p,), solved via discrete integra-
tion (i denotes the particle index, F is the total force on a
particle, and m; the particle’s mass):

X =pyilmi + 27,

yi= pyi/mi’ Zi=palm;

pzi=F

pxizin_pzi’j/’ p.yi=in_‘fpyi’ zi

é= (E pim; - NkBT>/Q.

It is noteworthy that the momenta occurring in the above
equations are the peculiar ones, i.e., they correspond to the
particles’ momenta in a (local) frame of reference moving
with the flow ({(p)=0) (Ref. 15).

As also seen from the above equations, the variable &
plays the role of a friction (acceleration) coefficient, since a
positive (negative) & tends to decrease (increase) p,. The
variation of &, on the other hand, is controlled by the devia-
tion of the actual kinetic energy of the system from that
prescribed by the temperature, 7, of the heat bath. The pa-
rameter Q controls the strength of the coupling of the par-
ticles” momenta to the heat bath (the smaller Q the stronger
the coupling). In previous studies, it is found that an opti-
mum choice for Q exists:'© Q=6NkT/w?, where w is a
characteristic vibrational frequency and kg(=1) is the Bolt-
zmann constant (see also Ref. 17, and the references therein).

The “optimum choice” of Q is defined via the requirement
that the sampling of the system energy is unchanged and
corresponds to a unique (canonical ensemble) distribution if
Q is varied around this specific value. For the present LJ
model, we set w=10.7, which roughly corresponds to the
oscillation frequency at the minimum of the Lennard—Jones
potential for the interaction between particles of type A.

Since shear may, at least in principle, change the static
structure of the system, we examine this by computing pair
distribution functions along x (flow), and y and z (shear gra-
dient) directions separately. For the x direction, for example,
we compute the (majority) A-A pair correlation via g(x)
=<E§i*‘i2j>;5(|xi—xj|—x)5()’i—yj)5(1i_zj)>, and finally nor-
malize the result by the ideal gas value so that, in the absence
of long-range order, g(x— ©)=1 is expected (N, is the num-
ber of A particles). Figure 1 illustrates results on g(x), g(y)
and g(z) (A-A correlations) for three characteristic tempera-
tures 7=0.2 (below T,.), T=0.42 (close to T,.), and T=0.6,
indicating the absence of long-range order in all studied
cases. Surprisingly, even though the stress changes by more
than a decade at this v, the local structure varies little with
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FIG. 1. (Color online) A-A pair correlation functions along x
(flow), and y and z (shear gradient) directions, for three character-
istic temperatures: 7=0.2 (glass), T=0.42 (close to T.), and T
=0.6 (supercooled state). The shear rate is y=10"*. For clarity, data
at T=0.42 (T=0.2) are shifted upwards by 1 (2).

shear, remains amorphous, and (almost) isotropic. Similar
observations are also made using the B-B and A-B pair cor-
relations.

Figure 2 shows simulated steady-state shear stresses as
functions of shear rate (viz. “flow curves”) for temperatures
ranging from far above to far below the critical temperature
of the model. As apparent from the change of the curvature
of the flow curves (S—shaped without extended horizontal
piece at high, horizontal piece merging into upward curva-
ture at low temperatures) the system response changes quali-
tatively around a critical temperature 7, which MCT identi-
fies as (ideal) glass transition temperature. For T>T, the
stress becomes proportional to the shear rate as y approaches
zero (linear response). At temperatures below T, however, a
stress plateau forms in the low 7y regime. Importantly, the
qualitative change manifest in the o) curves enables us to
give upper and lower limits for 7, without any theoretical
analysis: we conclude 0.34<7,<<0.45. A more quantitative
test is done by solving mode coupling equations for the sche-
matic F}, model.' Tt consists of an extension of the well-
known F;, model.” The normalized correlation function
obeys

O(r) +T @(t)+ftdt’m(t—t’)®(t’) =0,
0

where the memory kernel m contains a y—dependent prefac-
tor to account for the loss of memory during shearing,

m(t) = [v1D(1) + v, P*(D)].

1
1+ (91)?
The vertices v; mimic the cage effect and set the bifurcation
points, separating glassy from fluid solutions, v{= \e’@—vé,
with a typical choice v5=2.

The choice of v5=2 in the schematic model leads to the
same discontinuous type-B transition as in the microscopic
description of structural glass formers, and therefore pro-
vides a model with all important features. Last, but not least,
this specific choice is motivated by the rich variety of previ-
ous theoretical studies of the schematic F'|, model using this
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FIG. 2. (Color online) Simulated shear stress (symbols) com-
pared to theoretical model calculations (solid lines) for various tem-
peratures (from top to bottom: 7=0.01, 0.2, 0.3, 0.34, 0.36, 0.38,
0.4, 0.42, 0.43, 0.44, 0.45, 0.47, 0.5, 0.525, 0.55, 0.6). The inset
shows the fitted separation parameter € vs 7.

value (see, e.g., Ref. 9, and references therein) which allow
for tests and interpretations of the present results in light of
the previous works.

To pass the transition line following studies of Ref. 10, v,
is increased according to vlzvf+8/(\/v_§—l), while v, is
kept fixed. The separation parameter & gives the distance
from the (ideal) glass transition and distinguishes fluid (e
<0) from glassy (£=0) solutions. Finally, following Max-
well, the viscosity is modeled by the average relaxation time
n=o/y=[;dtdD(t).

It is important to realize that, here, the integration starts at
the onset of the shear and thus is stretched over the transient
correlations. This is a fundamental difference to a definition,
where steady-state correlations are used. While the former
yields the physical viscosity, the latter presents a rather ad
hoc definition of the viscosity which converges towards its
physical counterpart as the linear response regime is ap-
proached. As will be shown below, the difference between
these two quantities may be quite significant in the glassy
state (see the discussion of Fig. 4).

As seen from Fig. 2, fits with the schematic F7}, model
achieve to describe the flow curves for all studied tempera-
tures by adjusting two global parameters (a scale for  and
one for @), and the parameter € at each temperature measur-
ing the relative distance to the (ideal) glass transition.'® The
fit gives 7,=0.4 and cr:’th=0.19. We thus conclude that the
basic rheological features of our model are well described
within simple schematic models in the framework of the ide-
alized MCT. Relaxation channels not contained in the ideal-
ized MCT (so—called “hopping effects,”'?> which may be the
origin for the deviations from theory close to 7, and at very
low 7 in Fig. 2) cannot falsify our bound for T, because the
qualitatively different shapes of the flow curves are the char-
acteristics of the fluid or glassy states within MCT.

The stress plateau is best developed for temperatures deep
in the glassy phase extending over about two decades in
shear rate. Its onset is shifted toward progressively lower y
as the temperature is increased toward T,. This makes an
estimate of the dynamic yield stress, o*(T)=o(T; y—0), a
difficult task for temperatures below but close to 7. Never-
theless, an estimate of o*(7) is interesting because it high-
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FIG. 3. (Color online) Determination of dynamic yield stress
and its temperature dependence (see text).

lights the anomalous weakening of the glass when heating to
T.. Testing the MCT predictions below T has previously not
been possible in simulations because of problems to reach
the equilibrated or steady state at sufficiently low shear rates.
Our estimate is obtained by comparing the steady-state shear
stress for the two lowest simulated shear rates, namely y
=107 and y=3 X 107°. As shown in Fig. 3, at temperatures
below T=0.38, practically the same shear stress is obtained
for both choices of y indicating the presence of a yield stress
plateau.

For T=T,, we make use of theoretical predictions based
on the F}, model.'"® For not too low shear rates, the flow
curve takes the form of a generalized Hershel-Bulkeley con-
stitutive equation,

o= (L+ |V yl™ + col Wyl + c3l 3™ (1)

Here, . is an upper limit where this expansion holds, and
the exponent m is connected to the familiar exponent param-
eter A of MCT (Refs. 9 and 10). As the simple F}, model is
found to describe the rheological properties of our system
rather well (see the discussion of Fig. 2), we set the param-
eters ¢,=0.896, ¢3=0.95, and m=a(2\—-1)/(1+a)\=0.143
(with a=0.324) as obtained in the model.'® We apply a fit to
Eq. (1) with o7 and - being the only fit parameters. This
gives 07 ;,=0.15£0.01 and $=0.0045+0.0008, the latter
being close to our estimate of the window, where MCT can
describe the flow curves. At higher shear rates, y> ., we
expect microscopic effects to dominate the stress. As shown
in Fig. 3, while ¢(T) weakly varies with T at low tempera-
tures, it steeply drops as T approaches T,, signaling the
(ideal) glass transition. The yield stress follows well the
MCT square-root law,'® o*(T)- o = |1 -T/T,|.

Bear in mind that the critical temperature of 7.=0.4, used
in order to obtain best agreement between the theory and
simulations, is slightly lower than the estimate 7.=0.435 ob-
tained from the analysis of the equilibrium dynamics of the
system.'? This discrepancy is possibly related to the hopping
effects observed in the density correlation functions closely
above T, (Refs. 12 and 19). A closer analysis of this aspect
requires understanding of hopping effects under shear and is
beyond the scope of the present report.

Next we define a stress via an ad hoc nonequilibrium
Green—Kubo relation, G=4V/(kgT)[{0,,(1)0,,(0))dt (V de-
notes the system volume) employing the stress fluctuations
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FIG. 4. (Color online) 6= yV/(kgT)[ydK(0,(t)0,(0)) vs shear
rate for various temperatures ranging from the glassy phase to the
supercooled state (from top to bottom: 7=0.1, 0.2, 0.3, 0.34, 0.4,
0.42, 0.45, 0.47, 0.5, 0.55, 0.6). The inset shows the ratio of this
stress to the real shear stress.

around the steady state. Note that, in our simulations, the
nonzero component of the stress tensor is (o), whereas
(0,»=0 so that the integrand decays to zero at large times. In
order to determine stress autocorrelation (and thus &) accu-
rately, we performed very long simulations up to a strain of
100 (while averaging over time origin). For this reason, &
could be determined with a reasonable accuracy only for
shear rates =3 X 107> (see Fig. 4).

As a comparison of Figs. 2 and 4 reveals, there is a strong
similarity between the 7 dependence of & and that of the
shear stress. As seen from the inset of Fig. 4, the quotient
&/ o tends to unity for temperatures above T, in the limit of
low shear rates. This behavior indicates the linear response
regime. In the glassy state, however, a large gap opens be-
tween ¢ and o at all shear rates. At a temperature of T
=0.1, for example, & is by approximately a factor of 8 larger
than o, even in the limit of y—0.

In summary, large-scale molecular-dynamics simulations
have been performed in order to investigate the existence and
temperature dependence of the dynamic yield stress, o, for
a 80:20 binary Lennard-Jones model first proposed by Kob
and Andersen.'? Our data do indeed support the existence of
a dynamic yield stress in the glassy phase as underlined by
stress plateaus extending over about two decades in shear
rate. Let us mention recent experiments on the rheology of
dense colloidal dispersions®® which also find finite 0. Fur-
thermore, the temperature dependence of ¢ follows the pre-
dicted anomalous weakening close to the critical temperature
of MCT. We estimate a finite critical yield stress of o7
=0.17+0.02. The flow curves allow for the first bracketing in
simulations of the critical temperature of MCT from below.
Irrespective of hopping effects neglected in the employed
MCT, we can conclude 7,>0.34.

Furthermore, a generalized stress (; Fig. 4) based on the
stress fluctuations around the steady state was determined for
all temperatures and shear rates. & exhibits the same quali-
tative features as the real shear stress, o, thus emphasizing
the close connection between the fluctuations and the rheo-
logical response. However, beyond the linear response re-
gime, ¢ increases much faster than o as temperature is de-
creased. This observation is quite significant as it concerns
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theoretical approaches where, even beyond the Newtonian
regime, the shear viscosity is simply taken as a relaxation
time,>!! or where this relation holds as approximation.'®
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