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Computer simulation studies are presented for the speckle correlation function for light elastically scattered
by a spatially random array of dielectric spheres in three-dimensional space within the context of a scalar wave
theory. In addition to the spatial randomness, the spheres in our model are taken to have a statistical distribu-
tion of radii and dielectric constants. Results are presented for cases in which the radii of the spheres are much
less than the wavelength of the light so that the scattering from the individual spheres is approximately
s—wave in nature, and the volume filling fraction of the spheres is small. In a first set of simulations a
homogeneously random system is considered. A second set of simulations treats a random system that is
spatially periodic on average. In both cases, the effects of a statistical distribution of sphere radii and dielectric
constants are determined and compared with results presented in Phys. Rev. B 64, 165204 �2001� for a
spatially random array of identical spheres. In a final series of simulations the spheres of the array are taken,
in addition to the spatial randomness, to have a Kerr nonlinear dielectric constant. Changes in the speckle
correlation functions are determined as a function of the Kerr parameter and incident field intensities. The
scalar wave theory has been used recently in the treatment of scattering from random media in which phase
interference effects are of interest, e.g., Anderson localization phenomena, speckle correlations, and effects
related to universal conductance fluctuations. The scalar field also models acoustical excitations and scalar
wave electron propagation in random media.
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I. INTRODUCTION

In this paper computer simulation studies are presented
for the speckle correlation functions of the elastic scattering
of light by an array of dielectric spheres that are randomly
distributed in three-dimensional space.1 The considerations
focus on systems formed from spheres that, in addition, have
a statistical distribution of radii or a statistical distribution of
dielectric constants or a Kerr nonlinearity. The work repre-
sents an extension of that presented in Ref. 1 for the speckle
correlation functions of light elastically scattered by a ran-
dom spatial distribution of identical spheres composed of a
single linear dielectric medium. The basis of the studies is a
scalar wave treatment.1–3 This treatment has recently been
used to model phase coherent Anderson localization effects,
speckle correlations, and universal conductance fluctuations
in a variety of optical and other types of physical sys-
tems.4–19 In this regard the scalar wave function can repre-
sent effects in randomly disordered optical, acoustical, and
electron systems in a polarization-independent format.

The speckle correlation function which provides a quan-
titative measure of the intensity fluctuations in a speck-
le pattern is defined by C�q ,k �q� ,k��= ��I�q �k�
− �I�q �k����I�q� �k��− �I�q� �k�����, where I�q �k� is propor-
tional to the differential scattering coefficient for the elastic
scattering of light of initial wave vector k into light of final
wave vector q, and � � denotes an average over a statistical
ensemble of random configurations.1,20–24 It is found to have
a number of interesting features that come from the kinemat-
ics of the scattering processes, the nature of the interaction of
light with a random scattering medium, and the properties of
the phase information that are retained by the light as it

passes through the medium. As a result the speckle correla-
tion function can be shown to arise from a sum of
terms,5–10,20–23 i.e., C=C�1�+C�10�+C�1.5�+C�2�+C�3�, where
in this expression the explicit wave vector dependence of C
and its terms is given by C�q ,k �q� ,k�� and C�i��q ,
k �q� ,k�� for i=1,10,1.5,2 ,3. This sum has been studied in
a number of works where the terms of the sum have been
characterized according to their extent in k space as being
short-ranged �C�1� and C�10��,4,5,20,21 long ranged �C�1.5� �Refs.
20 and 21� and C�2� �Ref. 5��, and infinite ranged �C�3� �Ref.
5��. The strength of their contributions to the correlation
function decreases rapidly with increasing range of the cor-
relations so that in the examples treated in this paper only the
C�1� and C�10� terms are found in the computer simulation
data.4,5,20,22 The other terms are too weak to be observed to
the statistical accuracy of the simulation.1 The reader can
find an excellent review of the general properties of C�1�,
C�2�, and C�3� in Ref. 24 whereas the other terms are dis-
cussed in the papers cited earlier. A recent direction of some
of this work is in mixed frequency and dynamical correla-
tions as well as in the detailed experimental studies of the
properties exhibited by the terms in the sum for C.6,12,13,25–29

C�1� occurs in the lowest order of the perturbation expan-
sion of the speckle correlation function in powers of the vol-
ume disorder.4,5,20,21 It has been shown to have important
phase coherent peaks in wave vector space, coming from
same-path and time-reversed path scattering effects. These
arise from different sets of radiation that travel on nearly
parallel or nearly antiparallel paths, sampling the same scat-
tering environments. C�10� �Refs. 20 and 21� occurs in the
same orders of perturbation theory as C�1� but is distinct from
C�1�. This difference comes because, as we shall see in the

PHYSICAL REVIEW B 73, 174201 �2006�

1098-0121/2006/73�17�/174201�13� ©2006 The American Physical Society174201-1

http://dx.doi.org/10.1103/PhysRevB.73.174201


later discussions, these two contributions to the correlation
function sample different regions of the wave vector space
for the scattering k to q and k� to q�. As a result, phase
coherent processes are not as important in C�10� as they are in
C�1�.20,21

In our simulation, the treatment used to compute these
terms is the scalar wave treatment of electromagnetic
scattering.1–3 It has been the basis upon which most of the
results cited above for the speckle correlation functions were
obtained. It has been shown to present a reasonable represen-
tation of some of the general behaviors found in the speckle
correlation functions of disordered optical systems, though
some difficulties in the treatment will be addressed later and
in the conclusions. A comparison of results of the scalar
wave treatment of the speckle correlation functions with ex-
periment is discussed in Refs. 6, 12, 13, 15, 16, 24, 27, and
29.

Our interest in systems composed of spheres with a dis-
tribution of dielectric constants and radii is to see how these
additional types of randomness affect the speckle correla-
tions in a spatially random distribution of spheres, changing
them from the speckle correlations in systems with identical
spheres. We find that these additional types of randomness
can introduce fundamental changes in the speckle correlation
functions from those obtained for systems of identical
spheres. We also consider the effects of Kerr nonlinearity on
a spatially random distribution of identical spheres. In this
case the dielectric properties of each sphere depend on the
field amplitude applied to the sphere. This amplitude differs
from sphere to sphere. We find that for small Kerr interac-
tions, the speckle correlation function of the scattered light in
some cases is fundamentally changed from the case of
spheres formed from linear dielectric medium. It is interest-
ing, however, that due to the field dependence of the Kerr
dielectric, a study of the field dependence of the speckle
correlation function can be used to obtain the derivative of
the speckle correlation function with respect to the dielectric
constant of the spheres.

For our simulation the order of the presentation below is
as follows: In Sec. II, the scalar wave treatment is outlined
and the form of the speckle correlation function is given. In
Sec. III, the model is defined and the equations for a formal
exact solution are presented which are later evaluated using
computer simulation. An outline of the solution is given in
which the reader is referred to Ref. 1 for details. In Sec. IV,
the format for the presentation of the speckle correlation
function computer simulation data is discussed. In Sec. V,
results for systems with random dielectric constants or ran-
dom radii are presented. In Sec. VI, the results for Kerr non-
linear media are presented. In Sec. VII, the conclusions are
presented.

II. SCALAR WAVE TREATMENT AND SPECKLE
CORRELATION FUNCTION

Our studies are based on the scalar wave formulation for
the scattering of light from the array of spheres.1–3 In brief
outline, the formulation approximates the electromagnetic
field as a scalar wave function, ��r , t�, satisfying the scalar
Helmholtz equation

��2 −
��r�
c2

�2

�t2	��r,t� = 0, �1�

where ��r� is the position dependent dielectric function. The
scattering cross section and speckle correlation function are
obtained from Eq. �1� using a computer simulation that gen-
erates an essentially exact solution of the scalar field equa-
tion for ��r , t� in terms of ��r�. In the scalar formulation the
energy current is given by

J�r� = −
1

8�
� ��*�r,t�

�t
� ��r,t� + c.c.	 , �2�

and the scattering cross section is obtained from the ratio of
the outgoing divided by the incoming currents. In this form
the scalar wave treatment has been recently applied in many
of the speckle correlation function papers cited above. The
multiple scattering effects in a disordered media tend to av-
erage out polarization effects so that their neglect is less
important in randomly disordered systems than in the treat-
ment of the interactions of light with highly symmetric me-
dia. For further discussions of the scalar wave formulation
and its applications the reader is referred to Refs. 1–3, 16,
and 24.

The speckle correlation function we compute measures
the angular fluctuations in the scattering cross sec-
tion.1,4–11,20–23 It is defined as1,20–23

C�q,k�q�,k�� = 
 d�

d�
�q�k�

d�

d�
�q��k���

− 
 d�

d�
�q�k��
 d�

d�
�q��k��� , �3�

where �d� /d���q �k� is the differential scattering coefficient
per sphere for the elastic scattering of light of wave vector k
into light of wave vector q, and � � denotes an average over
the statistical ensemble of the arrays of spheres. Only the
most dominant contributions to the speckle correlation func-
tion from this sum are treated so that

C�q,k�q�,k�� � C�1��q,k�q�,k�� + C�10��q,k�q�,k�� . �4�

In the infinite system �thermodynamic limit�, these terms are
proportional to ��q−k−q�+k�� and ��q−k+q�−k��, re-
spectively.

The form of the speckle correlation function defined in
Eq. �3� has been of considerable interest recently because it
exhibits a number of features that depend on the propagation
characteristics or weak localization of electromagnetic waves
in the scattering media.5–10,15–19,25 It also displays features
that are analogous to those found in universal conductance
fluctuations.5–8,16,17,19,25 �See, for example, Refs. 14 and 19
for reviews of these topics.�

III. THE MODEL AND THE SIMULATION SOLUTION

The simulation used is for low volume filling fraction
arrays of identical spheres with radii small compared to the
wavelength of the elastically scattered light.1 Two types of
spatial disorder are treated. In one set of simulations the
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spheres have a homogeneously random distribution in space
with the restriction that spheres do not overlap. In a second
set of simulations the spheres are randomly and uniformly
distributed on a periodic lattice. The lattice is taken to be a
cubic lattice with a lattice constant equal to the wavelength
of the incident light.

The random medium considered consists of a spatially
random array of N dielectric spheres.1 The centers of the
spheres are randomly positioned on the vertices of an m
�m�m simple cubic lattice of lattice constant a, and the
faces of the cubic lattice are perpendicular to the x, y, and z
axes. For the homogeneously random system the wavelength
of the elastically scattered light is taken to be much greater
than the lattice constant, while in the periodic on average
random system the wavelength of the elastically scattered
light is of the order of the lattice constant. Letting rl, Rl, and
�l denote the center position vector, radius, and dielectric
constant of the lth sphere, the electrical permittivity of the
medium is written as

��r� = 1 + ���r� , �5�

where

���r� = 
l

��l − 1�Sl�r − rl� �6�

sums over the array of spheres, and

Sl�r� = �1 when �r� 	 Rl,

0 when �r� 
 Rl.
� �7�

The volume fraction of the array of spheres in the cubic
lattice is p=N�4� /3��Ri

3� / �ma�3. The derivation of the for-
mal scattering solution for the system that is the basis of our
simulation was given in Ref. 1. Below we shall indicate the
changes in it in the presence of the new types of disorder.

For the system of spheres in Eqs. �5�–�7�, Eq. �16� in Ref.
1 for the scattered wave from the array of scatterers becomes

�sc�r� =
3

4�
��

c
	2eik0r

r

k,l

e−ik0r̂·rk��k − 1�Vk
j1�k0Rk�

k0Rk

� �1̃ − M̃
�̃ − 1

4�
��

c
	2�

rk,rl

−1

�inc�rl� . �8�

Here k and l label quantities referring to the kth and lth
spheres in the array, �̃=�i�i,j, k0=� /c, Vk is the volume of
the kth particle, j1�x� is the spherical Bessel function of order

1, and �inc�r� is the incident wave. The matrix M̃ is defined
in Eq. �17� of Ref. 1 where it is shown that its elements are
given by Mrk,rl

=�Vl
d3uG�rk �rl+u� for the Green’s function

G�r �r��=exp�i�� /c��r−r��� / �r−r��. The scattering cross
section per sphere in the far-field limit is

d�

d�
�q�k� = �f�q̂, k̂��2/N , �9�

where the scattering amplitude of the array, f�q̂ , k̂�, is the
coefficient of eik0r /r in Eq. �8�. �Note: The results in Eqs. �8�
and �9� and Eq. �16� of Ref. 1 are examples of the T-matrix
formulation of scattering, treating all the multiple scattering

from and between the spheres of our model. Examples of the
T-matrix formulation and its derivation in the context of
quantum mechanics can be found in Refs. 30–32. The deri-
vation in Ref. 1 essentially parallels these treatments within
the context of our model.�

IV. PRESENTATION OF THE SPECKLE CORRELATION
FUNCTION DATA

In the thermodynamic limit the condition for nonzero
C�1��q ,k �q� ,k�� is q−k−q�+k�=0, while the condition for
nonzero C�10��q ,k �q� ,k�� is q−k+q�−k�=0. Consequently,
in this paper scans are presented of the C�1��q ,k �q� ,k�� and
C�10��q ,k �q� ,k�� nonzero envelopes. These contributions
dominate the topography of the correlation functions and are
obtained when �q ,k ,q� ,k�� are varied such that either q
−k−q�+k�=0 or q−k+q�−k�=0 are always satisfied.

For C�1��q ,k �q� ,k��, the envelope condition means that
�q−k� and �q�−k�� are parallel vectors of the same magni-
tude. A convenient parametrization of the envelope is ob-
tained by choosing1

k = k0�sin ,0,cos � , k� = k0�sin ,0,− cos � ,

q = k0�sin  cos �,sin  sin �,cos � ,

q� = k0�sin  cos �,sin  sin �,− cos � , �10�

where 0° 		180° and 0° 	�	360°. Since the correla-
tion function is symmetric under reflection through the x -y
plane, the angle  need only run from 0° to 90°. There is also
symmetry of the correlation function under reflection in the
x -z plane so that � can be restricted to run from 0° to 180°.
In the following, scans of the C�1� envelope are made in  at
constant azimuthal angles �=0° and 90°. For the case in
which �=0° the vectors k and q are parallel and when re-
flected in the x -y plane give the parallel vectors k� and q�.
For the case in which �=90° the vectors k and q are mapped
into each other when k is rotated 90° counter-clockwise in
the x -y plane. The vectors k� and q� are obtained from k and
q, respectively, by reflecting k and q in the x -y plane. The
plane of incidence �containing k, k�� then intersects the scat-
tering plane �containing q, q�� at right angles.

The envelope condition for C�10��q ,k �q� ,k�� means that
�q−k� and �q�−k�� must be antiparallel vectors of the same
magnitude. This condition can be fulfilled when1

k = k0�sin ,0,cos � , k� = k0�− sin ,0,cos � ,

q = k0�sin  cos �,sin  sin �,cos � ,

q� = k0�− sin  cos �,− sin  sin �,cos � . �11�

Again, due to symmetry considerations, plots are presented
for 0° 		90° and only results for the constant azimuthal
angles �=0° and 90° are given. The �=0° results are for
parallel k and q, which when reflected in the y -z plane give
k� and q�, respectively. In the �=90° results, the x -z plane
containing k and k� is at a right angle to the y -z plane
containing q and q�.
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To simulate the homogeneously random system the wave-
length of light is chosen such that � /a=8, and to simulate
the periodic on average system � /a=1. This assures that in
the former case the periodic lattice is not important and the
system appears homogeneous to the incident light whereas it
is an essential part of the physics in the latter case. The
average volume of the spheres in the array is chosen with
4��R3� /3�3=1.0808�10−3 where R is the radius of a sphere
so that 4��R3� /3a3=5.534�10−1 for the homogeneous sys-
tem and 4��R3� /3a3=1.0808�10−3 for the periodic on av-
erage system. The volume filling fraction of the runs is fixed
by choosing m and N to give p=1.855�10−4 for the homo-
geneous system and p=1.827�10−4 for the periodic on av-
erage system. The simulation results are generated from sam-
plings of 500 and 1000 randomly generated configurations
with results presented for average dielectric constants �=−5,
−2, 0, 2, and 5.

V. RESULTS FOR A DISTRIBUTION OF DIELECTRIC
CONSTANTS OR RADII

We first discuss systems in which the spheres have iden-
tical radii and the dielectric constants of the spheres are

Gaussianly distributed about a mean value ��� with a vari-
ance ��

2= ���− ����2�. The correlation functions are studied as
functions of ��. This is followed by a discussion of systems
of spheres with identical dielectric constants and with a
Gaussian distribution of radii.

A. Distribution of dielectric constants

Consider systems in which the radii of the spheres are
fixed and the dielectric constants of the spheres are Gauss-
ianly distributed about a mean value. Runs on the homoge-
neously random system are made with m=71 and N=120
and runs on the periodic on average system are made with
m=11 and N=225. The radii of the spheres are fixed at
2�R /�=0.4 and results are presented for ��=0, 0.5, 1.0, 1.5,
and 2.0.

1. Homogeneously random spatial distributions

In Fig. 1 the results are for the homogeneous system.
Figures 1�a� and 1�b� show C�1��q ,k �q� ,k�� for average �
=−5 systems at �=0° and �=90°, respectively. �Note: To
simplify the notation, in systems with random dielectric con-

FIG. 1. Plots for the �=−5 homogeneously random system of the angular speckle correlation function along the C�1� envelope, scanned
as a function of  for �a� �=0° and �b� �=90°. On the left-hand side of �a� the curves are from top to bottom: ��=0, 0.25, 0.5, 1.0, 1.5, and
2.0. The results for ��=0.5, 1.0, 1.5, and 2.0 are indistinguishable on the plot and appear as flat lines. In �b� curves are presented over the
restricted range 0° 		15° for ��=0, 0.5, 1.0, 1.5, and 2.0 �bottom to top on the left-hand edge of the plot�. In �b� at =0° the curves are
increasing functions of �� and are essentially flat and indistinguishable in the region 5° 		90°. For comparison, results are also presented
of the �=−5C�10� envelope as a function of  for �c� �=0° with ��=0,0.25,0.5,1.0,1.5,2.0, top to bottom on the left-hand edge, and �d�
�=90° with ��=0,0.5,1.0,1.5,2.0, bottom to top on the left-hand edge.
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stants we shall take �= ��� unless otherwise specified.� These
are plotted as functions of  with the curves labeled by ��. In
the plots the integrated area under each curve for 0° 	
	90° has been normalized to unity. Two peaks are observed
at =0° and 90° in C�1� as a function of  for the ��=0.0,
�=0° data. These were a focus of the discussions for ��=0
given in Ref. 1 and are seen to disappear with increasing ��,
being no longer present at ��=0.5. In the results of Fig. 1�b�
for �=90° a peak for �5° is observed in the ��=0, 0.5,
1.0, 1.5, and 2.0 results. For 5° �	90° all of the �=90°
curves of C�1� are essentially flat so that only results for 0°
		15° are shown in Fig. 1�b�. The ��=0 peak in Fig. 1�b�
was a focus of the discussions in Ref. 1. It is seen, as with
the peaks in Fig. 1�a�, to decrease with increasing dielectric
disorder in the system. In the following we review the ori-
gins of these features as discussed in Ref. 1 and then indicate
how they are suppressed with the introduction of dielectric
randomness into our system.

The details of the origin of the features in the ��=0 data
in Figs. 1�a� and 1�b� have been discussed in Ref. 1. Here we
just note that, in Fig. 1�a�, near =90° and 0° same-path and
time-reversed path scattering sequences, respectively, lead to
small enhancements in the speckle correlation function.
What is meant by this is that at =90° the intermediary
processes in the k→q and k�→q� scattering from the ran-
dom media have components that travel along closely paral-
lel paths, sampling the same media. These are same-path
sequences and they allow the light in the different scatterings
to retain phase coherence. The scattering along these paths
gives a correlated contribution to the average


 d��q�k�
d�

d��q��k��
d�

�
but only contributes an uncorrelated contribution to the


 d��q�k�
d�

�
 d��q��k��
d�

� .

This is the origin of the enhancement in the speckle correla-
tion function. A similar situation is found at =0° where the
light for k→q and k�→q� scattering has components that
move along closely parallel paths but in opposite directions.
These are time-reversed path sequences �sampling similar
regions of the media� that again maintain a phase coherence
between the two scatterings. The phase coherence contrib-
utes differently to the two averages discussed above. Upon
the introduction of the new component of dielectric disorder
into the system, the additional fluctuations contribute to the
scattering at all angles, rapidly increasing the speckle corre-
lation function at general angles. These contributions quickly
overwhelm the phase coherent contributions at =0° and
90°.

In the results in Fig. 1�b� the plane containing both inci-
dent wave vectors is at right angles to the plane containing
both of the outgoing wave vectors. Consequently, the scat-
tering in a different region of k space is being correlated
from that treated in Fig. 1�a�. Near =0° in Fig. 1�b� time-
reversed paths are contributing to the enhancement. These
contributions are again seen to decrease with the introduction

of the new disorder. At =0° itself the �=0° and �=90°
branches of the correlation function merge. At the =0°
merge point in Fig. 1�b� a peak develops with increasing
disorder. This peak comes from the symmetry differences of
the �=0° and �=90° scans, i.e., for �=0° the planes con-
taining the incident and scattered wave vector are parallel
while for �=90° these planes are at right angles. This causes
the rate of increase of the angle-independent contributions to
the speckle correlation function with disorder to differ be-
tween the �=0° and 90° data.

The general features in the �=−5 data �i.e., peaks and
regions of angular independence� are also found in the data
for �=−2,0,2,5 studied as functions of ��. The conditions for
the disappearance of the enhancements in the correlation
functions are also roughly independent of �. Instead of pre-
senting a large collection of graphs generated on these sys-
tems and to facilitate a comparison between the correlation
functions with different Gaussian dielectric distributions, it is
best to consider the results for the unnormalized C�1� inte-
grated over . This gives a good idea of how the general
features of C�1� depend on � and �� and shows how the
-integrated data for C�1� can be used to distinguish between
systems with different � and ��.

The area under the curves of C�1� versus  �i.e., in the
unnormalized data� is computed as a function of �� for each
�. Using linear regression the integrated data are fitted by the
form

A��,��� = A0��� + S�����
�. �12�

Here A�� ,��� is the area under the unnormalized curve,
A0���=A�� ,��=0�, and S��� and ���� are fitting parameters
determined for each of the � data. Equation �12� gives a
general idea of the increasing strengths of the speckle corre-
lations with increasing disorder. In addition, it gives impor-
tant statistical properties of the dependence of the speckle
correlation functions on the disorder. The form in Eq. �12� is
from the scaling theory of condensed matter and statistical
physics, and we expect from general principles for it to be
valid for our system. A central focus will be the determina-
tion of the critical exponent, �, and its universality proper-
ties. The reader is referred to the Appendix for more details
regarding scaling, critical exponents, the idea of universality,
and the application of these ideas to the speckle correlation
function.

Results for the exponent ���� plotted versus � are shown
in Fig. 2�a� for both �=0° and �=90° data. The dependence
of ���� on � is found to be quite similar in both �=0° and
�=90° plots. In general ���� is slightly greater for �
0 than
for ��0 but is otherwise relatively independent of �. This
indicates that � deviates only weakly from universality with
respect to �.

The �=0° and �=90° values of ln S��� and the integrated
area, A0���, under the ��=0 curves are presented in Tables I
and II, respectively. For comparison, in Table II the ratio of
A0��� computed at �=0° divided into A0��� computed at �
=90° is given. It is interesting to note from this ratio that
A0��� at these two different angles exhibits quite different
behaviors as functions of �. This is also true of ln S as a
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function of � between the two different �, and ln S is also
seen to be strongly dependent on � for both angles. These
properties strongly mark the dielectric properties of the scat-
tering system. In this regard it is noted in general that the
addition of dielectric randomness in � quickly increases the
diffuse scattering and the speckle correlation functions in our
system. The reason for this is that our system was originally
chosen to have weak scattering so that same-path and time-
reversed path enhancement could be observed.

An equally important contribution in the speckle correla-
tion function to that of C�1� is the C�10� contribution. In Figs.
1�c� and 1�d� results for C�10� versus  with �=−5 are shown
for �=0° and �=90°, respectively. The data are for systems
of spheres randomly and homogeneously distributed in space
with the same distributions used in generating the data pre-
sented in Figs. 1�a� and 1�b�. As in Figs. 1�a� and 1�b� the
areas under the 0° 		90° curves are normalized to unity.
The results at �=0° for C�1� and C�10� are very similar. How-
ever, the �=90° results for C�1� and C�10� exhibit small quan-
titative differences near =0° as �� is increased. These dif-
ferences could be useful in determining the statistical
disorder of the system of spheres from measurements of the
correlation functions.

FIG. 2. A plot of ���� versus � is given for both �=0° �dia-
monds� and 90° �squares� for the �a� homogeneous system for C�1�,
�b� homogeneous system for C�10�, and �c� periodic on average sys-
tems for C�1� composed of spheres with dielectric constants that are
statistically distributed about the average value �.

TABLE I. Random dielectric constant parameters ln S��� and
A0��� for �=0°.

Type � ln S A0

homogeneous C�1� −5 −3.56±0.01 1.600�10−4

homogeneous C�1� −2 −3.91±0.01 6.979�10−6

homogeneous C�1� 0 −5.496±0.06 2.700�10−8

homogeneous C�1� 2 −3.93±0.09 5.219�10−8

homogeneous C�1� 5 0.27±0.04 1.124�10−3

periodic C�1� −5 −2.92±0.03 2.044�10−3

periodic C�1� −2 −3.28±0.05 9.482�10−5

periodic C�1� 0 −4.79±0.08 3.042�10−7

periodic C�1� 2 −3.37±0.06 8.158�10−7

periodic C�1� 5 1.04±0.07 1.858�10−2

homogeneous C�10� −5 −3.52±0.02 1.600�10−4

homogeneous C�10� −2 −3.88±0.01 6.979�10−6

homogeneous C�10� 0 −5.50±0.06 2.112�10−8

homogeneous C�10� 2 −3.96±0.08 5.219�10−8

homogeneous C�10� 5 0.31±0.05 1.124�10−3

TABLE II. Random dielectric constant parameters ln S��� and
A0�� ,�=90° � /A0�� ,�=0° � for �=90°.

Type � ln S A0��=90° � /A0��=0° �

homogeneous C�1� −5 −7.48±0.01 52.57

homogeneous C�1� −2 −7.63±0.01 150.30

homogeneous C�1� 0 −9.00±0.01 832.56

homogeneous C�1� 2 −7.48±0.09 803.46

homogeneous C�1� 5 −3.19±0.05 29.39

periodic C�1� −5 −4.82±0.01 11.50

periodic C�1� −2 −5.13±0.01 31.64

periodic C�1� 0 −6.66±0.05 215.40

periodic C�1� 2 −5.11±0.08 155.19

periodic C�1� 5 −0.78±0.04 6.09

homogeneous C�10� −5 −7.78±0.06 52.51

homogeneous C�10� −2 −7.68±0.01 157.62

homogeneous C�10� 0 −9.00±0.01 1064.73

homogeneous C�10� 2 −7.48±0.19 802.88

homogeneous C�10� 5 −3.23±0.04 29.18
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A discussion of the enhancements in Fig. 1�c� at =0°
and 90° in the ��=0 data was given in Ref. 1. At =0° the
correlation is between scattering processes containing com-
ponents composed of same-path sequences. These give rise
to enhancements by the same mechanisms as discussed
above for the contributions of these processes to the C�1�

term. At =90° time-reversed sequences are involved, and
our earlier discussions regarding these types of processes ap-
ply. The phase coherent enhancements are �as was found in
Fig. 1�a�� observed to be overwhelmed by the rapid increase
in the general angle diffuse scattering effects on the correla-
tion function as the media fluctuations increase. A discussion
of the enhancement at =0° in Fig. 1�d� was given in Ref. 1.
In this system the enhancement is related to same-path se-
quences near =0° and to the merging of the �=0° with the
�=90° correlation functions at =0°. The arguments for the
changes in the C�10� correlation function presented in Figs.
1�d� upon increasing disorder are the same as given earlier
for the results in Fig. 1�b�.

In Tables I and II results from a linear regression fit of Eq.
�12� to the unnormalized -integrated data for C�10� are pre-
sented. This is done as the same general features �i.e., peaks
and regions of angular independence� of C�10� in Figs. 1�c�
and 1�d� are found as � is changed. The results for ln S���
and A0��� in Tables I and II for the C�1� and C�10� systems are
similar in spite of the differences in the plots in Figs. 1�b�
and 1�d�. Our general remarks regarding ln S and A0��� are
the same for both C�1� and C�10�. The exponents ���� for the
C�10� systems are shown in Fig. 2�b�. The dependence of ����
on � exhibits similar features in C�1� and C�10�. In particular,
the results for ���� are weakly dependent on � and display a
behavior that is roughly universal.

2. Periodic on average spatial distributions

In Fig. 3 results on the periodic on average systems for
C�1� versus  are presented for �=−5 at �=0° and 90°. The
presentation in Fig. 3�a� of the �=0° results is similar to that
given in Fig. 1�a� for C�1� at �=0° for the homogeneously
random systems. In the periodic on average system four
peaks are observed as a function of  in the ��=0.0 data for
C�1�. These arise from phase coherent effects discussed later.
Figures 3�b� and 3�c� are for C�1� �normalized as in Fig. 1�b��
at �=90° for 0° 		15° and 60° 		90°. In the region
15° 		60°, C�1� at �=90°, aside from a small peak at
30°, is flat and featureless. The peaks observed in the �
=90° data are associated again with phase coherent pro-
cesses.

The phase coherent peaks in Fig. 3 are related to a rem-
nant of Bragg scattering in the periodic on average system,
i.e., at the conditions for k or k� to undergo Bragg scattering.
They are manifest in an increase in the speckle correlation
functions near the Bragg scattering angles. As discussed in

TABLE III. Random radii parameters ln S��� and A0��� for �
=0°.

Type � ln S A0

homogeneous C�1� −5 1.42±0.27 1.600�10−4

homogeneous C�1� −2 −0.28±0.27 6.979�10−6

homogeneous C�1� 0 −3.62±0.19 2.112�10−8

homogeneous C�1� 2 −2.10±0.01 5.219�10−8

homogeneous C�1� 5 4.91±0.25 1.124�10−3

FIG. 3. Plots of the angular speckle correlation function along
the C�1� envelope for the periodic on average system with �=−5,
scanned as a function of  for �a� �=0°, �b� �=90° for 0° 	
	15°, and �c� �=90° for 60° 		90°. The curves in �a� are nor-
malized in the same way as are the curves in Fig. 1�a� and the
curves in �b� and �c� are normalized in the same way as are those
curves in Fig. 1�b�. In �a� curves are presented for ��=0.0, 0.25,
0.5, 1.0, 1.5, and 2.0. As �� is increased the curves flatten. In �b�
and �c� curves are presented for ��=0, 0.5, 1.0, 1.5, and 2.0. In �b�
��c�� at =0° �90°�, the curves are increasing functions of ��.
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Ref. 1 for the ��=0 limit, the periodic on average disordered
system preferentially directs the scattering along paths near
the Bragg conditions. These phase coherent processes give
an enhancement to the speckle correlation function because
of the different way in which they contribute to


 d��k�q�
d�

d��k��q��
d�

�
and


 d��k�q�
d�

�
 d��k��q��
d�

� .

In the first average the phase coherence in the two similar
scattering processes is retained in the average whereas in the
second average the two similar phase coherent scattering
processes contribute to an uncorrelated average. With the
increase in dielectric disorder, the isotropic component of
scattering increases rapidly and the speckle correlation func-
tions rapidly increase at general angles so as to swamp the
phase coherent features.

A series of �=−5,−2,0,2,5 systems were studied for the
periodic system, showing the same rates of decrease of the
phase coherent enhancements. The plots exhibit the same
general features of peaks and angular independent regions as
the data presented in Fig. 3, and only a comparison of the
various unnormalized C�1� and C�10� data integrated over  is
made. Equation �12� is used again to fit data for the periodic
on average system. Figure 2�c� presents results for ���� ver-
sus � from such a fit of the C�1� data from the periodic on
average systems. In Tables I and II results from the periodic
on average systems are presented for ln S��� and A0��� from
fits of Eq. �12� to all the � simulation data for C�1�.

The data in Fig. 2 and Tables I and II indicate that there is
a similar dependence on the dielectric constant for the data
generated from the homogeneous and the periodic on aver-
age systems. Regions of increase or decrease of A0���, ln S,
and ���� on increasing � seem to correlate between the sets
of homogeneous and periodic on average data for the same
�=0° and 90°. �It is important to note, however, that the
absolute values in these data can be quite different.� This is
the case even though geometrically the functional depen-
dence of C�1� and C�10� on  can be quite different in the
homogeneous and periodic on average systems. The critical
exponent � again displays a mild dependence on �, but does
not appear to depend on whether the system has homoge-
neous or periodic on average disorder.

B. Distribution of radii

We consider spatially random systems of spheres com-
posed of identical dielectric media. In addition to the ran-
domness in the location of spheres in space, the radii of the
spheres are also given a statistical distribution. The radii of
the spheres in the array are Gaussianly distributed about an
average radius �R� with a variance �R

2 = ��R− �R��2�. An addi-
tional constraint is placed on the distribution that the radii of
the spheres must be positive so that when a negative radius is
generated in the simulation it is removed from the distribu-

tion. This has a small effect on the large �R cases treated in
our studies. To facilitate a comparison between systems with
different statistical distributions of radii, the �R� and �R are
chosen such that �R3�= �R�3+3�R��R

2 is fixed. This maintains
a constant volume filling fraction of the random array of
spheres in space for both homogeneous and periodic on av-
erage systems. Simulation data generated in this way are
studied as functions of �, �R�, and �R for fixed spatial filling
fraction.

In Fig. 4 C�1� versus  is presented for the homogeneous
and periodic on average systems with �=−5. The definitions
of the homogeneous and periodic on average systems are the
same as used in generating the data presented in Figs. 1 and
3. Results are shown in Figs. 4�a� and 4�b� for the homoge-
neous random system for �=0° and 90°, respectively. As in
Fig. 1 the plots are normalized so that the area under each
curve is unity over 0° 		90° for both �=0° and �=90°.
The �=0° data in Fig. 4�a� are shown for �R / �R�=0.0, 0.01,
0.05, 0.1, 0.25, and 0.5 corresponding to 2��R� /�=0.4,
0.399 96, 0.399 00, 0.396 08, 0.377 73, and 0.331 93, respec-
tively. For 0.05��R / �R� the peaked features in the data near
=0° and 90° disappear so that the curves for C�1� are essen-
tially flat over 0° 		90°. The origin of these peaks are
from same-path �=90° � and time-reversed path �=0° �
scatterings, and the disappearance of the enhancements is
due to the swamping of the phase coherent contributions by
the increased general scattering in the system. In this regard,
notice that the �R / �R�=0.0 data are the same as the ��=0.0
data discussed above and that �R / �R��0.0 is just a different
type of disorder from ���0.0 disorder. In the �=90° plot of
Fig. 4�b�, curves are shown for �R / �R�=0.0, 0.05, 0.1, 0.25,
and 0.5. Here the mechanism for the =0° enhancement is
the same as that given for the enhancement in Fig. 1�a�, and
the changes in C�1� with increasing �R arise from similar
effects as those found in the systems with dielectric constant
disorder.

Data for periodic on average systems are shown in Figs.
4�c� and 4�d�. These present C�1� versus  for �=0° and �
=90°, respectively. The four peaked structure in C�1� for �
=0° is only present for �R / �R�=0.0 and 0.01. At higher dis-
orders these features disappear and C�1� is relatively flat and
featureless. Multiple scattering is important but contributes
isotropically. In Fig. 4�d�, the C�1� results at �=90° increase
in the neighborhood of =0° and 90° with increasing �R. For
�R / �R�=0.25 and 0.5 the peaks near =3° and 75° are
shifted to =0° and 90°, respectively, and decreased in am-
plitude. This is due to the destruction of Bragg phase coher-
ence due to the increasing difference �i.e., increasing �R�
between the scattering particles.

A similar analysis to that presented in Sec. V A can be
made for the dependence of the area under the unnormalized
curves of C�1� on �R. This facilitates a discussion of the
results for a variety of dielectric systems, having plots with
similar topographical features. In Fig. 5 and Tables III and
IV results of a linear regression to the form

A��,�R� = A0��� + S�����R/�R��� �13�

are given for the homogeneously random system. �Note: To
be brief, results for the periodic on average systems are omit-
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ted.� In Eq. �13�, A�� ,�R� is the area under the unnormalized
curve, A0���=A�� ,�r=0�, and S��� and ���� are fitting pa-
rameters determined from each of the � data.

Figure 5 presents data for ���� as a function of � ranging
between �=−5 and 5. The curve shows a gradual increase
from �����1.5 to �����2.0 over this range. As with the

homogeneous systems in Fig. 2, ���� is greater for �
0 than
for ��0. In general ���� exhibits a mild form of universality
in its dependence on �.

Both Tables III and IV indicate a strong dependence of
A0��� and S on �. For the �=0° data, these quantities are
largest at �= ±5 and decrease considerably in the range of �
between these upper and lower limiting values of �. For the
�=90° data in Table IV, A0��� as a function of � exhibits
peaks at �= ±5 and is smaller at � between these limits. To a
lesser degree this is also found in the data for S in Table IV.
These variations in A0��� and S are reasonable in that the
scattering is more intense in systems with higher dielectric

FIG. 4. Plots for the �=−5 homogeneously random system of the angular speckle correlation function along the C�1� envelope, scanned
as a function of  for �a� �=0° with �R / �R�=0,0.01,0.05,0.10,0.5, top to bottom on the left-hand edge, and �b� �=90° with �R / �R�=0,0.05,
0.10,0.25,0.5, bottom to top on the left-hand edge. Plots for the periodic on average system of the angular speckle correlation functions along
the C�1� envelope, scanned as a function of  for �c� �=0° with �R / �R�=0,0.01,0.05,0.10,0.25,0.50, top to bottom on the left-hand edge, and
�d� �=90° with �R / �R�=0,0.05,0.10,0.25,0.50, bottom to top on the right-hand edge.

FIG. 5. A plot of ���� versus � for both �=0° �diamonds� and
�=90° �squares� for C�1� in the homogeneous random system with
statistically distributed radii.

TABLE IV. Random radii parameters ln S��� and A0�� ,�
=90° � /A0�� ,�=0° � for �=90°.

Type � ln S A0��=90° � /A0��=0° �

homogeneous C�1� −5 −2.43±0.20 52.57

homogeneous C�1� −2 −3.97±0.15 151.78

homogeneous C�1� 0 −7.27±0.08 1064.24

homogeneous C�1� 2 −5.78±0.06 800.59

homogeneous C�1� 5 1.56±0.15 29.39
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contrasts. One might expect the scattering fluctuations in
such systems to be increased.

VI. KERR NONLINEAR MEDIA

In this section results are presented for a random spatial
distribution of spheres having identical radii and Kerr non-
linear dielectric constants. The spheres in the simulation are
of the same spatial distribution and sphere radii as those used
to generate the data presented in Fig. 1. Now, however, the
dielectric constant for the ith sphere of the array is given by
�i=�+����ri��2. Here � is the linear part of the dielectric
constant, � is the Kerr parameter, and ��ri� is the field wave
function at the ith sphere. The parameters � and � are the
same for each sphere so that the differences in the sphere
dielectric constants arise from the difference in � at each
sphere.

In the generation of data from the simulation an iterative
approach is taken. To start with, for a given incident field
�inc�r� and �i=� the ��ri� at each dielectric sphere is com-
puted. The results for ��ri� are then used to compute the
speckle correlation functions and new values of �i to be used
in the following iteration. From �inc�ri� and the new �i the
fields ��ri� are again computed and used to obtain new �i for
the next iteration. In terms of the sphere dielectric constants
�i generated in a given iteration, the wave function ��ri� at
the spheres in the next iteration is given by

��rk� = 
l
�1̃ − M̃

�̃ − 1

4�
��

c
	2�

rk,rl

−1

�inc�rl� , �14�

where �̃=�i�i,j. The system is treated in this fashion until
convergence to a speckle correlation function is achieved.

In Fig. 6 results are presented for C�1��q ,k �q� ,k�� versus
 with �=0° for a number of Kerr nonlinear systems. �Note:
The areas under the curves in Fig. 6 have not been normal-
ized to unity.� Figures 6�a� and 6�b� show plots with
���inc�r��2=0, ±0.1 for �=−5 and 5, respectively. These give
an indication, for typical values of �, of the � dependence of
the Kerr nonlinear results. In particular, the difference be-
tween the ���inc�r��2= ±0.1 data and the �=0 data is a mea-
sure of the functional derivative of the speckle correlation
functions with respect to ��r�. It is seen that the results for
�=−5 are much less sensitive to the Kerr term than are those
for �=5 and the effects of the sign of � on the data are
reversed in the two plots. For small Kerr nonlinearity the
Kerr term generally shifts the correlation function plots
along the vertical scale while retaining a similarity in general
topographical features to the �=0 curves. This is not surpris-
ing as the scattering in the system is approximately s wave.
For much higher nonlinearities, however, this changes and
the differences in the plots for increasing ����2 become much
more complicated. In Fig. 6�c� C�1� versus  for the �=5
system is studied for different ���inc�r��2=0, ±0.025, and
±0.1. A change in the general topographical features of the
speckle correlation function is observed in the plots for
���inc�r��2=0.025. This comes in part from the correlation in
the dielectric changes between neighboring spheres that
arises when the dielectric field on a given sphere of the sys-

tem depends on the scattered fields it receives from its neigh-
boring spheres. It indicates that, even for the small nonlin-
earities considered here, topographical changes can occur in
the speckle correlation functions for changing intensities of
the incident light.

FIG. 6. Plots for the homogeneously random systems of the
angular speckle correlation functions along the C�1� envelope,
scanned as a function of  for �=0°. The system is the same as
those considered in Fig. 1 but instead of a Gaussian random distri-
bution of dielectrics the dielectric constants of the spheres are given
for the ith sphere by �i=�+����ri��2. In �a� �=−5 and ���inc�r��2
=0.1 �bottom curve�, =0 �middle curve�, =−0.1 �upper curve�; �b�
�=5 and ���inc�ri��2=0.1 �top curve�, =0 �middle curve�, =−0.1
�bottom curve�; and �c� �=5 and ���inc�r��2=0.1 �top curve�,
=0.025 �next lower curve�, =0 �middle curve�, =−0.025 �next lower
curve�, and =−0.1 �lowest curve�.
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VII. CONCLUSIONS

The sensitivity of C�1� and C�10� to the variances of the
radii or dielectric constant distributions or Kerr term has
been studied. Both homogeneous and periodic on average
random distributions of the positions of the spheres were
treated. It was found that �1� the correlation properties of
systems of identical spheres are quite different from those in
systems in which the spheres have an additional dielectric or
radii disorder. �2� Multiple scattering effects are important
and contribute with increasing dielectric or radii disorder in
an isotropic manner in . Phase coherent same-path, time-
reversed path, and Bragg scattering correlations are quickly
overwhelmed by these isotropic contributions. �3� The
-integrated intensity of C�1� and C�10� depend strongly on ��

and �R. These intensities scale with a power law dependence
on �� or �R, having critical exponents ���� that depend
weakly on the dielectric constant but exhibit universality
with respect to the homogeneous or periodic on average na-
ture of the system. This is an indication that the data have no
scale �i.e., some fixed values of �� or �R� that sets a change
in behavior of the data as a function of dielectric or radii
disorder. On the other hand, the -integrated intensity of the
speckle correlation functions for ��=�R=0 strongly depend
on the values of � and �. �4� The C�1� and C�10� contributions
to the correlation functions for �=0° and 90° exhibit differ-
ent types of enhancements related to same-path and time-
reversed path sequences phase-coherent processes. This is
due to the fact that for �=0° and 90° these functions sample
different regions of wave vector space. Another consequence
of this sampling difference is that the phase coherent pro-
cesses are found to be overwhelmed at different rates be-
tween the �=0° and 90° contributions to the speckle corre-
lation functions. At points in wave vector space where the
�=0° and 90° plots merge, a peak is found in �=90° data
due to the difference in these two samplings. �5� In systems
with Kerr nonlinearities, small intensity variations are found
to shift the correlation functions along the vertical axes in
plots of C�1� versus . In some cases a small variation in the
field intensity causes topographical changes in the features of
the correlation functions plotted as functions of . Small
variations of field intensities can be used to study the func-
tional derivatives of the correlation functions with respect to
the �.

The results presented confirm the possibility of using the
angular speckle correlation functions to discern between me-
dia having the same average value but different variances of
the dielectric constant distribution, or between random arrays
of particles having the same average radius but different
variances of the radii distribution. Not only do the magni-
tudes of the speckle correlation functions change, but the
relative contributions of the �=0° and 90° components
change at different rates as well as some of the peaked fea-
tures. This is of interest as recently measurements have been
made of the speckle correlation functions from surface
scattering33,34 and it is hoped that our results would stimulate
interest in similar measurements on the scattering from par-
ticulates. Such suggested applications of speckle for mea-
surements on various biophysical systems and in engineering
applications have been recently reviewed.35,36

As a final point we note that in this work the scalar wave
theory was used. The scalar wave theory has been frequently
applied in studies of the speckle correlations of scattered
light and the Anderson localization of light in random
media.1,4–19,24–29 In many of these discussions the interest is
in phase coherent processes and not on the polarization de-
pendence of the scattering. The treatment is given for unpo-
larized incident light and, in addition, multiple scattering of
light in a random medium tends to average the polarization
so that the scalar wave theory should be acceptable. For the
scattering in highly symmetric and periodic systems such
averaging is not present so that the scalar wave theory is less
acceptable. In our system of spheres a problem is the scat-
tering from the �=−2 system.37 In the complete vector treat-
ment the long wavelength scattering cross section from a
dielectric sphere diverges at �=−2 due to the excitation of a
polariton in the sphere. �This divergence is not present in the
scalar wave treatment.� The divergence is an artifact of the
induced polarization of a dielectric sphere in a uniform ex-
ternal field and comes from the spherical geometry. It is a
problem with the vector treatment and must itself be resolved
in the application of the vector theory. A resolution of this
problem in the vector treatment and in our model is to realize
that in a real particulate system the particles will not all be
spheres and this will tend to reduce the effect.37 In addition,
there will be accompanying nonlinearities and dielectric
losses that will limit the resonance. A possible way to handle
some of these types of effects in the scalar wave theory is by
treating the dielectric constant in the scalar wave model as an
effective dielectric constant or to realize that the correlation
effects of unpolarized incident light that we are studying are
averaged by the multiple scattering between spheres and the
fact that the correlation functions are those for the total scat-
tered energy current. The results from our model should in
any case give a reasonable representation of the phase coher-
ent properties and the relative intensities of the various dif-
ferent wave vector samplings in the C�1� and C�10� contribu-
tions to the speckle correlation functions. Other simulation
methodologies �e.g., the coupled dipole method,38,39 finite-
difference time-domain methods,40 and finite element
methods41� that treat the vector nature of light could find
possible applications to our system. The scalar wave treat-
ment, however, has been extensively used as a basis for the
study of speckle correlation functions and, as has been
pointed out by Feng,24 is a good general treatment that
handles the phase coherent multiple scattering of light,
acoustical, and scalar electron waves by a general random
media. It thus lends itself to a dual purpose.

Finally, we emphasize that our formal solution in Eq. �8�
for the scattering from the system of spheres is the T-matrix
formulation of scattering. �A form of Eq. �8� was originally
used in discussions of speckle in Phys. Rev. B 64, 165204
�2001� that are related to those given in this paper.� The
T-matrix formulation is a common formulation that is found
in most textbooks and used in most papers that treat all mul-
tiple scattering from random systems. The off-diagonal com-

ponents of M̃ in Eq. �8� are responsible for the multiple
scattering between the spheres. In addition, the scalar wave
theory has been commonly used in many recent discussions
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of speckle correlations of unpolarized incident light such as
in Ref. 1 and most of the other recent papers referred to in
this paper. This is due to the origin of speckle in phase co-
herent properties, the tendency to average over polarizations
of light in the scattering by random media, and the definition
of the correlation function in terms of total field intensities.
The scalar wave theory does not limit the multiple scattering
between the spheres in the system and is of interest itself as
it is applicable to a variety of nonoptical scattering problems.
Some comparisons of the scalar wave treatment with experi-
ments have also been favorably made.6,12,13,15,16,24,27,29

APPENDIX: SCALING

We used the fit A�� ,���−A0���=S�����
� based on the

theory of scaling and critical exponents in statistical physics.
In our treatment � is a critical exponent.

Scaling theory is based on the observation that about
points in phase space at which a system undergoes changes
of state, the properties of the system often exhibit power law
forms in their dependence on the variables driving the
change of state.42–46 The systems in question can be quite
general statistical systems;42–48 e.g., thermodynamics, ran-
dom geometric, nonlinear dynamical, animal and chemical
populations, scattering from disordered media, etc. General
references for a detailed treatment are Refs. 42 and 46–48.

To understand our application, let us argue by analogy
with magnetic systems. First consider the ferromagnetic tran-
sition. Below and near the critical temperature, Tc, it is well
known that the magnetization as a function of temperature,
M�T�, obeys the relation M�T�=M0��Tc−T� /Tc��. Here � is
the critical exponent. It is found in some cases to exhibit

certain universality properties, i.e., it only depends on prop-
erties such as lattice or spin dimensionality and is indepen-
dent of other details of the system such as the strengths of
the exchange interactions or whether the lattice is a bcc or
fcc lattice. There are other critical exponents, however, in
some magnetic system that can depend on the details of the
interactions and are in this sense not universal.

In our scattering systems the speckle correlation function
and its integrated envelope exhibit a type of state transition.
If the media formed by the spheres were perfectly periodic or
perfectly uniform, then the system would exhibit only Bragg
diffraction or a refractive index, respectively. Whichever of
these two occurs depends on the wavelength of the light. The
introduction of positional disorder, dielectric disorder, and/or
radii disorder drives the system to exhibit diffuse scattering.
Each of these three types of disorder are characterized by its
own set of parameters measuring the degree of the disorder.
Each set of parameters can independently drive the diffuse
scattering. The speckle correlation functions we study are
computed for the diffuse scattering and become zero in the
absence of disorder. �This is similar to the magnetization
which disappears at Tc.� Consequently, power law behavior
should be observed in the disorder parameters determining
the speckle correlation functions in our system. The object in
this paper is to determine the power law dependence of the
speckle correlation functions on the various disorder param-
eters, the critical exponents, and the universality properties
of the critical exponents. Another important aspect of the
power law dependence of the speckle correlation function on
the disorder parameters is that it indicates the absence of a
natural scale that determines how the system depends on the
disorder variables.
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