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Polarization dynamics and formation of polar nanoregions �PNR� in relaxor ferroelectrics is considered
within a model of interacting short range polar clusters formed by off-center ions in highly polarizable
materials. The model is applicable on the mesoscopic level and takes explicitly into account the distribution of
cluster relaxation times and the existence of quenched random fields which control the size of PNR. Using
self-consistent random field theory and continuous time random walk approximation, a relationship is estab-
lished between the average polarization dynamics contributing to the low frequency dielectric response, and the
local polarization dynamics determining NMR spin lattice relaxation time �Blinc et al., Phys. Rev. B 63,
024104 �2001�; Cordero et al., ibid. 71, 094112 �2005��. The lengthscale of PNR estimated from the obtained
universal relationship between the parameters of the soft mode dispersion curve and the static dielectric
permittivity is in agreement with the experiment �Vakhrushev et al., Physica B 156-157, 90 �1989��. The
predicted proportionality, between the intensity of diffuse neutron scattering from dynamic PNR and square of
PNR correlation length, which has been recently a subject of controversy, is also in agreement with experiment
by Vakhrushev et al. Therefore, we conclude that the model captures essential features of the static and
dynamic behavior of relaxor ferroelectrics, and could be used for the characterization of new relaxor materials.
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I. INTRODUCTION

Relaxor ferroelectrics such as PbMn1/3Nb2/3O3 �PMN�,
PbSc1/2Ta1/2O3 �PST�, or La-modified PbZr1−xTixO3 �PLZT�
have been a long standing puzzle for the ferroelectric com-
munity. Due to their unusual characteristics, very promising
for industrial applications, numerous efforts have been spent
recently to reveal the underlying physics of relaxor behavior.
The main complexity includes compositional disorder in
multivalent systems accompanied by high lattice polarizabil-
ity. As a result, at low temperatures relaxor ferroelectrics
transform into the new state of matter, intermediate between
spin �dipole� glass and ordinary ferroelectrics, with well de-
fined regions of correlated local polarization extended on the
nanometer scale. It is now commonly accepted that the polar
nanoregions �PNR� are responsible for extraordinary relaxor
properties such as saturation of the field cooled dielectric
permittivity, history dependent and hysteresis phenomena,
large piezoelectric effect, etc.

There is now more and more evidences that unusual be-
havior of relaxor ferroelectrics is accompanied by off-center
displacement of atoms from their centrosymmetrical posi-
tions. The role of the off-center ions in stimulating “glassy”
properties of lead based relaxors was indicated first by Burns
and Dacol,1 who discovered the condensation of local polar-
ization below well defined temperature Td �Ref. 2� and sug-
gested the applicability to these materials of the model3 de-
veloped earlier for mixed perovskites like KTa1−xNbxO3
�KTN�, or K1−xLixTaO3 �KLT�, where off-center Li and Nb
ions have been well identified4 �also see recent review5 and
Ref. 6�.

According to the model in Ref. 3, the local polarization in
highly polarizable materials appears due to interaction of off-
center ions with the lattice displacements associated with the

soft polar mode. Such interaction leads to the crossover from
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the displacive type of polarization behavior to order-disorder
type, characterized by the appearance of the dynamic central
peak7 in Raman and neutron scattering. Recent experiments
�e.g., Refs. 8–12� confirm the appearance of dynamic central
peak at T�Td.

In the central peak regime off-center ions form short
range reorienting clusters with the size rc�a �a is the lattice
constant�. Each cluster involves simultaneous displacements
of other “host” atoms adjacent to a given off-center ion.
Therefore effective dipole moment d* of each cluster exceeds
significantly the proper off-center ion dipole moment �de-
fined as a product of the effective charge and off-center dis-
placement�, and the relaxor behavior can be thought to arise
from the mutual interactions of such giant dipole moments
accompanied by the effect of compositional disorder.

A consequence of the compositional disorder is the exis-
tence of quenched random field resulting in the suppression
of ferroelectric phase transition due to strong local field fluc-
tuations. It has been shown13,14 that the effect of local field
fluctuations could be included in a self-consistent manner,
similar to Curie-Weiss approach �but avoiding mean field
approximation�, if one introduces the random field probabil-
ity density. Such self-consistent random field theory
�SCRFT� has been already applied to interacting polar clus-
ters in PMN and PST to explain anomalies of dielectric per-
mittivity, the crossover from relaxor to ferroelectric phase,
E-T phase diagram, etc.15

In the present paper we concentrate on the correlation
effects between short range polar clusters resulting in the
formation of PNR. The latter are the regions of correlated
polarization whose correlation length could exceed signifi-
cantly the cluster size rc. The theory developed below de-
scribes the features of a single “average” polar nanoregion,
size of which is equal to the average correlation length Rc
�rc. Therefore the possible interactions between different

PNR are not taken into consideration. Also we consider
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transverse optic-type lattice displacements of the soft mode
symmetry,16 which contribute to the formation of “dynamic
PNR” responsible for the finite width of the Raman central
peak and large dielectric response of relaxors. We therefore
will not discuss the origin of quasistatic PNR persisting at
lower temperatures.17–19

In Sec. III we calculate the static structural factor of po-
larization and estimate the lengthscale of PNR. In Sec. IV we
consider dynamic effects extending approach15 on the ac-
count of fluctuation dynamics. A complexity of polarization
dynamics in relaxor ferroelectrics stems from the coexistence
of the critical dynamics, a common feature of any pretransi-
tional phenomena, and the glassy dynamics of polar clusters.
The effect of such dichotomy on the dielectric response,
which is a probe of long wave length polar fluctuations, was
analyzed earlier.15 Here we will provide more emphasis on
the local polarization dynamics which control, e.g., NMR
spin lattice relaxation time T1.20,21

Interrelation between the dynamics of long wavelength
fluctuations �contributing to the dielectric response� and the
local polarization dynamics provides an important test for
distinguishing between the different models of relaxor be-
havior. A widely used model considers each PNR as an in-
dependent relaxor characterized by a single exponential di-
electric relaxation. It implies that the observable experi-
mental characteristics are the average values over the differ-
ent PNR.22–26 With the additional assumption that a PNR
fluctuates as a whole, i.e., that the average and local polar-
ization obey the same relaxation law, one comes to the
conclusion21,27 that T1

−1 should be proportional to the imagi-
nary part of the dielectric susceptibility measured at NMR
frequency.

However, this scenario is not realized in PMN �see Fig. 1�
and apparently in other relaxors as well.21 The temperature
slope of �� is much more sharp than the slope T1

−1, and the
position of the maximum of T1

−1 and �� do not necessarily
coincide.

A possible explanation of this inconsistency is that the
local polar clusters inside PNR are not tight binding entities,

FIG. 1. Experimental �squares� and theoretical �solid line� tem-
perature dependence of 207Pb NMR spin lattice relaxation time T1

in PMN at Larmor frequency 79.4 MHz. Experimental data are
taken from Ref. 20. Theoretical curve is calculated from Eq. �44�.
Dotted line reproduces the temperature dependence of log10 ���	� at
	=112 MHz taken from Ref. 26. Vertical positions of the dotted
and solid lines are adjustable parameters.
and the local polarization could propagate along the PNR by
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diffusion type modes similarly to that in regular ferroelec-
trics. At the temperatures where dynamics of the average
polarization undergoes critical slowing down, the diffusion
type relaxation of local polarization dominates and partially
smooths the effect of the critical slowing down on the local
polarization dynamics.

In Sec. IV we will show that the effect of the distribution
of cluster relaxation times on polarization dynamics could be
described in terms of continuous time random walk stochas-
tic process which has been widely explored for the analysis
of different transport phenomena and aging effects in disor-
dered solids. In Sec. V the predictions of the theory are com-
pared with the experiment in PMN.

II. MODEL

We start from the assumption that in relaxor ferroelectrics
due to compositional disorder some atoms might occupy off-
center positions near the vacant lattice sites and form short
range polar clusters involving displacements of adjacent at-
oms. Orientation of each off-center ion could be described by
the unit vector li located at the ith unit cell characterized by
the radius vector ri, and their interaction energy could be
written in the form

V = −
1

2 �
i,j=1

N

�li · Ĵij · l j . �1�

� j� means the summation over the unit cells occupied by
off-center ions. We assume that off-center ions are randomly
distributed over the unit cells with the average atomic con-
centration c, neglecting the correlation between the chemical

and polar ordering. Ĵij � Ĵij�rij� with rij =ri−r j; N is the total
number of off-center ions in the crystal.

According to the model in Ref. 3, Fourier components Jq
of the interaction matrix Jij =�qJqeiq·rij �where �q corre-
sponds to the summation over the reciprocal regular lattice�
could be written as

Jq =
4�d*2

�l
Kq, Kq =

gq

V0�1 + rc
2q2�

, �2�

with ĝq standing for a projection operator of transverse po-
larization fluctuations �gq

2=gq�

ĝ�� = ���� −
q�q�

q2 � , �3�

� ,�=x ,y ,z , ��� is a Kronecker � symbol, V0 is the crystal
volume, and �l is the “lattice” dielectric susceptibility at fre-
quencies higher than the typical reorientation frequencies of
off-center ions.

The form �2� of Jq assumes that the interaction Jij is me-
diated by the high frequency polar lattice fluctuations. These
fluctuations could be either in the form of soft phonon mode
or a highly polarizable relaxational mode contributing to the
central peak.28 The only requirement is that off center ion
reorientations are slow enough to ensure the validity of the
adiabatic approximation: lattice polarization induced by off-

center ions adiabatically follows the instantaneous off-center
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ion orientation. This induced polarization could be written
as3

P�ri� = d*�
j

�Kij�rij� · l j . �4�

The meaning of Eqs. �4� and �2� is that each off-center ion
polarizes the lattice near itself by the displacement of other
atoms forming a short range cluster of the size rc
�	d
K�r�
exp�−r /rc��. Thus, Eq. �1� could be interpreted
as the energy of the cluster-cluster interactions.

The first isotropic term in Eqs. �2� and �3� is responsible
for ferroelectric correlations between cluster giant dipole
moments and is significant if rc exceeds the lattice constant.
The second term describes the dipolar anisotropy competing
with ferroelectric ordering.

Quenched random field Ei
QF originated from composi-

tional fluctuations in multivalent systems29–31 is an additional
source of anisotropy preventing the ferroelectric ordering. It
is commonly accepted nowadays that in relaxors this source
of anisotropy is much stronger than dipolar anisotropy. Thus,
the resulting Hamiltonian characterizing the cooperative be-
havior of polar clusters in relaxor ferroelectrics could be
written in the form

H = �
i

�li · Ei, �5�

where Ei is the local field �in energy units� which experi-
ences ith polar cluster:

Ei = �
j

cjĴij · l j + Ei
QF + Eex, �6�

Eex=d*Eex, where Eex is the applied electric field, �i denotes
the summation over all unit cells, and ci is the random occu-
pation number of the unit cell �ci=0,1�.

Note that in contrast with the model32 the present ap-
proach uses short range interaction potential instead of infi-
nite range potential. This allows to estimate the correlation
effects which is the main goal of the present paper. Also the
model is not restricted to the constraint of continuous sym-
metry of the vectors �li�, and could be applied to relaxors
with cubic and uniaxial33 symmetry as well.

III. SELF-CONSISTENT RANDOM FIELD THEORY
FOR STATIC POLAR CORRELATIONS

According to Eq. �4�, static structure factor of polarization

Ŝq= 
Pq
2� could be written as

Ŝq = Tr�K̂q · Ĉq · K̂q� , �7�

where Ĉq is the static structure factor of off-center ion ori-
entations

Ĉq
�� = n�
li�li�� + �

j�i


li�lj��q� . �8�

A traditional approach to calculate the structure factor is
the use of the mean field theory along with the fluctuation-

34
dissipation theorem. This approach is not applicable in re-
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laxors due to strong local field fluctuations. SCRFT has been
developed13,14 as an alternative to mean field theory to take
into account the probability density of the local field �instead
of only mean field parameter in Curie-Weiss theory�. Before
considering the correlation effects, we review briefly the
general framework of the SCRFT and introduce the nota-
tions.

A. Long range order parameter and static field cooled
susceptibility

The average polarization induced by off-center ions could
be written as


P� = nd*L , �9�

where n=N /V0 and L= 1
N�i
li� is the orientational order pa-

rameter. The SCRFT equation for long range orientational
order parameter L reads

L =� dE
l�Ef�E,L� , �10�

where 
l�E characterizes the thermal average value of the
vector li in the local field E and f�E ,L� is the probability
density of the local field depending parametrically on the
value of L

f�E,L� =� dEi
QFf�Ei

QF����E − �
j

cjĴijl j − Ei
QF − Eex��

�li�

.

�11�

Here 
. . .��li�
denotes the thermal average over the variables

�ll�, and the overbar stands for configurational average over
occupation numbers �ci�; f�EQF� is the probability density of
quenched random field.

The dependence f�E ,L� on L, a key point of SCRFT,
makes Eq. �10� a self-consistent equation with respect to L
which could be considered as a generalization of the Curie-
Weiss mean field equations on the account of local field fluc-
tuations. Indeed, in the absence of fluctuations one could
replace f�E ,L� by ��E−E0L� and Eq. �10� reduces to the
usual Curie-Weiss mean field equation �� is the Dirac delta
function, and E0=4�nd*2 /�l is a mean field parameter�.
However, when the local field fluctuations are significant,
SCRFT could lead to very different results compared with
Curie-Weiss theory. In particular, it reproduces a crossover
from long range to mesoscopic order depending on the
strength of the local field fluctuations thus providing, e.g., a
natural explanation of relaxor to ferroelectric phase transi-
tions with a slight change of system composition.

Note also that Eq. �10� is exact for two and eight orienta-
tions of the vectors �li�, as soon as the function f�E ,L� is
known, and could be considered as a reasonable approxima-
tion for the other models of the off-center ion energy surface.
A remark should be made here regarding spherically sym-
metrical distribution of off-center ion displacements which
relates such relaxors to the class of systems with continuous
symmetry. As known, in this case both dipole anisotropy35

36
and quenched random fields are destroying factors of long
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range order due to transverse Golstone mode type fluctua-
tions of the local field �not included in the formulation of
SCRFT�. However, in relaxors, in contrast with magnetic
Heisenberg systems, the local barriers for cluster reorienta-
tions suppress the Golstone type fluctuations thus imposing
the limitations on continuous symmetry approximation.

The function f�E ,L� depends on fluctuations of the po-

tential Ĵ�rij� due to fluctuations of occupation numbers �ci�
�so called random bond fluctuations considered in detail in
Ref. 14�; on the thermal fluctuations of vectors �li�; and on
the probability density of the quenched random fields
fQF�E�.37,13 Apparently in relaxor ferroelectrics quenched
random fields is the main source of local field
fluctuations.29,30,38 In this case the problem is simplified,
since we could neglect the thermal fluctuations of �li� and the
function f�E ,L� reduces to

f�E,L� = fQF�E − E0L − Eex� . �12�

Equations �10� and �12� could be transformed to modified
Landau type free energy, and has been applied earlier13 to
PMN and PST to describe the crossover from relaxor to
ferroelectric state, E-T phase diagram, first order phase tran-
sitions, etc.

For example, assuming that the external field is parallel to
the z axis, static or field cooled permittivity could be calcu-
lated using its definition �FC−�l=4�
Pz� /Eex at Eex→0 re-
sulting in

�FC − �l =
�lk�T�

1 − k�T�
, �13�

where

k�T� = E0� dEz
�
lz�E

�Ez
fQF��Ez��L=Ls

. �14�

Ls is the equilibrium order parameter being a solution of Eq.
�10� below the ferroelectric transition temperature Tc. For a
second order phase transition k�Tc�=1 �in mean field ap-
proximation k�T�=Tc /T, where Tc=E0 /3 for three-
dimensional vectors �li��. In relaxors with incipient ferroelec-
tric order like PMN, k�T��1 and Ls=0 at any temperature.
In this case Eq. �13� reproduces the low temperature satura-
tion of the field cooled permittivity, which in disordered sys-
tems deviates from the true equilibrium permittivity.

At T→0k�T�� fQF�E=0� meaning that the dielectric re-
sponse is proportional to the fraction of clusters not frozen in
random fields. This is a well known effect of static freezing
in quenched random field. The dynamic freezing at finite
frequencies will be discussed in Sec. III.

B. Static structure factor of polar correlations:
Formation of PNR

The structure factor Ĉq could be derived within SCRFT
using the following steps. First derive the self-consistent lin-

ear equations for the local variables �
li�� assuming Eex=0
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li� =� dEi
QFf�Ei

QF����E − �
j

cjĴij · l j − Ei
QF − Eex�� ,

�15�

where 
¯�QF denotes the average over the quenched random
field. In contrast with Eq. �10� we do not take here the aver-
age over the site occupation numbers �ci�.

Considering as above quenched random fields as the main
source of local field fluctuations, i.e., neglecting the thermal
fluctuations of variables �li�, we could write the following
equation instead of Eqs. �10� and �12�:


li�� =� dE�
l��EfQF�E� − �
j

cjJij
��
lj��� �16�

or, in the linear approximation


li�� = �
j

cj�ij
��
lj�� , �17�

where

�̂ij =
k�T�
E0

Ĵij . �18�

�̂ij could be considered as the effective interaction energy,
renormalized by the local field fluctuations. In the mean field

approximation �̂ij = Ĵij /T.
Note that the validity of approximation �16� depends on

the amplitude of quenched random field fluctuations. An al-
ternative approach which takes into account the thermal fluc-
tuations of the variables �li� has been considered in Ref. 14.

Following the Ornstein-Zernike approach �random phase
approximation�, assume that the vector l0 in Eq. �17� has a
given �random� orientation and use the definition of the cor-
relation function

Ĝi0
�� � 
li�l0�� = 

li��l0

l0�� , �19�

where Ĝij =Ĝ�rij� and 
li�l0
is the conditional average value

of li at given value of l0. The equation for Ĝi0 could then be
obtained by multiplying Eq. �17� by l0� and taking the aver-
age. Thus we have

Ĝi0 = c�
j

�̂ijĜ j0 +
1

3
�̂i0. �20�

Taking the Fourier transform of Eq. �20�, we obtain

Ĝq =
1

3

�̂q

1 − N�q
, �21�

which with the use of Eqs. �7� and �13� gives the final form
for the static structure factor of transverse polarization �as-
suming �FC��l�

Ŝq =
nd*2

3�l

�FC

�1 + Rc
2q2��1 + rc

2q2�
ĝ , �22�
where
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Rc
2 =

�FC

�l
rc

2. �23�

Equations �22� and �23� show that the correlation effects be-
tween short range polar clusters result in the formation of
PNR. The latter are the regions of correlated polarization
whose correlation length Rc exceeds significantly the cluster
size rc at temperatures where �FC��l. One can see from Eq.
�23� that the lengthscale of PNR could be easily estimated
from the rather universal relationship between the parameters
�FC, �l, and rc.

The correlation function �22� determines the energy inte-
grated scattering intensity I�q��Sq measured in x-ray or dif-
fuse neutron scattering experiments. One can see from Eq.
�22� that I�q=0���FC�T�, and I�q� is a Lorentzian function at
q2rc

2
1.
Note that in Ref. 39 the expression for Sq similar to Eq.

�22� has been obtained with the use of the fluctuation-
dissipation theorem and conventional mean field theory pro-
viding

�FC =
�l

1 − Tc/T
, Tc =

4�nd*2

3�l
,

as discussed in Sec. III A.
However, the effect of the local field fluctuations on the

structure factor cannot be treated with the use of the
fluctuation-dissipation theorem, which is a well known con-
sequence of the configurational disorder.40

IV. POLARIZATION DYNAMICS AS CONTINUOUS TIME
RANDOM WALK

A. Basic equations

In order to describe the polarization dynamics of PNR, we
start from the traditional assumption that nonequilibrium sys-
tems approach equilibrium via the quasiequilibrium states �or
states of local equilibrium�. In our case this assumption cor-
responds to the validity of the following master equation:

d
li�t��
dt

= −
1

�i
�
li�t�� − 
l̃i�t��� , �24�

where �i is the relaxation time of the dipole moment of ith

cluster, and l̃i�t� is the local equilibrium value of the vector li

satisfying the equation �assuming Eex=0�


li�t�� = �
j

cj�̂ij · 
l j�t�� . �25�

Equations �24� and �25� could be combined as

d
li�t��
dt

= −
1

�i
�
li�t�� − �

j

cj�̂ij · 
l j�t��� . �26�

Due to the compositional disorder the relaxation time �i is a
random variable characterized by the probability density
g��i�. The distribution of relaxation times leads to the non-
exponential relaxation, which is described by the relaxation
function
174117
q�t� = 
e−t/�i��i
= �

�min

�max

d�ig��i�e−t/�i, �27�

where 
. . .��i
denotes the average over the distribution of re-

laxation times.
For the smooth functions g��i�, Eq. �27� reduces to

q�t� � �
t

�max

d�ig��i� . �28�

Thus, the variable q�t� describes the fraction of clusters ef-
fectively frozen at time t, and therefore has a meaning of
spin glass order parameter at finite time scale.15

In order to average Eq. �26� over the distribution of relax-
ation times it is convenient to rewrite it in the equivalent
integral form


li�t�� = li�0�e−t/�i +
1

�i
�

0

t

dt�e−t�/�i�
j

cj�̂ij
l j�t − t��� . �29�

When averaging over the distribution of relaxation times we
used the following decoupling approximation in Eq. �29�

� 1

�i
e−t�/�i
l j�t − t����

��i�
= � 1

�i
e−t�/�i�

�i



l j�t − t������i�
.

�30�

One can show by iterations that decoupling approximation
�30� corresponds to neglecting correlations between �i ,� j for
i� j.

With the use of approximation �30�, Eq. �29� reduces to
the form


li�t�� = li�0�q�t� − c�
0

t

dt�
dq�t��

dt�
�

j

�ij
lj�t − t��� , �31�

where we replaced the occupation numbers cj by their aver-
age value, and for simplicity of notations included in the
symbol 
¼� the average over the relaxation times as well.

Equation �31� has a well defined stochastic interpretation.
It describes polarization fluctuations as continuous time ran-
dom walk stochastic process �with dissipation�, which has
been widely used to describe different kinetic phenomena in
systems with configurational disorder, such as hopping
conductivity,41 spin diffusion,42 transport of noncoherent
excitons,43 etc. Recently this approach has been extended to
describing aging effects in disordered systems �see, e.g., Ref.
44�. Decoupling approximation of the type of Eq. �29� has
been introduced in Refs. 42 and 43.

Equation �31� is the basic equation for the analysis of
dynamic correlation and autocorrelation �or local correlation�
effects. We will consider them separately.

B. Dynamic structure factor of polarization

In analogy with Eqs. �7� and �8�, the dynamic structure
factor of polarization

Ŝq	 = 
Pq�t�Pq�0��	 �32�
is defined as
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Ŝq	 = Tr�K̂q · Ĉq	 · K̂q� , �33�

where

Ĉq	 = n�
li�t�li�0�� + N
li�t�l j�0��q	� . �34�

It is convenient to present Ĉq	 in terms of Fourier compo-
nents lq=�ilie

−qri as

Ĉq	 = �
−�

�

dte−i	tĈq�t�, Ĉq�t� = 
lq�t�lq�0�� . �35�

Taking into account that 
lq�t�lq�0��= 

lq�t��lq�0�lq�0��, where

lq�t��lq�0� is the average of lq�t� under the condition that


lq�t=0��= lq�0�, we obtain the equation for Ŝq�t� using the
spatial Fourier transform of Eq. �31�

Ŝq�t� = Ŝqq�t� − �
0

t

dt�
dq�t��

dt�
N�̂q · Ŝq�t − t�� , �36�

where static structure factor Ŝq is given by Eq. �22�.
Solving Eq. �36� we obtain dynamic structure factor Ŝq	

in the form

Ŝq	 = Im
Ŝq

	

1 − Q�	�
1 − N�qQ�	�

, �37�

where Im stands for the imaginary part of the expression and

Q	 = �
0

�

dte−i	tdq

dt
= � 1

1 + i	�
�� . �38�

At 	→0 we have Q	� →1, Q	� →	
��, and Eq. �37� trans-
forms to the Lorentzian form

Ŝq	 = Ŝq
�q

1 + 	2�q
2 , �q =


��
1 − N�q

, �39�

where �q is the characteristic relaxation time for the qth Fou-
rier component of polarization fluctuations. One can see that

for q=0 the relaxation time �q=0=

��

1−k�T� , meaning that the

slowing down of relaxation with the temperature decrease
consists of two contributions: �a� slowing down of cluster
dynamics described by the dependence 
��T�� and �b� the
critical slowing down described by the factor �1−k�T��−1.

Equation �39� is similar to that in regular order-disorder
ferroelectrics, with relaxation time � replaced by its average
value 
�� and Tc /T replaced by the function k�T�. The devia-
tion from regular behavior is pronounced with the increase of
the parameter 	
�� when the dynamic structure factor devi-
ates from the Lorentz form.

For the typical condition 1−N�qQ	� �N�qQ	� , or 1
−kQ	� �kQ	� , providing that the real part of the frequency
dependent dielectric permittivity exceeds its imaginary part

�see Eq. �46��, we obtain from Eqs. �37� and �22�
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Ŝq	 =
nd*2

3�l

Q�

	

�FC

�1 + Rc
2q2��1 − kQ	� + rc

2q2�
ĝ . �40�

Dynamic structure factor determines inelastic scattering in-
tensity. It determines also the local correlation effects.

C. Local polar correlations

Fourier components of autocorrelation function of local
polar fluctuations are equal to

G	
loc = �

q

Sq	. �41�

Since all modes with q�0 contribute to autocorrelation
function �41�, the effect of the critical slowing down on local
dynamics is less pronounced than on the mode with q=0.
Indeed, even at k→1 when �q=0→�, the relaxation times of
the modes with q�0 have the finite values �q

−1=Dq2, due to
diffusion like propagation of the local polarization �D
=rc

2 / 
�� is the diffusion coefficient�.
The correlation time of local polarization fluctuations is

given by

�loc =

�
q

Sq	=0

�
q

Sq

, �42�

which with the account of Eqs. �21� and �39� results in

�loc =
��1 − k + 1�

2�1 − k

�� . �43�

One can see that for the typical for relaxor values of the
parameter 1−k
10−2, the effect of the critical slowing down
on the local polarization dynamics is significant.

For the correlation function G	
loc at finite frequencies we

obtain with the use of Eqs. �40� and �41�

G	
loc �

Q	�

	

1

����	�−1 + ��FC
−1

, �44�

where ���	 ,T� is the real part of the complex dielectric sus-
ceptibility.

The correlation function G	
loc determines in particular

NMR spin lattice relaxation rates

T1
−1 � G
Larm

loc , �45�

where 
Larm is the Larmor frequency. Therefore, Eq. �44�
could be directly compared with the experiment.

When obtaining Eq. �44� we have taken into account that
the relaxation function Q	 determines as well the frequency
dependent dielectric susceptibility. The dielectric susceptibil-
ity could be derived from Eq. �24� in the presence of applied
electric field, or with the use of the simpler approach.15 It has
the form

��	� − �l =
�lkQ	

1 − kQ	

. �46�
At 1−kQ	� �kQ	� , which is equivalent of �����, we obtain
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���	� =
�l

1 − kQ	�
, �47�

���	� =
���	�2

�l
Q	� . �48�

One can see comparing Eqs. �44�, �45�, and �48� that al-
though both T1

−1 and �� are proportional to Q	� , the tempera-
ture dependence of �� is enhanced by the strong temperature
dependence of the multiplier ���	�2, compared with the
rather weak temperature dependence of the multiplier

1

����	�−1 + ��FC
−1

determining T1. This result explains qualitatively the rather
weak temperature dependence of NMR spin lattice relaxation
time observed in PMN �Ref. 20� below the freezing tempera-
ture Tf �corresponding to the maximum of ���.

In Fig. 2 we illustrate the capability of the theory in the
description of local polarization dynamics comparing the be-
havior of T1�T� and ���T� for the model functions �FC and
Q	�T�, employed earlier15 for demonstration of giant poly-
dispersivity in dielectric response.

The temperature dependence of �FC used in the calcula-
tions is shown in Fig. 3. It reproduces the Curie-like high-
temperature behavior of field-cooled permittivity and its high
saturation value at low temperatures. Such T dependence of
�FC could be obtained from Eqs. �13� and �14� with 
lz�E

= 1
�3

tanh�Ez /�3� �eight well potential for off-center ion reori-
entations�, and Gaussian shape of f�E�QF assuming that the
width of f�E�QF is slightly temperature dependent. The func-
tions Q	� �T�, Q	� �T�, have been calculated assuming the
Arrhenius temperature dependence of ��T�=�mine

U/T and the
typical shape of the reorientational barrier probability density
g�U� discussed in Ref. 15. The values of �� and �� shown in
Figs. 2 and 3 have been obtained with the use of Eqs. �47�
and �48�.

One can see from Fig. 2 that the temperature slope of T1
is less sharp than the slope of ��−1, which indicates that the
local polarization dynamics in relaxors is less sensitive to the

FIG. 2. Comparison of the theoretical temperature dependences
of the NMR spin lattice relaxation time T1 �solid line� and �� �dot-
ted line� for the model of relaxor dielectric response presented in
Fig. 3. Vertical position of the solid line is the adjustable parameter.
174117
critical slowing down than the dynamics of the average po-
larization. Also the positions of T1�T� minimum and �� maxi-
mum do not coincide, in qualitative agreement with the
experiment.20 More detailed comparison of the theory with
the experiment will be discussed in the next section.

V. COMPARISON WITH THE EXPERIMENT IN PMN

A. Two time scales associated with Nb and Pb
reorientation dynamics

We presented above a physical model of formation and
polarization dynamics of PNR in relaxor ferroelectrics. Ac-
cording to the model, finite size of polar nanoregions origi-
nates from the competition of indirect �mediated by high
frequency polar lattice fluctuations� attractive interactions
between off-center ions which favor the ferroelectric order-
ing, and the interaction of off-center ions with static random
fields which induce the random anisotropy and prevent the
ordering. The only prerequisites for the model to be appli-
cable are �a� the existence of off-center displacements of
atoms and their thermal reorientations between equivalent
off-center positions and �b� high polarizability of the lattice
at frequencies 	� 
��−1.

The existence of off-center displacement of both Pb and
Nb atoms in PMN are currently well documented.1,20,19 It has
been recognized also a particular role of Nb atoms in the
formation and anomalies of the central peak observed in Ra-
man scattering experiments.10 These latest findings indicate
that Nb atoms are responsible for the fast reorientation dy-
namics consistent with the fact that the multiwell potential
for Nb reorientations is caused by the small Nb ionic radius.
Apparently, Nb fast motion is responsible for the dielectric
permittivity of PMN at high frequencies 
1011 Hz. At these
frequencies the dielectric susceptibility �
�Nb is almost
temperature independent. Its values, close to 1000 according
to high frequency dielectric spectroscopy,12 significantly ex-
ceed dielectric permittivity �SM corresponding to the soft
mode ��SM
80 at T=300 K �Ref. 38��.

Off-center displacement of Pb has a very different origin.
Apparently it is caused by the random electric fields due to
charge unbalance inside a unit cell.45 In this case one would
not expect that for a given configuration of the random fields,

FIG. 3. Theoretical temperature dependences of the real �solid
lines� and imaginary �dotted lines� parts of the dielectric permittiv-
ity for the different frequencies of applied field corresponding to the
model functions �FC�T� and Q	�T� discussed in the text.
-7
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the single Pb ion potential energy possesses multiminima
structure. Pb reorientations would more probably take place
if they associate with the motion of more than one Pb ion
within clusters �i.e., the cluster potential energy is character-
ized by the multiwell structure�. The time scale of such clus-
ter dynamics would be much longer than the time scale of
Nb dynamics, and responsible for the low frequency dielec-
tric anomalies.

This picture reminds one in some sense, of a situation in
K1−xLixTa1−yNbyO3 with both Li and Nb ions being in off-
center positions, such that fast Nb dynamics contributes to
the Raman central peak46 and slow Li dynamics contributes
to low frequency dielectric dispersion.47 In PMN �as well as
in K1−xLixTa1−yNbyO3� a crossover to central peak behavior
�Nb relaxational mode� has been observed at high tempera-
tures indicating the onset of strong interaction of off-center
Nb ions with the soft mode polarization, which results in the
indirect Nb-Nb interaction �1� and �2�, where �l and rc should
be considered, respectively, as dielectric permittivity �SM and
correlation length rcSM

associated with the soft mode.3 Indi-
rect Nb-Nb interactions mediated by the soft mode lead to
the enhancement of the Nb dielectric response �Nb and the
associated correlation length rcNb

�according to Eq. �23�,
rcNb

2 = ��Nb/�SM�rcSM

2 �.
When the temperature decreases and approaches freezing

temperature Tf there becomes significant long wave length
cooperative dynamics of short range clusters contributing to
low frequency dielectric anomalies. This cooperative cluster
dynamics originates from the indirect cluster-cluster interac-
tions mediated by the polarization fluctuations associated
with the Nb relaxational mode, since the latter is much more
polarizable than the soft mode. Indirect cluster-cluster inter-
action is described by the same Hamiltonian �1� and �2�,
where now �l and rc should be replaced, respectively, by high
frequency Nb dielectric permittivity �Nb and the correlation
length rcNb

. The proposed picture of relaxor behavior of
PMN allows one to make some quantitative predictions by
comparing the theory with the experiment.

B. Length scale of polar nanoregion

According to Eq. �23� and the discussion above, the aver-
age size of PNR is given by

Rc
2 =

�FC

�Nb
rcNb

2 =
�FC

�SM
rcSM

2 . �49�

The parameter rcSM
could be estimated from the soft mode

dispersion curve 	q
2=	0

2+c2q2, or 	q
2=	0

2�1+rcSM

2 q2� with

rcSM
= c

	0
. Using the neutron scattering data,48 we obtain

rcSM
�1.7a �a�4 Å is the PMN lattice constant�.

Since �SM�	0
−2, the parameter rcSM

2 /�SM is temperature
independent. In this case Eq. �49� predicts the proportionality
between the square of the correlation length Rc

2 and the static
field cooled permittivity.

In order to demonstrate that this proportionality takes
place in the experiment we plot in Fig. 4 the values of the
inverse static dielectric susceptibility between 500 and

200 K �using the scaling coefficient�. The experimental data

174117
are taken from Ref. 24 for T�350 K and from Ref. 49 for
T�350 K �above T�350 the low frequency dielectric per-
mittivity in PMN is frequency independent�.

The values of Rc obtained in neutron scattering
experiments50,22 are presented on the same graph. Although,
as follows from the analysis in Ref. 16, these values of Rc
represent the combined effect of dynamic and static atom
displacements �the latter are not under discussion in this pa-
per�, the contribution of dynamic displacements to Rc domi-
nates at least at T�250 K, where the correlation length of
static displacements is less than Rc.

18

One can see that the proportionality Rc
2��FC holds with

very good accuracy, Also the obtained value of the scaling
coefficient 0.9 Å−2 is close to the experimental value
�SM/rc

2�2 Å−2 �for �SM�80 and rcSM
�1.7a�. That is, the

estimated values of Rc
2 approximately two times larger than

the corresponding experimental values shown in Fig. 4 �e.g.,
at T=300 K Rc

theor
190 Å compared with Rc
exper
130 Å�.

Thus we conclude that the size of PNR in relaxor ferro-
electrics could be estimated from the rather universal inter-
relation �23� between the parameters of the soft mode disper-
sion curve and the static dielectric permittivity. In Ref. 50 the
proportionality I�q=0��Rc

2 of the neutron diffuse scattering
intensity has been observed in agreement with Eqs. �22� and
�23� and contrary to the authors’ expectations I�q=0��Sq=0

�TRc
2 based on the improper use of the fluctuation-

dissipation theorem.50,51

In fact, according to the fluctuation-dissipation theorem
we have in the mean field regime

Sq=0 =
T��FC − �l�

4�
=

Tc�l

4��1 −
Tc

T
� =

nd*2

3�l
�FC, �50�

which coincides with Eq. �22� at q=0, and results in I�q
=0��Rc

2.
Also, as we mentioned in Sec. III B, the effect of

quenched random fields on the structure factor cannot be
treated with use of the fluctuation-dissipation theorem, and
instead the approach developed in Sec. III B should be used.

C. Interrelation between NMR spin lattice relaxation and
frequency dependent dielectric response

As mentioned in Sec. IV C, NMR spin lattice relaxation
−1

FIG. 4. Experimental temperature dependences of the inverse
static dielectric permittivity �solid line� �Refs. 24 and 49� and
square of the inverse correlation length of PNR in PMN �squares�
�Ref. 22�.
rate T1 in ferroelectrics is proportional to the autocorrelation
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function of polarization G
Larm

loc . Thus, the interrelation be-
tween T1 and ���
Larm� provides a meaningful test to probe
the different models of relaxor dynamics, since these quan-
tities depend on different parts of polar fluctuation spectrum.

The results of the theory for the temperature dependence
of T1 are presented in Fig. 1 along with the experimental
results20 on T1 and ��. One can see from Fig. 1 that T1 devi-
ates significantly from ��, which shows that dynamics of
local and long wave length polar fluctuations are quite dif-
ferent. In particular, the time scale of the local polarization
dynamics at low temperatures is shorter than the time scale
of the average polarization dynamics of PNR. The same ten-
dency has been observed in Ref. 21 for 139La NMR spin
lattice relaxation in PLZT �however, the authors21 ascribed
the difference between �� and T1 to the contribution of non-
polar atomic motion rather than to the diffusion type propa-
gation of the local polarization�.

The solid line in Fig. 1 has been calculated from the con-
tinuous time random walk model, Eq. �44�, which takes into
account diffusion type polarization propagation inside each
PNR. Since the probability density g��i� of cluster relaxation
times is unknown, one could consider the function Q	� �T� in
Eq. �44� as a fitting function which determines both imagi-
nary part of permittivity �� shown in Fig. 5, and NMR spin
lattice relaxation time T1.

The function Q	� �T� used in the fit is presented in Fig. 6,
along with the function Q	� �T�, which has been reconstructed
from Eq. �47� using experimental data26 on the real part of
permittivity at frequency 	=112 MHz, which is close to
207Pb Larmor frequency 79.4 MHz. The data for �FC�T� has
been obtained from Ref. 26 using the values of �� for lower
frequencies and interpolation procedure similar to that dis-
cussed in Ref. 15. The value �l=1000 has been used accord-
ing to the discussion in Sec. IV A.

It is apparent that due to approximations involved �espe-
cially, neglecting the correlations between relaxation times of
different polar clusters� one could not expect that the same
function Q	� �T� would reproduce the exact temperature de-
pendence of both � and T . However, as one can see from

FIG. 5. Experimental �squares� and theoretical �solid line� tem-
perature dependence of the imaginary part of dielectric permittivity
in PMN. The solid line is calculated from Eq. �48� using the experi-
mental data �Ref. 26� on the real part of dielectric permittivity and
the values of Q	� presented in Fig. 6.
� 1
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Figs. 1 and 5, there is a reasonable agreement between the
theory and the experiment, which strongly supports the pro-
posed model of relaxor behavior of PMN.

At the same time the deviation of the theory from the
experiment indicates that the correlation effects between re-
laxation times of different polar clusters are not negligible,
and should be taken into account for the deeper understand-
ing of the complex relaxor dynamics.

Note also that the technique adopted in Refs. 33 and 26
for solving inverse problem on reconstructing the probability
density of relaxors from experimental data could be applied
for the reconstruction of cluster relaxation time probability
density g��� from the values Q	� �T�, Q	� �T�. The latter could
be extracted from dielectric measurements at different fre-
quencies.

VI. CONCLUSION

We have shown that the dynamic behavior of PNR in
relaxor ferroelectrics could be understood within the model
of interacting short range polar clusters induced by off-center
ions in highly polarizable materials. The polarization dynam-
ics is controlled by two main factors: �a� distribution of clus-
ter reorientation frequencies contributing to the local glass
like freezing and �b� distribution of the local fields originated
from quenched random field fluctuations controlling the ef-
fect of the critical slowing down.

The theory reveals the origin of PNR and gives a simple
estimate for the PNR size from a relationship involving the
parameters of the soft mode dispersion curve and static di-
electric permittivity. The neglect of correlations between re-
laxation times of different short range clusters incorporated
with the continuous time random walk framework allowed to
obtain the dynamic equations for local polarization dynamics
and establish the relationship between NMR spin lattice re-
laxation rates and frequency dependent dielectric response.

From the comparison between the theory and the experi-
ment in PMN we conclude that the polar clusters within PNR
are not tight binding entities, and diffusion type propagation

FIG. 6. The values of the real and imaginary part of the spectral
function Q	. The values of Q	� have been reconstructed from Eq.
�47� using the experimental data of �� �Ref. 26�. The values of Q	�
correspond to the best fit of the theory with both experiments pre-
sented in Figs. 1 and 5.
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modes control their local polarization dynamics. At the same
time, some deviation of the theory from the experiment in-
dicates that the correlation effects between relaxation times
of different polar clusters are not negligible, and should be
taken into account for the deeper understanding of the com-
plex relaxor dynamics.
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