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Pressure dependence of vibrational, thermal, and elastic properties of ZnSe: An ab initio study
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The density functional perturbation theory is employed to study the vibrational, thermal �within the quasi-
harmonic approximation� and elastic properties of ZnSe, and their pressure dependence up to transition pres-
sure. The calculations are performed using a pseudopotential plane wave method and local density approxi-
mation for the exchange-correlation �XC� potential. The semicore Zn 3d electrons are treated as valence states.
For comparison, nonlinear XC core corrections calculations are also performed, at zero pressure. Our results
for the above properties are generally speaking in good agreement with experiment and with similar theoretical
calculations, performed mostly at zero pressure. The linear thermal expansion is predicted to have strong
pressure dependence, and the temperature range in which it has negative values increases with pressure. The
heat capacity at constant pressure is predicted to have weak pressure dependence.
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I. INTRODUCTION

Since the demonstration of blue-green lasers fabricated
from ZnSe and its alloys,1 wide-band-gap semiconductors
have received and still receiving considerable attention. In
these important applications, epitaxially grown thin films of
these materials are usually used. In this work we will focus
mainly on the vibrational and thermal properties of ZnSe
under normal and high pressures �P�. The thermal properties
are one of the most basic properties of any material. Thermal
expansion is connected not only with thermal properties
�thermal conductivity, specific heat, etc.� but also it influ-
ences many other properties, such as the temperature �T�
variation of the energy band gap. Moreover, the knowledge
of the thermal expansion coefficient is especially important
for epitaxial growth.

Experimentally, the phonon spectra of ZnSe �at zero P�
have been determined using inelastic neutron scattering
�INS� by Hennion et al.2 Employing Raman spectroscopy,
Lin et al.3 have measured the frequency of the optical pho-
non modes at the � point, as well as the P variation of the
frequency and Grüneisen parameter of these modes. Using
67Zn Mössbauer spectroscopy, Karzel et al.4 have measured
the P dependence of the Lamb-Mössbauer factor �LMF� of
ZnSe. The observed decrease in LMF of ZnSe above
6.1 GPa has been attributed to a softening of phonon modes
well below the transition pressure �Pt=13.5 GPa�. The ther-
mal properties of ZnSe have only been investigated by two
quite old experiments.5,6 Moreover, there is a significant dis-
crepancy between their results for the linear thermal expan-
sion at low T, below 60 K.

Several calculations have been performed to study the dy-
namical properties of ZnSe, at zero and high pressures. The
thermal properties of ZnSe �at zero P� are investigated in a

few of them. These calculations can be classified into three
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categories: �i� Model calculations, using the rigid-ion
�RIM11�7 and the adiabatic bond charge �ABCM� models.8

The RIM11 model is used to calculate the phonon spectra �at
zero and 13.7 GPa pressures�, Grüneisen parameter and lin-
ear thermal expansion coefficient by Talwar et al.7 In these
calculations no softening of phonon modes has been ob-
tained. The ABCM model is utilized8 to calculate the phonon
spectra and specific heat of ZnSe at zero P. �ii� Ab initio
frozen-phonon calculations of the frequency of the phonon
modes at the � and X points, using full-potential linear
muffin-tin orbital �LMTO�,9 linear-augmented plane-wave
�LAPW�,10 and SIESTA �pseudopotential localized orbit-
als�10 methods. �iii� Density functional perturbation theory
�DFPT� calculations.11–20 This approach is used to study the
phonon spectra,21 Grüneisen parameter and linear thermal
expansion coefficient22 of ZnSe at zero P. However, in these
calculations the semicore Zn 3d electrons are treated as part
of the frozen core, and nonlinear exchange-correlation core
corrections23 �NLCCs� are included �hereafter these calcula-
tions will be referred to simply as NLCC�.

The main aim of work is to provide a thorough DFPT
investigation of the vibrational, thermal, and elastic proper-
ties of ZnSe, at zero and high pressures. The calculations are
performed by using a pseudopotential plane-wave approach
�PPPW� and the local density approximation �LDA� for the
exchange-correlation potential. The semicore Zn 3d electrons
are treated as valence states �hereafter these calculations will
be referred to as 3d�. For a better comparison with previous
theoretical results, some NLCC calculations are also per-
formed for ZnSe at zero pressure. The thermal properties are
obtained within the quasiharmonic approximation. Moreover,
the Born effective charge and the high-frequency static di-
electric constant are also calculated as functions of P.

This paper is organized as follows. In Sec. II, a short
outline of the used theoretical approach and computational

details are given. In Sec. III, our results are presented and
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discussed in comparison with the available experimental data
and other theoretical results. Finally, the main results and
conclusions are summarized in Sec. IV.

II. THEORY

A. Lattice dynamics: Interatomic force constants approach

The interatomic force constants �IFC’s� describing the
atomic interactions in a crystalline solid are defined in real
space as19

C��,����a,b� =
�2E

����
a � ����

b . �1�

Here, ���
a is the displacement vector of the �th atom in the

ath primitive unit cell �with translation vector Ra� along the
� axis. E is the Born-Oppenheimer �BO� total energy surface
of the system �electrons plus clamped ions�. The Fourier
transform of the IFC’s takes the following form:

C̃��,����q� =
1

N
�
a,b

C��,����a,b�exp�− iq · �Ra − Rb��

= �
b

C��,����0,b�exp�iq · Rb� . �2�

The C̃��,����q� include both ionic and electronic contribu-
tions. Each of these contributions is computed separately us-
ing DFPT.

The vibration frequencies �� j,q� and polarization vectors
�e��q � j�� of the phonon modes with wave vector q are de-
termined by solving the eigenvalue matrix equation

�
���

D̃��,����q�e����q�j� = � j,q
2 e���q�j� , �3�

where D̃��,����q� is the dynamical matrix, which is related to
the Fourier transform of the IFC’s according to the relation

D̃��,����q� =
1

�m�m��

C̃��,����q� . �4�

Since ZnSe is a polar compound, the macroscopic electric
field, caused by the long-range character of the Coulomb
forces, contributes to the longitudinal optical phonons in the
long-wavelength �q→0� limit. This effect is included by cal-

culating the nonanalytical part �C̃na� of the force constants,
given by19

C̃��,���
na =

4�e2

	0

�
��

�Z�,���
* q����

��

�Z��,���
* q���

�
����

q���
����
q��

. �5�

Here, Z* and �
 are, respectively, the Born effective charges
and the macroscopic high-frequency static dielectric tensors,
which are also calculated self-consistently using DFPT.
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B. Equation of state, thermal expansion, and heat capacity
in the quasiharmonic approximation

The knowledge of the entire phonon spectrum of a given
system enables the calculation of its thermodynamical prop-
erties and the relative stability of its different phases as func-
tions of T. The thermodynamical properties are usually de-
termined by the appropriate thermodynamical potential
relevant to the given ensemble. In the ensemble where the
sample volume �V� and T are independent variables, the rel-
evant potential is the Helmholtz free energy �F�. In the adia-
batic BO approximation, F of a semiconductor can be writ-
ten as

F = E + Fvib = E + Evib − TSvib, �6�

where Evib and Svib is the contribution of the lattice vibration
to the internal energy and entropy �S�, respectively. The elec-
tronic entropy contribution to S, vanishes identically for in-
sulators, and thus, it is not included in Eq. �7�. Even for
metals this contribution is usually neglected, although it is
easy to calculate. Thus, the key quantity to calculate in order
to have access to the thermal properties and to phase stability
is Fvib.

The Fvib is usually calculated within quasiharmonic ap-
proximation �QHA�.20,24 This means calculating Fvib in the
harmonic approximation, retaining only the implicit V de-
pendence through the phonon frequencies, and it is given
as20

Fvib�T,V� = kBT�
j,q

ln�2 sinh��� j,q�V�/2kBT�	 . �7�

Here, � j,q�V� is the phonon frequency of the jth phonon
mode with wave vector q �inside the first Brillouin zone
�BZ�� at fixed V, and kB is the Boltzmann constant. The QHA
accounts only partially for the effects of anharmonicity.
However, QHA is found to be a very good approximation at
temperatures not too close to the melting point.

For given T and V, the equilibrium state of a crystal is
determined by minimizing F with respect of all possible de-
grees of freedom. The equation of state �P versus V� of the
system is obtained by equating P to minus the derivative of
F with respect to V at constant T, or

P = − 
 �F

�V
�

T

. �8�

The thermal expansion is obtained directly from the equa-
tion of state, and the volume thermal expansion coefficient is
defined as

�V =
1

V

 �V

�T
�

P

. �9�

The linear thermal expansion coefficients for cubic crystals is
given as

�a =
1

3
�V. �10�

Due to anharmonicity effects, the heat capacity at constant

P �CP� is different from that at constant volume �CV�. The
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former, which is what experiments determine directly, is pro-
portional to T at high T, while the latter goes to a constant
which is given by the classical equipartition law: CV=3NkB
where N is the number of atoms in the system. The relation
between CP and CV is25

CP − CV = �V
2�T�B0VT , �11�

where B0 is the bulk modulus. Within QHA, CV is given as20

CV�T� = �
q,j

cq,j
V �T�

= kB�
q,j


�� j,q�V�
2kBT

�2 1

sinh2��� j,q�V�/2kBT�
, �12�

where cj,q
V �T� is the contribution to CV of the j ,q phonon

mode at a certain T.
In practice, the summation over the phonon eigenstates,

required to evaluate the above thermodynamic quantities, is
transformed into integration over the phonon frequency.24

This is because these thermodynamic quantities depend on q
and j only through the frequency �=� j,q.

C. Computational details

Our calculations are performed employing the ABINIT

package,26,27 which is a self-consistent PPPW code.28 For the
exchange-correlation potential we have used the LDA data of
Ceperly-Alder, as parametrized by Perdew and Zunger.29 The
wave functions are expanded in terms of plane wave �PW�
basis sets with kinetic energy up to 65 and 35 Ryd for the 3d
and NLCC calculations, respectively. Convergence tests have
shown that increasing the cutoff energy of the 3d calcula-
tions to 75 Ryd, changes the phonon frequencies by less than
1 cm−1 and the equilibrium lattice parameter by less than
0.001 Å. The high cutoff used in the NLCC calculation is
found necessary to get highly accurate phonon density of
states �g���� and, hence, accurate thermal properties. The
integration over the BZ is done using a regular 4�4�4
Monkhorst-Pack �MP�30 mesh. Convergence tests have
shown that this BZ sampling is sufficient to guarantee an
excellent convergence �less than 1 cm−1� of the calculated
phonon frequencies.

The 3d calculations were performed by using a Se
pseudopotential generated by employing Hamann’s
scheme,31,32 and a Zn pseudopotential �with 3d electrons are
included as valence states� constructed according to the
Rappe et al.33 optimization method. On the other hand, the
NLCC calculations are performed by employing Zn and Se
pseudopotentials generated following the Troullier-Martin
scheme.34 Ground state electronic configurations are used for
both the Zn and Se atoms. The generated pseudopotentials
are then transformed to the separable Kleinman-Bylander
form.35 All generated pseudopotentials are carefully tested
and they are found to have excellent transferability are free
from ghost states.36

The dynamical matrices were calculated, using DFPT, on
a uniform grid in the first BZ. For a nonpolar material the
dynamical matrix is analytic in reciprocal space and the

IFC’s are quite short ranged �i.e., negligible beyond a certain
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range Rmax�. In this case, the IFC’s can be obtained by Fou-
rier transformation of the dynamical matrix computed on a
discrete mesh in q space of spacing 
q�2� /Rmax. The so-
obtained IFC’s can be used to compute the dynamical matri-
ces at any arbitrary q point �i.e., a point not contained in the
original grid�. In case of a polar material, the dynamical ma-
trix displays a nonanalytic behavior in the q→0 limit �see
Sec. II�. Therefore, the nonanalytic contribution �Eq. �5�� is
subtracted from the dynamical matrix at each q point in the
grid. Fourier transforming these modified dynamical matri-
ces, gives the short-ranged IFC’s. To compute the dynamical
matrices at any q point, the above short-range IFC’s are
again Fourier transformed and added to the nonanalytic term.
We found that a 4�4�4 MP mesh �i.e., considering IFC’s
upto the ninth shell in real space� provides a very good con-
vergence: Variations in the calculated phonon frequencies of
less than 1 cm−1 are obtained by using a finer 8�8�8 mesh
�including IFC’s up to the 25th nearest-neighbor shell�. To
compute the thermal properties one needs the phonon density
of states, g���. The g��� calculations are carried out by em-
ploying the histogram method,37 using 400 channels with a
regular width of 5 cm−1. In order to get a relative mean error
smaller than 1% for all studied thermodynamical quantities,
we found it is sufficient to sample the phonon wave vectors
q by a 40�40�40 MP mesh.

III. RESULTS AND DISCUSSION

A. Structural properties

We first determine the equilibrium volume of the ground
state of the zinc-blende �ZB� phase of ZnSe by calculating
the total energy per primitive unit cell as a function of V. The
Murnaghan’s equation of state38 is then used to fit the calcu-
lated energy-volume data. The obtained structural parameters
are compared in Table I with the available experimental
data4,39 and other theoretical results.21,40–42 This table shows
that our NLCC calculations underestimates the equilibrium
lattice parameter �a0� by 2.2% and overestimates the static
bulk modulus �B0� by 8.2% �with respect to experimental
value of 64.7 GPa, see Table I�. The relaxation of the semi-
core Zn 3d electrons improves significantly the calculated
values of both a0 and B0: The relative error for a0 and B0
becomes 0.5 and 4.5 %, respectively. These errors are within
the acceptable error bars due to the use of LDA,21,22,40 which
reflects the reliability of our self-consistent calculations, and
the used pseudopotentials. It is worth noting that the NLCC
results of Ref. 21 are in much better agreement with experi-
ment than our NLCC results. This is because of the use of
specially designed pseudopotentials, in Ref. 21, which take
partially into account the relaxation of the semicore Zn 3d
electrons: The considered Zn and Se pseudopotentials are
adjusted linear combinations of several pseudopotentials
generated using different ionic valence configurations. On
the other hand, our NLCC calculations are standard ones �see
Sec. II C�.

Since we have access to the phonon frequencies, it is
tempting to investigate the effects of zero-point motion on
the structural properties of this system, although they are
expected to be quite small. This gives us results for a and B
0 0
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of 5.652 Å and 66.9 GPa, compared to those obtained with-
out this correction of 5.645 Å and 67.6 GPa. This correction
reduces the relative errors to 0.3 and 3.4 % for a0 and B0,
respectively.

As a further check and in order to highlight the P range of
interest, we have reinvestigated the structural phase transfor-
mation of ZnSe under high P. Our results for Pt of the ZB to
RS �11.5 GPa� and ZB to SC16 �9.5 GPa� phase transitions
are almost identical with those of Ref. 40. The SC16 phase
has simple cubic unit cell with 16 atom basis. This shows
that the first structural phase transformation �to SC16� is pre-
dicted to occur at 9.5 GPa. Experimentally, the observed first
transition in ZnSe is to RS structure at about 13.5 GPa �see
Ref. 4�. Thus, the main P range considered in this work is
between 0 and 9 GPa.

B. Elastic properties

The linear elastic constants are formally defined as
c��,��=���� /����, where � and � denote the externally ap-
plied stress and the strain tensors, respectively. The fourth-
rank tensor c has generally 21 independent components.
However, this number is greatly reduced when taking into
account the symmetry of the crystal. In the case of cubic
crystals, there are only three independent elastic constants
c11=cxx,xx, c12=cxx,yy, c44=cyz,yz. The c11, c12 and unrelaxed
�i.e., in absence of any internal displacement� c44 �c44

0 � elastic
constants have been calculated by computing the second de-
rivative of the BO energy surface with respect to the strain,
namely, c��,��=�2E /��������. This is performed at any V
�or P� by employing the DFPT approach. The relaxed elastic
constant c44 can be computed from the following rela-

43

TABLE I. Structural parameters of

Phase Method a0 �

ZB Present work-3d 5.6

Present work-NLCC 5.5

PPPW-LDA-NLCC �Ref. 21� 5.6

PPPW-LDA �Ref. 40� 5.6

PPPW-LDA �Ref. 41� 5.6

LAPW-LDA �Ref. 42� 5.5

LAPW-LDA �Ref. 10� 5.5

LAPW-GGA �Ref. 10� 5.5

LMTO-LDA �Ref. 9� 5.6

SIESTA-LDA �Ref. 42� 5.6

Expt. �Ref. 39� 5.66

Expt. �Ref. 4� 5.6

SC16 Present work 6.9

PPPW-LDA �Ref. 40� 6.8

RS Present work 5.2

PPPW-LDA �Ref. 40� 5.2

LAPW-LDA �Ref. 42� 5.1

SIESTA-LDA �Ref. 42� 5.2

Expt. �Ref. 4� 5.2
tion:
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c44 = c44
0 −

1

4a0
��TO

2 ����2, �13�

where � is the reduced atomic mass, �TO��� is the
transverse-optical �TO� zone-center phonon frequency, and �
is the internal-strain parameter that describes the relative
sub-lattice displacement due to the macroscopic strain.44

This quantity is also obtained using DFPT. As a check, the
elastic constants are also calculated by the direct approach,43

by imposing certain strain states and calculating the corre-
sponding stress, and � is also directly determined—by force
minimization. The results are shown in Table II. This table
shows that direct and DFPT approaches give almost identical
results, for both the elastic constants and �. Thus, in the
following discussion only the DFPT results will be consid-
ered. For comparison, we give in Table II the available ex-
perimental data and other theoretical results.

The discrepancies between the present 3d value for � and
the NLCC results are surprisingly quite large �of 13.6 and
22.5 % for the present and the Sörgel et al.45 results, respec-
tively�. These discrepancies are, thus, mainly due to the re-
laxation of the Zn 3d electrons. On the other hand, our result
with 3d electrons is in good agreement with the valence
force model result.46 The P variation of � �see Fig. 1� is
appreciable and shows a sublinear behavior.

Table II shows that the 3d values for the elastic constants
of ZnSe are in excellent agreement with the available experi-
mental data.47 The mean relative error at zero P is of 3, 7,
and 8 % for c11, c12, and c44, respectively. For c44, it should
be noted that a good agreement with experiment can be
achieved after taking into account the effects of the internal-

B, SC16, and RS phases of ZnSe.

B0 �GPa� B0� u v

67.6 4.29

70.0

65.0

68.9 4.36

70.5

72.44 4.02

71.4

72.7

81.1

62.45 4.05

64.7

69.3

73.74 4.45 0.1545 0.6425

63.9 5.5 0.1561 0.6421

84.64 4.59

4.28

90.72 4.92

92.16 3.47

104
the Z

Å�

45

43

62

23

06

44

68

71

33

66

76

67

05

81

82

68

72

88

99
strain relaxation. Our calculated values including the semi-
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core states are in better agreement with experiment than
those of previous NLCC,45 our NLCC and LMTO9 calcula-
tions. It is well known that the NLCC calculations overesti-
mate the binding energy and highly underestimates a0 �Ref.
48� and, hence, the overestimation of the elastic constants by
this approach is understandable. The LMTO calculations9

which are carried out by using the atomic sphere approxima-
tion �ASA� overestimate significantly the c11, c12 elastic con-
stants �and hence also the B0, see Table I�, while c44 is rea-
sonably reproduced. It is well known49 that ASA gives poor
electric constants.

Figure 1 depicts the variation of the elastic constants of
ZnSe with hydrostatic pressure, up to 9 GPa. It is evident
that, within the P range of interest, c11 and c12 increase
monotonically with P, whereas c44 shows a slight decrease.
In the inset of Fig. 1, we compare the P variation of c11, c12
and c44 in the 0–1 GPa pressure range, with available experi-
mental data of Ref. 50. Our results for c44 and its P variation
are in excellent agreement with experiment. For c11 and c12
the agreement with experiment is reasonable. However, their

TABLE II. Elastic constants �in GPa� and internal-strain param-
eter ��� of ZnSe. The superscript zero at c44 indicates the calculated
values without taking into account the internal-strain relaxation.
The experimental values of elastic constants are extrapolated to
zero pressure �Ref. 45�. VFM denotes the valence force field model.

c11 c12 c44 c44
0 �

Present work-3da 91.3 56.3 38.3 62.4 0.734

Present work-3db 91.2 55.7 39.6 63.2 0.735

Present work-NLCC 96.2 59.9 52.7 70.6 0.634

PPPW-LDA-NLCC �Ref. 45� 97.8 52.5 47.0 63.1 0.569

LMTO-LDA �Ref. 9� 107.2 67.5 37.2

VFM �Ref. 46� 0.723

ABCM �Ref. 8� 89.9 50.6 40.5

Expt. �Ref. 58� 94.3 57.3 41.3

Expt. �Ref. 47� 88.8 52.7 41.4

Expt. �Ref. 59� 82.8 46.2 41.2

aDFPT calculations.
bDirect calculations.

FIG. 1. Elastic constants and internal relaxation parameter ��� of
ZnSe as functions of pressure. Triangles �c11�, circles �c12�, and
squares �c44� are the experimental values obtained at T=295 K,

taken from Ref. 50.
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P variation shows a good agreement with experiments. The
discrepancy in the case of c11 and c12 between our results and
experiments is due to temperature effects. Indeed, the experi-
mental data of Ref. 50 are obtained at 295 K. It is found
theoretically, by ab initio calculations, that the elastic con-
stants decrease upon temperature increase.51 This is easy to
understand from the fact that increasing T leads to an in-
crease in the equilibrium volume, and, hence, to a decrease
in the elastic constants. The better agreement we obtained for
c44 is due to the weak P �and hence T� dependence of c44, see
Fig. 1. This behavior is consistent with that of MgO.51

C. Vibrational properties

The calculated phonon dispersion curves and density of
states of ZnSe, at zero and 9 GPa pressures, are displayed in
Fig. 2. There is no gap between the acoustical and optical
phonon branches in g���, since there is a considerable over-
lap between the TO and longitudinal-acoustical �LA� phonon
branches. This overlap is caused by the almost identical
masses of Zn and Se atoms. One of the two TO phonon
dispersion curves shows a considerable flatness along all
high symmetry directions, which leads to a sharp peak in
g���. From Fig. 2 it is evident that upon P increase the
phonon spectra of the TA modes experience a downward
shift while those of the other phonon modes are shifted up-
wards. This is consistent with the sign of their Grüneisen
parameters, see below.

In Table III, we compare the phonon frequencies of some
selected phonon modes with the available experimental data
and other theoretical results. The features to note are as fol-
lows. �i� Our calculated phonon frequencies at zero P are in
excellent agreement with the experimental data, obtained us-
ing INS.2 The zone center TO phonon frequency �TO

� is
slightly larger than the Raman spectroscopy data.3 However,
the zone center longitudinal-optical �LO� phonon frequency
�LO

� is in excellent agreement with the Raman spectroscopy
measurements.3 �ii� The �TO

� calculated without including the
Zn 3d electrons and without taking into account NLCC �Ref.
21� is much larger than the experimental value. �iii� Despite
the differences between our NLCC calculations and those of
Ref. 21 �see Sec. III A�, they yield almost identical phonon

FIG. 2. Phonon spectra and density of states of ZnSe, at zero
�solid lines� and 9 �dotted lines� GPa pressures. NLCC calculations
at zero GPa are shown with dashed lines. The shown experimental
data �triangles� obtained using INS at ambient pressure are taken
from Ref. 2.
-5
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frequencies for the �TO and �TO modes which are, in turn,
very close to the 3d results and experiment. �iv� Both the
LDA and GGA results of the LAPW method10 are in excel-
lent agreement with Raman spectroscopy3 for �TO

� , but
shows a discrepancy with our value and with the INS data.

The P variation of some selected phonon frequencies of
ZnSe is depicted in Fig. 3. The remarkable features to note
from this figure are as follows �i� The TA modes at the X and
L points, soften at a hydrostatic pressure of 16 GPa, well
beyond the transition pressure �about 13.5 GPa�. This shows
that the observed ZB to RS structural phase transformation is
due to thermodynamical instability rather than a dynamical
one. This conclusion is consistent with RIM11 model calcu-
lations of Talwar et al.,7 which do not show any softening of
the ZnSe phonon modes up to 13.7 GPa. These results are in
apparent contradiction with the conclusion of Karzel et al.,4

obtained from the P dependence of the Lamb-Mössbauer
factor, that soft phonon modes in ZnSe already appear at
about 6 GPa. �ii� The LO-TO splitting at the � point de-
creases slightly with increasing P. �iii� By increasing P, the
LA, LO, and TO show a monotonic increase in their phonon

TABLE III. Dielectric constant, cation effective
points� of ZnSe. BHS indicates calculation made w

�
 Z* �

Present work-3d 7.52 2.02 21

Present work-NLCC 6.59 2.00 21

DFPT-LDA-NLCC �Ref. 21� 6.3 2.01 21

LAPW-LDA �Ref. 10� 19

LAPW-GGA �Ref. 10� 20

PPPW-LDA �Ref. 10� 20

DFPT-LDA �Ref. 22� 6.66 2.057

LMTO-LDA �Ref. 9� 22

PPPW-BHS �Ref. 32� 5.9 1.78 23

ABCM �Ref. 8� 21

Expt.-INS �Ref. 2� 21

Expt.-Raman �Ref. 3� 20

Expt. �Refs. 39 and 60� 6.3 2.03

FIG. 3. Frequency of ZnSe phonon modes at some high sym-

metry points, as functions of pressure.
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frequencies. However, the increasing rate is different for dif-
ferent q points in the BZ.

The P dependence of the phonon frequency is usually
expressed in terms of the mode Grüneisen parameter

� j,q = − �d ln � j,q/d ln V� = �B0/� j,q��d� j,q/dp� . �14�

The � j,q parameters of ZnSe are shown in Fig. 4. In Table IV,
we summarize our values for � j,q and d� j,q /dP at some high
symmetry points. We note that � j,q is strongly negative for
almost the whole of the TA branches. This behavior is a
common feature of the tetrahedral semiconductors.20 Our
calculated values for both � j,q and d� j,q /dp are generally
speaking in good agreement with experiment3,52 and with
other similar theoretical results.22 A remarkable result of this
study is the large downward shift of � j,q and d� j,q /dp of the
TA modes along the high symmetry lines, as shown in Fig. 4,
arising from the relaxation of semicore Zn 3d electrons.
Thus, these effects are expected to have important conse-
quencies on the calculated thermal expansion �see Sec.
III E 2�. From Table IV, it is also clear that � of the zone-
center TO mode is larger than that of corresponding LO

e, and phonon frequencies �in cm−1, at �, X, and L
e pseudopotential of Ref. 32 �without NLCC�.

�LO
� �TA

X �LA
X �TO

X �LO
X �TA

L �LA
L

252 67 196 221 203 51 171

258 74 198 214 209 59 180

79 173 203

253

253 70 194 219 213 57 166

252

FIG. 4. Mode Grüneisen parameter of ZnSe, along several high
symmetry directions of the fcc lattice. Circles: NLCC calculation.
charg
ith th

TO
�

6

7

9

8

6

3

4

8

9

3

4

Crosses: 3d calculation.
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mode, which explains the decrease of the LO-TO modes
splitting in ZnSe upon increasing P �see above�.

D. Born effective charge and dielectric constant

In the ZB structure, the Born transverse effective charge
tensor Z* is isotropic. Because of the charge neutrality, the
effective charge Z*= 1

3 Tr Z* of the anions is minus that of
the cations. The zero pressure value of Z* of the cations is of
2.026 �2.00� for 3d �NLCC� calculation, which are in excel-
lent agreement with the experimental value of 2.03 �see
Table III�. Although the calculated zero pressure value of
�
= 1

3 Tr �
 with 3d electrons of ZnSe �7.53� is considerably
higher that the experimental value �6.3�, our NLCC value for
� �6.59� is in a good agreement with the experiment and
other NLCC results,21,22 see Table IV.

Figure 5 shows the calculated P dependence of Z* and �
.
Both quantities show an appreciable decrease with increasing
P, over the considered pressure range. The decrease in Z*

with increasing P is consistent with the decrease in the zone-
center LO-TO splitting, see above, since they are directly
related.19 The Z* variation is almost linear, while that of �
 is
relatively weaker and show a clear nonlinear behavior.

TABLE IV. Grüneisen parameters �i and d

�

Mode 3d-Calc.a NLCC-Calc.a Calc.b E

TO��� 1.66 1.54 1.47

LO��� 1.19 1.11 1.18

TO�X� 2.00 1.95 1.88

LO�X� 1.14 1.06 1.04

TO�L� 1.86 1.77 1.70

LO�L� 1.75 1.70 1.63

LA�X� 1.36 1.28 1.24

TA�X� −1.83 −1.11 −1.43

LA�L� 0.57 0.54 0.51

TA�L� −1.84 −1.21 −1.43

aPresent work.
bLDA, DFPT calculation Ref. 22.
cReference 52.
dReference 3.

FIG. 5. Cation Z* �solid line� and �
 �dashed line� of ZnSe as

functions of pressure.
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E. Thermal properties

In the QHA, phonon frequencies depend on V, while in-
trinsic anharmonic effects arising from phonon-phonon inter-
action are neglected. These effects become more important at
elevated T, and, hence, QHA becomes increasingly less ad-
equate at high temperatures. However, anharmonic effects
decrease with increasing pressure.51 Indeed, the leading har-
monic term in the expansion of the potential energy in terms
of atomic displacement is expected to become increasingly
predominant by decreasing V. Thus, the QHA generally
works well over a wider temperature range at elevated pres-
sures. In fact, for a stable crystal the QHA may be valid up to
temperatures between the Debye ��D� and the melting �TM�
temperatures.51,53 In some cases, especially in the presence
of soft phonons, the QHA may fail even for temperatures
below �D. For ZnSe, �D and TM are, respectively, of 278 and
1800 K. Therefore, to avoid anharmonicity related effects,
we consider in this work temperatures up to 400 K. As noted
above, the considered pressure range is between 0 and
9 GPa.

FIG. 6. Pressure-volume equation of state isotherms of ZnSe, at

p of ZnSe, at some high symmetry points.

d� /dp
c Expt.d 3d-Calc.a NLCC-Calc.a Expt.d

1.52 5.32 4.78 4.98

0.85 4.45 4.09 3.44

6.55 5.99

3.42 3.17

6.01 5.45

5.64 5.17

3.94 3.64

−1.81 −1.22

1.44 1.39

−1.41 −1.02
�i /d

xpt.

1.4

0.9

1.6

0.9

1.6

0.9

1.1

−1.3

1.1

−1.5
different temperatures.
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1. Equation of state

The P-V equation of state �EOS� isotherms of ZnSe are
depicted in Fig. 6. The shown EOS are determined by fitting
the calculated Helmholtz free energy, at certain T, given by
Eq. �9�, to Murnaghan’s EOS.38 It can be seen that the vol-
ume of ZnSe decreases monotonically with P. At low P,
higher temperature gives a larger V�P� due to thermal expan-
sion. By increasing P, the effects of the thermal expansion
decrease, and beyond a critical value of P �about 12 GPa�
V�P� starts decreasing with increasing T. The a0 and B0 as
functions of T �obtained from the fitting of F to Murnaghan’s
EOS� are shown in Fig. 7. We observe a slight decrease of a0
in the T range of 0–60 K, indicating a negative thermal ex-
pansion, in agreement with experiment �see below�. In this
temperature range, B0 experience a slight decrease. Above
60 K, a0 �B0� shows a monotonic increase �decrease� B0 by
increasing T. At room temperature, a0 of the ZB phase of
ZnSe increases by �0.3% and B0 decreases by �4.7% with
respect to the corresponding values obtained from static lat-
tice calculations �Table I�.

2. Thermal expansion

At zero P, the temperature variation of the linear thermal
expansion coefficient, �a, of ZnSe �determined using Eqs.
�9� and �10�� is shown in Fig. 8. The available experimental
results �at zero P� are also shown in the same figure. The

FIG. 7. Equilibrium lattice-parameter a0 �solid line� and bulk
modulus B0 �dashed line� of ZnSe as functions of temperature.

FIG. 8. Linear thermal expansion coefficient of ZnSe as a func-
tion of temperature, at different pressures. Triangles: experimental
data of Ref. 6. Circles: experimental data of Ref. 5. Inset: data in

the temperature range of 0–80 K, at zero P.
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most important features to note from this figure are as fol-
lows. �i� At low T, our results are in very good agreement
with the experimental results of Smith et al.6 The experimen-
tal results of Novikova5 are significantly lower than our re-
sults and those of Smith et al.6 To be more specific, we found
that �a is negative in the T range of 0–60 K, with a mini-
mum value of −0.88�10−6 K−1 at 36 K. These results are in
much better agreement with those of Ref. 6 �0–50 K,
−0.68�10−6 K−1, and 32 K, respectively� than those of Ref.
5 �0–60 K, �−3�10−6 K−1, and 30 K�. �ii� At higher tem-
peratures �above 60 K�, the experimental results agree with
each other and with our 3d calculations. The so-obtained
value of �a at 283 K is 6.93�10−6 K−1, which is in good
agreement with the measured value of 6.84�10−6 K−1.6 �iii�
Our NLCC results for �a are in excellent agreement with
experiment at low T. Above 50 K, these NLCC results are
significantly smaller �6.44�10−6 K at 283 K� than experi-
ment and our 3d calculations. The increase of �a by relaxing
the semicore electrons is quite unexpected, based on the
downward shift of � j,q of the TA modes �see Sec. III C� and
Eq. �15�. However, one should note that � j,q is calculated for
q points that lie along the high symmetry lines, while for
calculating �a an integration over the first BZ is required.
�iv� Our NLCC results are in accord with the NLCC calcu-
lations of Ref. 22. It is worth noting again that our NLCC
calculations are quite different from those of Ref. 22, which
takes partially into account the relaxation of the semicore
electrons �see Sec. III A�. Thus, these results reflect the im-
portance of the acutal relaxation of the semicore Zn 3d elec-
trons for an accurate calculation of �a.

At high pressure, the �a of ZnSe as a function of T is also
shown in Fig. 8. Two important features can be noted from
this figure: �i� �a decreases notably by increasing P. At
300 K, for example, the value of �a reduces from 7.04
�10−6 K−1 to 0.92�10−6 K−1 by going from 0 to 9 GPa. �ii�
The temperature range of negative �a increases with P. At
9 GPa, �a stays negative up to 180 K, compared to 60 K at
zero P.The negative �a at low T can be explained as follows.
In the QHA, �a can be written as54

�a�T� =
1

3B0V
�
j,q

� j,qcj,q
V �T� . �15�

At low T, the excited phonon modes are predominantly of
TA type which have negative � j,q �see above�, giving nega-
tive values of �a. Moreover, as shown above, the hydrostatic
pressure leads to a decrease in the frequency of the TA pho-
non modes and to an increase of that of the other modes.
Thus, at high P and low T, the predominance of the TA pho-
non modes becomes increasingly more pronounced, leading
to an increase in the range of T where �a is negative and to
a reduction in its calculated values. This behavior is similar
to that obtained recently for ZnTe,55 which indicates that this
is a common feature for systems with negative �a at low T.

3. Heat capacity

The calculated heat capacity at constant P, CP, as a func-
tion of T is shown in Fig. 9, for different pressures. The

available experimental results �at zero P� are also shown in

-8



PRESSURE DEPENDENCE OF VIBRATIONAL,¼ PHYSICAL REVIEW B 73, 174114 �2006�
the same figure. It is evident that our results are in excellent
agreement with the experimental data,56,57 for the whole
range of temperature considered experimentally. As for the P
dependence of CP, we note that at very low temperatures
�below 50 K� CP is almost insensitive to P, within the con-
sidered P range. Above this temperature, CP is found to
slightly decrease with increasing P. However at high tem-
peratures, it becomes again insensitive to P. Finally, we note
that the relaxation of the semicore Zn 3d electrons has neg-
ligible effects on CP�T�, at zero pressure: our 3d and NLCC
results are almost identical.

IV. CONCLUSIONS

We presented the results of a first-principles study of the
pressure �P� dependence of the vibrational, thermal and elas-
tic properties of ZnSe. Moreover, the P variation of the Born
effective charge �Z*� and high-frequency static dielectric
constant �� � is investigated. The considered P and tempera-

FIG. 9. As in Fig. 8, but for heat capacity at constant pressure.
Triangles: NLCC calculations. Circles: experimental data of Ref.
57. Squares: experimental data of Ref. 56. Inset: data in the tem-
perature range of 0–25 K, at zero P.
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ture �T� ranges are 0–9 GPa and 0–400 K, respectively. The
calculations were performed employing a pseudopotential
plane wave approach and the density functional perturbation
theory, within the local-density approximation. In these cal-
culations the semicore Zn 3d electrons are treated as valence
states. Furthermore, some NLCC calculations have been per-
formed for ZnSe, at zero pressure. Our calculated structural
parameters, phonon spectra, elastic constants, Grüneisen pa-
rameter, linear thermal expansion coefficients �a, and heat
capacity at constant P, CP, are generally speaking in very
good agreement with the available experimental data and
other similar theoretical calculations. The softening of the
phonon modes is found to start at 16 GPa, above the transi-
tion pressure of the observed structural phase transformation
to the rocksalt structure. This shows that such a transition is
driven by a thermodynamical instability rather than a dy-
namical one. The temperature range of negative �a is pre-
dicted to increase considerably with increasing P. Moreover,
a strong decrease of �a with P is predicted, for the whole
temperature range considered. These results �for �a� are con-
sistent with what has been found for ZnTe, using model cal-
culations, which suggests that these are common features for
systems with negative �a at low temperatures. The CP is
predicted to have a very weak P dependence, especially at
very low and high temperatures. Appreciable P variation of
both Z* and �
 is predicted. The importance of the relaxation
of the semicore Zn 3d electrons is emphasized: it has con-
siderable influence on the structural, elastic and thermal ex-
pansion properties — the phonon spectra and CP�T� are neg-
ligibly affected.
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