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Low temperature behavior of the electronic specific heat C(7) in the mixed state is by the self-consistent
calculation of the Eilenberger theory. In addition to the yT-term (y is a Sommerfeld coefficient), C(T) has a
significant contribution of 7?-term intrinsic in the vortex state. We identify the origin of the T2 term as (i)
V-shape density of states in the vortex state and (ii) the Kramer-Pesch effect of vortex-core shrinking upon
lowering T. These results for both full-gap and line-node cases reveal that the vortex core is a richer electronic

structure beyond the normal core picture.

DOLI: 10.1103/PhysRevB.73.172501

There has been considerable attention focused on the
properties of a type-II superconductor under an applied field,
ranging from conventional to exotic pairing superconductors,
such as cuprates. Interest arises not only from a fundamental
physics point of view, but also from an application point of
view, such as the quest to achieve a higher critical current,
etc. Since practical applications of superconducting technol-
ogy still predominantly use “conventional” compounds, such
as A-15 compounds; Nb3;Sn or NbzAl as superconducting
magnets, it is of considerable importance to thoroughly un-
derstand the fundamental properties of the mixed state in an
ordinary s-wave pairing state. In spite of a long history,! it is
only recently that we are discovering the detailed electronic
structures of the mixed state experimentally>™ and
theoretically.®” The latter has become possible because of
combined efforts using both analytical and numerical com-
putations based on a microscopic model.

The specific heat can be expanded as C=yT+c,T?+- - at
a low temperature 7 in the mixed state. The first term 7 is
the electronic contribution proportional to the zero-energy
density of states (DOS) N(E=0). The 7y term has been well
studied for the purpose of determining the electronic state.
For example, we can investigate the gap topology using the
magnetic field B dependglce; yx<B for the s-wave full-gap
superconductor and yx B for d-wave superconductor with
line nodes in the superconducting gap.>” However, so far, the
contribution of the 72 term to C has not been discussed.® The
purpose of this Brief Report is to quantitatively estimate this
T? term by microscopic calculations, and to clarify the exis-
tence and origin of the T? term. For this purpose, we also
investigate the spectrum of the DOS N(E) in the mixed state
and the T dependence of the vortex structure. From this
analysis we find that the 72 term in C comes from the elec-
tronic features intrinsic in the vortex state, i.e., the V-shape
DOS spectrum as seen later and the shrinkage of the core
radius with decreasing T, namely, the Kramer-Pesch (KP)
effect.”!! When the vortex-core radius keeps shrinking,
N(E=0) is expected to acquire an extra T dependence. The
KP effect is one of the consequences of the fact that the
vortex cannot be pictured as a simple rigid core filled by
normal electrons. The physics of vortices at low 7 is much
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more interesting than the “normal core model.”

Recently, several careful experiments on PbMogSg,'?
Nb;7Zry3,'2 B-pyrochlor CsOs,0g,'* and RbOs,04 (Ref. 13)
indicate a hint of a substantial deviation from the simple yT
behaviors even at very low 7. These materials are regarded
as “conventional” superconductors.

Here we are going to numerically calculate C(T), N(E),
and the vortex-core size p by solving the quasiclassical
Eilenberger equation self-consistently with greater numerical
precision than has hitherto been reported. Doing this is cru-
cial for examining the distinct, but subtle low T behaviors of
these quantities and allows us to find the internal relationship
between them. If lower numerical precisions are employed
computational results yield only rounded features that lead to
the normal rigid core model. We assume an isotropic s-wave
superconductor in the clean limit. To our knowledge, there
has been no previous study on C(T) and N(E) to this level of
accuracy.!814

The quasiclassical theory is valid for the case when kpé
> 1, which is satisfied for almost all type-II superconductors.
kg is the Fermi-wave number and & is the BCS coherence
length which is our units of the length scale. We introduce
the pair potential A(r), the vector potential A(r), and the
quasiclassical Green’s functions g(iw,,r, ), f(iw,,r, #) and
f(iw,,r, 6), where r is the center of mass coordinate of the

Cooper pair. The direction of the momentum, k=Kk/|K|
=(cos #,sin 6), is represented by the polar angle 6 relative to
x direction. The Eilenberger equation is given by

{wn+ L (X s 2—”A<r))}f=A<r>g,

2 o
i V 2w *
{ X (T-a*‘“))}fﬂ me W

where g=[1-ff]"2, Re g>0, vp=vk is the Fermi velocity,
and ¢, is a flux quantum.®” The applied field H is along the
z direction. In the symmetric gauge, the vector potential is
written as A(r)=(%)H X r+a(r), and the internal field h(r) is
given by h(r)=V Xa(r).
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Equation (1) can be self-consistently solved by a numeri-
cal calculation, by considering the self-consistent conditions
for A(r) and a(r);

e 2 ’
A(r)=NVR2aT 2 | ——fliw.r.0), (2
w>0J0 2T
W 27 -
. Ty dok .
= 24T —= ,r,0), 3
j(r) Wz ™ =) 27Tig(1wnr ), (3)

where j(r)=V XV Xa(r) and N, is the density of states at
the Fermi level in the normal state. The cutoff energy is set
as w.=20T,. k=74(3)/72(Ay/T.) kgL ¢ is Riemann’s zeta
function. The Ginzburg-Landau parameter is chosen as kg
=9.0. A, is the uniform gap at T=0.

Using the self-consistent solutions g, f, /7, A and a, the
free energy difference is given by

Fs_Fn_ 2<|an|2>r

NoAG (po/E)?
20T <& <f2" de (g - 1)(AfT+A*f)>
+— — ,
A o\ 27 2(g+1) ]

(4)

where F(F,) is the free energy for the superconducting (nor-
mal) state, and (---), indicates the spatial average. From
F, the specific heat coefficient C/T is obtained by C/T
=—F/ dT?. The local density of states (LDOS) at an energy
E are given by

2

N(E,r):Nof —Reg(iw, — E+inr,0), (5)
0 277

where g is calculated by Eq. (1) with iw,— E+in. We set
7=0.01A,. The total DOS N(E) is the spatial average of the
LDOS, i.e., N(E)=(N(E,r)),. The self-consistent calculation
is performed within the vortex lattice unit cell, which is di-
vided into 81 X 81 mesh points. We assume that the vortices
form a triangular lattice.

The free energy difference F,—F, and the specific heat
C(T)/T at low T are shown in Fig. 1 for various fields B,
which are normalized by By= ¢,/ &. We confirm that C(T)/T
in our numerical calculation at B=0 is identical with the
BCS result. It is clearly seen that for B# 0, C(T)/T exhibits
a T-linear behavior at lower T (T/T,<0.2) where C(T) for
B=0 vanishes exponentially. Thus the specific heat in the
mixed state can be expressed as

c«n_ . Tl (L)
—T‘?RT” (©)

at low T, where y'=v/vy,=N(E=0)/N, and y,=2m"N,/3.
We also confirm that y'(B)=lim;_,C/(y,T) shows a
B-linear dependence expected for the s-wave pairing state.”
It is remarkable to notice that C/T is not constant at finite 7,
indicating a significant contribution from the «.7 term.
When we estimate y’ from C/T, the experimental data have
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FIG. 1. (Color online) (a) Free energy difference Fy—F, and (b)
specific heat C(7T)/T as a function of T/T, for various fields B/B
=0,0.3,0.4,0.5,0.6 from bottom to top. B0=¢0/§2.

to be carefully extrapolated toward 7— 0, in order to remove
the a,.T-term contribution.

The contribution of the «,T term in Eq. (6) also reveals
important information on the electronic states. In order to
analyze the origin of the «.T term, we calculate the DOS
spectrum and estimate the KP effect. The total DOS N(E) is
shown in Fig. 2 at our lowest 7(=0.017,). We clearly see the
V-shape DOS with a cusp structure for B# 0. The low en-
ergy part of N(E) can be fitted as
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FIG. 2. (Color online) Energy dependence of the total density of
states N(E) is calculated at 7/7T,=0.01. Plotted data are for B/B
=0,0.3,0.4,0.5,0.6 from bottom to top at E=0, showing character-
istic V-shape cusp structures near the Fermi level E=0.
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FIG. 3. (Color online) Spectral evolution N(E,ryy), where ryy
is along the nearest neighbor vortex direction of the hexagonal vor-
tex lattice. The vortex center is situated at |ryy|=0. N(0,0) is trun-
cated over 20.

N(E) N(E=0,T) |E|
= Qg - (7)
Ny Ny A
As we will show later more quantitatively, N(E=0,T) and ay
correspond to T-linear and «,T? contributions, respectively,
to the specific heat C(7). From Fig. 2, we also see that
N(E=0)~ vy increases with increasing B and that aj de-
creases as B increases, so that the linear behavior of |E| is
unchanged.

The E dependence of N(E) is related to the spectral evo-
lution of the LDOS N(E,r) around the vortex, which is
shown in Fig. 3. It is clear that the quasiparticle bound states
have a characteristic dispersion relation |E|«r as a function
of the radius r=|r| from the vortex center, and form ridges
extending outwards from the core. The zero-energy peak at
the vortex center gives rise to N(E=0), and the finite energy
low-lying bound states near the core ultimately gives the
|E|-dependent term in N(E). A simple understanding of Eq.
(7) at lower B or lower E is as follows: The total DOS can be
evaluated by integrating LDOS spatially. Assuming circular
symmetry around the core, N(E)=N(E=0)+2m[;(E|
—Br)rdr per unit length along the field direction. The first
term N(E=0) mainly comes from LDOS N(E=0,r) at the
vortex core r=0 (see the peak at E=0 in Fig. 3). The second
term comes from the quasiparticle spectral weight whose
spatial trajectory |E|=g|r| is indicated by the ridges in Fig.
3. This gives rise to V-shape total DOS: N(E)=N(E=0)
+27|E|/B% These rich features are distinct from the simple
normal core model, which yields a featureless dispersion
around the core. Some of the features of LDOS are directly
observed in NbSe,,”> V;Si,® and YNi,B,C (Ref. 4) via the
scanning tunneling microscopy—scanning tunneling spectros-
copy experiments.

We now estimate quantitatively the contribution from the
KP effect to C(T)/T. Here, we define the core radius p from
the slope of A(r), i.e., p=A[JdA(r)/dr]™" at the vortex core
along the nearest neighbor vortex direction. As shown in Fig.
4(a), p decreases almost linearly on lowering T for various
values of B, which is a confirmation of the KP effect. It is
noted that the limit of p when 7—0 is finite in the vortex
lattice case, while p—0 at T— 0 in the single vortex case.!!
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FIG. 4. (Color online) (a) Temperature dependence of the
vortex-core radius p and (b) temperature dependence of the zero-
energy density of states N(E=0,7) are plotted for B/Bj
=0,0.3,0.4,0.5,0.6 from bottom to top. In (a) data for B=0 and
normal state are not shown. Lines are guides for the eye.

Since the zero-energy DOS due to the bound state around the
vortex core is related to the core radius p, N(E=0,T) de-
creases as T decreases, as shown in Fig. 4(b). This is ap-
proximately fitted by

N(E=0,T) , T g
Ny =Y tax T. (8)
Combining Egs. (7) and (8), we can express the DOS as
N(E,T)/Ny=v'+axT/T .+ag|E|/A,. Through the relation
C(T)/T=2/T)[ydE EN(E,T) df(E,T)/dT using the Fermi
distribution function f(E,T) and A,/T,=1.76, we obtain
C(D)/ (yaT)=7 +(ax+1.9ap)T/T,. It is now clear that the
a.T term in C(T)/T [Eq. (6)] is affected by the KP effect
term ay and E-linear coefficient ar equally. To examine this
relation, we analyze the data at B=0.3 as an example. In Fig.
5 we display C(T)/T shown in Fig. 1(b), together with 7’
+1.9a;T/T, and ' +(ag+1.9a;)T/T,. It can be seen that
these two contributions ax and aj account for almost all
C(T)/T behavior at low T. That is, the KP term ay and
E-linear term aj are both equally important for understand-
ing the total specific heat quantitatively.
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FIG. 5. (Color online) Specific heat C(T)/T for B/ By=0.3 (solid
circles) with the estimated contributions 1.9a;T/T,, axT/T,, and
(1.9ag+ag)T/T..
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We also study the d-wave pairing case with a line node,
where A(r)— A(r)y2 cos 26 in Eq. (1).,°7 and obtain the
same results as for the s-wave case: V-shape DOS, KP effect,
and the a.T term in C/T."> Note that C(T)/T behaviors in
Fig. 1(b) are qualitatively identical to the data of Sr,RuQ,
with a line-node gap.'®

Our results of the a7 term in C/T and V-shape DOS can
be obtained after performing an exact calculation using the
self-consistently obtained pair potential A(r). When C(T)/T
and N(E) are calculated by solving the same Eilenberger
equation within the Pesch approximation, it is found that
there is neither a linear a|E| term in the DOS nor a linear
term a7 in the specific heat [see Figs. 1(b) and 1(d) in Ref.
14].

We discuss briefly the relationship between the V-shape
DOS and physical quantities. The |E|-linear functional de-
pendence in the V-shape DOS N(E) happens to be the same
as the DOS N(E)x|E| for the line-node gap structure at a
zero field. From the |E|-linear dependence, we can evaluate
the power law T dependence for various physical quantities
by simple power-counting, such as specific heat [C(T) « T?],
nuclear relaxation time [7(7)~!' & 7°], thermal conductivity
[k(T) < T?], and ultrasound attenuation. These behaviors are
used to identify the line node of the superconducting gap. In
the mixed states, these power law components appear due to
the V-shape DOS both for the full-gapped and line-node
cases, in addition to the contributions by the zero-energy
DOS N(E=0). Therefore, in the experiment when a magnetic
field is applied, we cannot simply assign the origin of the
power law behavior as a line node, since the origin may be
the V-shape DOS due to the vortex states. The T;-behavior
T,(T)~' = Tunder magnetic fields is a consequence of the
spatial average. If we observe T, outside of the vortex core
by using a site selective NMR technique,'” we can unam-
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biguously identify the signal due to the line node.

In summary, we have demonstrated that the electronic
specific heat at low T obeys the general law C(T)/T=7y'
+a,T/T, in the mixed state of full-gapped superconductors.
The contribution of second term «,.7/7,, caused by the elec-
tronic features intrinsic in the vortex state, is significant in
C/T and observable. Correspondingly we have found the
V-shaped DOS N(E)=N(E=0)+ag|E|/A, in the vortex
states. The KP effect, shrinking vortex-core radius with de-
creasing 7, contributes to the 7 dependence of the zero-
energy DOS; N(E=0,T)/Ny=7"+axT/T,. We have shown
that a,~ 1.9ap+ayg, which shows the contributions from
both the V-shape DOS and the KP effect are responsible for
the a T/T, term in C(T)/T. We have also calculated for ex-
treme anisotropic-gap cases, namely nodal gap cases, and
found that the V-shape DOS and KP effect are not altered.'>
We also pointed out some cautions when attempting to iden-
tify the gap topology experimentally, since the line-node gap
yields the same V-shape DOS even in the full gap under a
field.

We expect that careful measurements of C(T) for clean
type-II superconductors should confirm our prediction. The
V-shape DOS is directly observable by tunneling experi-
ments. These characteristics are found to be deeply rooted in
the low-lying excitations around a vortex core, which goes
beyond the rigid normal core picture, revealing a richer elec-
tronic structure in the vortex core. We emphasize that the
sample quality is important; impurity effects nullify the
T-linearity C(T)/T.
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