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Ferromagnetic relaxation by magnon-induced currents
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A theory for calculating spin wave relaxation times based on the magnon-electron interaction is developed.
The theory incorporates a thin film geometry and is valid for a large range of magnon frequencies and wave
vectors. For high conductivity metals such as permalloy, the wave vector dependent damping constant ap-
proaches values as high as 0.2, showing the large magnitude of the effect, and can dominate experimentally
observed relaxation.
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One of the fundamental problems of magnetism is to de-
termine a mechanism for dissipation of energy in a system
subject to a change in the direction of the external magnetic
field. Historically, these ferromagnetic relaxation processes
have been explored by ferromagnetic resonance �FMR� in
which the absorption of a small rf frequency field applied
perpendicular to a large dc field is measured. More recently,
direct measurement of large angle switching has been made
by multiple groups.1–3 Time resolved Kerr microscopy has
made it possible to track isolated magnetic relaxation pro-
cesses with picosecond temporal resolution1 and also to im-
age the individual components of the precessing
magnetization.3 It has been previously shown that for many
examples of large angle switching, particularly those involv-
ing materials with large magnetizations, the dominant relax-
ation process is very different than that applicable to FMR.
In particular, it was found that the coherent mode scatters
with thermal magnons to form two k�0 magnons.4 This
four-magnon process rapidly escalates as the k�0 magnon
levels are populated, thus promoting additional scattering.
This previous work thus accounted for the rapid movement
of the magnetization into the new direction, but the dissipa-
tion of the magnetic energy stored in the k�0 modes still
must be addressed.

In a conducting ferromagnet the interaction between the
conduction electrons and the magnons become very impor-
tant. The magnetic field generated by the spin wave is time
dependent and therefore, by Faraday’s law, it creates an elec-
tric field in the system. These electric fields, unlike conven-
tional eddy currents, are wavelike in nature. In a metallic
system, the fields drive the conduction electrons. These mag-
non induced currents help dissipate the energy of the system
by Joule heating. Abrahams5 addressed this question half a
century ago by taking into account the interaction between
spin waves and conduction electrons. However, his bulk es-
timates predicted relaxation times one order of magnitude
less than required to explain FMR linewidths. Subsequently
several attempts have been made to give a consistent theory
of ferromagnetic relaxation from the point of view of an
FMR experiment.6 Later, Almeida and Mills7 explored the
same interaction and derived the Green’s function for the
limited case of small angle precession in the absence of
quantum mechanical exchange, i.e., in the long wavelength
limit.

In the present work, we avoid much of the limitations
found in previous work. Solution of the general problem is

difficult because the magnon-induced currents generate new
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fields which further affect magnons and create new currents.
Here we show that expansion in the small parameter
4��� /c2k2 allows an explicit solution to the general prob-
lem. It allows prediction of decay rates for magnons of arbi-
trary frequency and large amplitudes that are limited only by
the Holstein-Primakoff transformation.8 In particular, it can
be applied to the problem of magnons generated by four-
magnon scattering after a large angle rotation such is com-
mon in modern switching experiments and technological ap-
plications such as magnetic recording. We also discuss our
results in context of the spin wave resonance experiments
capable of measuring the linewidth of the higher order k
modes. Historically, these experiments were used to measure
the exchange constant of the material.

We consider an infinite film of thickness d made of ferro-
magnetic metal. The top and the bottom surfaces of the film
are at z=d and z=0, respectively �see Fig. 1�. A spin wave of
wave vector k=kx̂ and frequency � is excited in the system.

We write the electric and magnetic fields in the system as
a series expansion

E = �
n=0

� �4���

c2k2 �n

E�n�,

H = �
n=0

� �4���

c2k2 �n

H�n�, �1�

where � is the conductivity of the medium and c is the
velocity of light. For a typical frequency and wave vector,

FIG. 1. Schematic diagram showing the geometry used in the
paper. An infinite ferromagnetic metallic slab with thickness d
along the z direction is magnetized in-plane by applying an external
field H. We consider spin waves with wave vector k propagating

parallel to the surfaces.
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this expansion parameter is quite small, e.g., 10−4 for
Fe ��=9�1016 s−1�. Therefore, the series converges rapidly
and only the leading term has practical interest. The nth or-
der terms in the expansion of Eq. �1� obey the Maxwell
equations

� · E�n� = 0,

� · �H�n� + 4�M�n0� = 0,

� � E�n� = −
1

c

�B�n�

�t
,

� � H�n+1� =
4��

c
E�n�. �2�

We neglect the displacement current in the last expression
owing to �	�. From Eq. �2� ��H�0�=0, so we can write
the magnetic field as the gradient of a magnetic scalar poten-
tial: H�0�=−�
M. The scalar potential has a volume and a
surface term and the zeroth order magnetic field produced by
the spin waves can be written as follows �Ref. 9�:

H�0� = − �
V

d3r�
� · M�r���r − r��

�r − r��3
+ �

S

d2r�
n̂ · M�r���r − r��

�r − r��3
,

�3�

where M is the magnetization of the sample and n̂ is the
outward normal to the surface carrying magnetic charge. We
shall consider films to be thin enough that the spin waves are
confined to the x-y plane only. We shall consider two specific
cases: k�M and k �M.

We consider the spin wave propagating along the x direc-
tion in the thin film. In configuration I, the magnetization is
precessing in the x-z plane

MI = M0ŷ + �	cos�kx − �t�x̂ + sin�kx − �t�ẑ
 ,

where M0 is the component of magnetization perpendicular
to the plane of precession and � is the amplitude of preces-
sion. In our calculation, we need not restrict � to be small
compared to M0. The zeroth order magnetic field from Eq.
�3� for this configuration is

Hx
I�0� = 4�� cos�kx − �t�	e−kz − 1
 for k � 0

=4�� cos�kx − �t�	e−k�z−d� − 1
 for k 
 0,

Hy
I�0� = 0

Hz
I�0� = − 4�� sin�kx − �t�e−kz for k � 0

=− 4�� sin�kx − �t�e−k�z−d� for k 
 0.

According to Eq. �2� HI�0� generates an electric field EI�0�

which has only one nonzero component

Ey
I�0� =

2�
sin�kx − �t�	1 − e−kz
 for k � 0,
k
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Ey
I�0� =

2�

k
sin�kx − �t�	1 − e−k�z−d�
 for k 
 0, �4�

where �=2��� /c. Note the asymmetry of the solution for
positive and negative values of k. The profile of the electric
field for k�0 and k
0 are mirror symmetric with respect to
z=d /2.

In configuration II, the magnetization is precessing in the
y-z plane

MII = M0x̂ + �	cos�kx − �t�ŷ + sin�kx − �t�ẑ
 .

Since � ·MII=0 only the surface term of Eq. �3� contributes
to the magnetic field given by �for k�0�

Hx
II�0� = − 2�� cos�kx − �t�	ek�z−d� − e−kz
 ,

Hy
II�0� = 0,

Hz
II�0� = − 2�� sin�kx − �t�	ek�z−d� + e−kz


which generates an electric field

Ex
II�0� = 	− Aekz + Be−kz
sin�kx − �t� ,

Ey
II�0� =

�

k
	2 − ek�z−d� − e−kz
sin�kx − �t� ,

Ez
II�0� = �Aekz + Be−kz −

2�

k
�cos�kx − �t� , �5�

where A= �� /k�	�1−e−kd� / sinh�kd�
 and B= �� /k�	�ekd−1� /
sinh�kd�
. Note that unlike the previous configuration the
components of the electric field are symmetric with respect
to the two surfaces.

The energy stored in the form of spin waves is dissipated
from the system by the current generated by the electric field
induced by the precessing spins. This induced electric field
drives the free electrons in the metal to produce the magnon
induced current. The ohmic power loss per unit volume due
to this magnon induced current can be written as follows:

P = lim
L→�

�

2Ld
�

0

d

dz�
−L

+L

dx�Ex
2 + Ey

2 + Ez
2� .

Integrating over the square of the electric field described in
Eqs. �4� and �5�, we obtain the power dissipation per unit
volume

PI�k,d� = 2�	− 3 + 2dk + 4e−dk − e−2dk
 ,

PII�k,d� =
�e−2kd

�1 + ekd�
	�− 15 + 8dk�e3dk + �9 + 10dk�e2dk

+ �7 + 2dk�edk − 1
 , �6�

where

� =
2��2�2�2

dk3c2 . �7�
The power dissipation clearly depends on � which is a
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function of k. Owing to the strong influence of the magneto-
static energy within the magnon Hamiltonian, the derivation
of this relationship is nontrivial, but, fortunately has been
described by previous workers. Essentially, the Hamiltonian
of the system has contribution from exchange, magnetostatic
and Zeeman energy. We shall restrict ourselves to isotropic
systems and therefore crystallographic anisotropy will have
negligible effect to our result. We will only consider mag-
nons with wavelength much greater than the lattice constant,
e.g., k�107 cm−1 which applies to most magnons of interest.
The dispersion relation for a thin film is given by10,11

� = �
�Hi +
2A

MS
k2��Hi +

2A

MS
k2 + 2�d� , �8�

where Hi=Hext−NMS is the internal field, A is the exchange
constant, N is the demagnetizing factor, and Hext is the ex-
ternal magnetic field. The magnetostatic contribution is given
by

�d
I = 2�MS,

�d
II = 2�MS�1 − e−kd

kd
� . �9�

The dispersion relation for an iron thin film of various thick-
nesses is shown in Fig. 2. Note that the curves converge for
k�2�106 cm−1 where exchange interaction starts dominat-
ing the thickness dependent magnetostatic interaction.

The energy density of the system consists of the ex-
change, the magnetostatic, and the Zeeman terms

E�k,d� = A��M

MS
�2

+ Ed − M · Hext, �10�

where the magnetostatic contribution to the energy is ob-
tained by taking the negative scalar product of magnetization
and the magnetic field produced by the magnons and is given
by

Ed
I = 2��2,

Ed
II = 2��2�1 − e−kd

kd
� . �11�

Equations �6�–�11� show that the energy decays exponen-
tially with relaxation time:

��k,d� =
E�k,d�
P�k,d�

.

This is the leading order term contributing to the relaxation
time as the energy of the system gets renormalized by the
magnetic field generated by the magnon-induced currents.
Figure 3 shows the relaxation time of spin waves in an iron
thin film where the spin wave is confined in the x-y plane.
According to Ref. 4 the four magnon scattering produces
magnons with wave vectors in the range 1–5�106 cm−1. It
is important to note that magnetostatic is the dominant inter-
action in the long wavelength limit whereas exchange takes
over in the short wavelength regime. The crossover, which

6 −1
happens around k�10 cm in the range of thickness of the
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sample we are interested in, is of the same order of magni-
tude for bulk magnetic crystals.12 This feature is nicely re-
produced in our result where changing the value of the ex-
change constant only affects the curves for k�106 cm−1.

Both for configurations I and II, � increases with k for
thicker films in the magnetostatic regime and saturates in the
exchange regime. For such films the electric field and hence
the power shows an inverse dependence with the wave vec-
tor in the long wavelength limit whereas the energy of the
system is independent of k in configuration I and changes
slowly with k in configuration II. This makes � an increasing
function of k except for small thicknesses of the film in
which case the power dissipation becomes nearly indepen-
dent of k. However, both E and P increase as k2 in the ex-
change regime thereby making � independent of k.

Figure 4 shows the behavior of the quantity 1 /�� as a
function of the wave vector. This quantity, which can be
interpreted as a wave vector dependent damping constant, is
a measure of the amount of energy taken away from the
system per precessional cycle. This damping constant should

FIG. 2. Dispersion relation for configurations I and II according
to Eqs. �8� and �9� for an infinite iron slab using MS

=1700 emu/cc, A=2�10−6 erg/cm, �=1.76�107 �Oe s�−1, and
Hext=1000 Oe.

FIG. 3. Relaxation time for an infinite iron thin film with thick-
ness d1=1�10−6, d2=5�10−6, d3=1�10−5, and d4=5�10−5 cm

for �a� configuration I and �b� configuration II.
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not be confused with the typical Gilbert damping constant
used for uniform rotation of the element magnetization.
However, the presence of values approaching 0.2 illustrates
the large magnitude of the effects described here.

Observation of spin wave resonance13 in a thin film
allows calculation of relaxation times from measured line
widths. For example, analysis of Okochi’s14 data for his
first spin wave resonance mode yields a damping constant
�=0.0063. Calculations for this configuration yield
P=32�2�2�2� / �c2k2� and E= �2Ak2 /MS

2−4�+Hext /MS��2.
The resulting value of the damping constant is 0.0095 	using
A=10−6 erg/cm and �=2.9�1016 s−1 �Ref. 15� for FeNi
.
The discrepancy is presumably due to conductivity differ-
ences between the two thin film samples. It is worth noting
these experiments rely on exciting standing waves along the
perpendicular direction of the thin film. This geometry typi-
cally minimizes the effect �relative to the configurations dis-
cussed elsewhere in this paper� of magnon-induced currents
in the relaxation time because the magnon generated mag-
netic field is zero which makes the induced electric fields
weaker and the rate of energy dissipation slower.

FIG. 4. The quantity 1 /�� as a function of the wave vector for
two different thicknesses.
T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 �1940�.
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The effect of conductivity on the magnon-electron dissi-
pation mechanism can be studied in magnetic semiconduc-
tors such as CdCr2Se4 and HgCr2Se4 whose conductivity can
be tuned by the amount of Ag doping.16,17 The typical con-
ductivity of such materials is several orders of magnitude
lower than that of a ferromagnetic metal. For example, a
0.75 mole % Ag doped CdCr2Se4 has �=4.5�1011 s−1 at T
=120 K. Therefore, the coefficient of expansion in Eq. �1�
becomes much smaller compared to that for a ferromagnetic
metal thereby making our formalism highly applicable for
such materials. Assuming a resonance field Hres=3500 Oe
�Ref. 16� and �=�Hres we obtain a linewidth �H=1/ ����
=78 Oe for configuration I and �H=144 Oe for configura-
tion II, using d=0.2 mm and k=1/d. These values are in
very good agreement with the FMR linewidths observed by
Ferreira and Coutinho-Filho.17 Under the experimental con-
dition the exchange contribution to the energy is negligible
and the magnetostatic and the Zeeman energies are of the
same order of magnitude. In this limit, therefore, the
magnon-electron contribution to the energy dissipation �cal-
culated here� is comparable to that of conventional Eddy
current loss obtained from the FMR linewidth by subtracting
the effect of two magnon scattering.18

We conclude by proposing the following picture of ferro-
magnetic relaxation in switching experiments. We expect
that the initial rapid approach of magnetization direction to
equilibrium is enabled by magnon-magnon scattering that
converts the energy into the higher spin wave modes. These
modes then decay at a slower pace via the magnon-electron
interaction described here or by the traditionally invoked
mechanisms in less pure, lower conductivity films. This de-
lay will lead to a small reduction in magnetization which
appears to have been observed by Silva et al.19
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