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Noise-activated switching in a driven nonlinear micromechanical oscillator
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We study noise induced switching in systems far from equilibrium by using an underdamped micromechani-
cal torsional oscillator driven into the nonlinear regime. Within a certain range of driving frequencies, the
oscillator possesses two stable dynamical states with different oscillation amplitudes. We induce the oscillator
to escape from one dynamical state into the other by introducing noise in the excitation. By measuring the rate
of random transitions as a function of noise intensity, we deduce the activation energy as a function of
frequency detuning. Close to the critical point, the activation energy is expected to display system-independent
scaling. The measured critical exponent is in good agreement with variational calculations and asymptotic
scaling theory.
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Fluctuation-induced escape from a metastable state is an
important problem that is relevant to many phenomena, such
as protein folding and nucleation in phase transitions. For
systems in thermal equilibrium, the escape rate can be de-
duced from the height of the free-energy barrier.1 The barrier
decreases as the control parameter � approaches a critical
�bifurcational� value �c where the metastable state disap-
pears. It has been established theoretically and experi-
mentally2,3 that, in the simplest and arguably most common
case of the saddle-node �spinodal� bifurcation,4 the barrier
height scales as ��−�c�3/2. Much less is known about escape
in systems far from thermal equilibrium.5–7 Such systems are
not characterized by free energy, and the scaling behavior
of the escape rate near a saddle-node bifurcation has not
been studied experimentally until recently.8,9 In particular,
the problem of escape far from equilibrium has attracted sig-
nificant experimental attention in the context of systems
where multistability itself arises as a result of strong periodic
modulation. Escape was studied in parametrically driven
electrons in a Penning trap,10 doubly clamped nanomechani-
cal oscillators,11,12 and radio frequency driven Josephson
junctions.13

We report here our investigation of noise-activated
switching in systems far from equilibrium. By using a well-
characterized system, an underdamped micromechanical tor-
sional oscillator periodically driven into nonlinear oscilla-
tions, we study the dependence of the escape rate on the
control parameter as it approaches the critical value and re-
veal the scaling of the activation energy of escape in a sys-
tem far from thermal equilibrium. The strongly driven mi-
cromechanical oscillator has two stable dynamical states
with different oscillation amplitude within a certain range of
driving frequencies. We induce the oscillator to escape from
one state into the other by injecting noise in the driving
force. By measuring the rate of random transitions as a func-
tion of noise intensity, we demonstrate the activated behavior
for switching and deduce the activation energy as a function
of frequency detuning. Close to the bifurcation frequency
where the high-amplitude state disappears, the activation en-
ergy is predicted by variational calculations and asymptotic
scaling theory to display system-independent scaling.14–17

Our measurement of activation energy as a function of fre-
quency detuning yields critical exponents of 1.38±0.15 and
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1.40±0.15, respectively, for two samples with different pa-
rameters, in good agreement with the theoretical predictions
for escape in nonequilibrium systems near a spinodal point.

In our experiment, measurements were performed on two
micromechanical oscillators �samples A and B�. Each oscil-
lator consists of a movable polysilicon plate �500 �m by
500 �m by 3.5 �m� that is supported by two torsional rods
�40 �m by 4 �m by 2 �m�. The other ends of the torsional
rods are anchored to the silicon substrate. A 2-�m-thick sac-
rificial silicon oxide layer beneath the plate was etched
away, leaving the plate suspended between the torsional rods.
The torsional spring constants are 1.83�10−8 N m rad−1 and
1.85�10−8 N m rad−1 for samples A and B, respectively.
Beneath the top plate, there are two fixed electrodes
�500 �m by 250 �m� on each side of the torsional springs.
One of the electrodes is used for exciting the torsional oscil-
lations while the other electrode is used for detecting the
oscillations. More details about the oscillators can be found
in Refs. 19 and 20.

Figure 1�a� shows a cross-sectional schematic of the os-
cillator with electrical connections and measurement cir-
cuitry. The application of a periodic voltage with dc bias Vdc1
to one of the electrodes leads to an electrostatic attraction
between the grounded top plate and the electrode. Torsional
oscillations of the top plate are excited by the periodic com-
ponent of the electrostatic torque. The detection electrode is
connected to a dc voltage Vdc2 through a resistor R. As the
plate oscillates, the capacitance between the plate and the
detection electrode changes. The detection electrode is con-
nected to a charge sensitive preamplifier followed by a
lock-in amplifier that measures the signal at the excitation
frequency. Measurements for both samples were performed
at pressure of less than 2�10−7 torr. Samples A and B were
measured at liquid nitrogen and helium temperatures, respec-
tively. The main effect of decreasing the temperature from
liquid nitrogen to liquid helium is the reduction of the damp-
ing constant, yielding quality factors Q of about 4000 for
sample A and 16 000 for sample B.

The excitation voltage V consists of three components:

V = Vdc1 + Vacsin��t� + Vnoise�t� . �1�

The three terms on the right side of Eq. �1� represent the dc

voltage, periodic ac voltage with angular frequency �, and
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random noise voltage, respectively. Vdc1 is chosen to be
much larger than Vac and Vnoise. Vnoise is Gaussian with a
bandwidth of 100 Hz about the natural frequency of the os-
cillator. The strong distance dependence of the electrostatic
attraction between the top plate and the electrode leads to
nonlinear contributions to the restoring torque. A Taylor ex-
pansion of the electrostatic torque leads to:

�̈ + 2��̇ + �0
2� + ��2 + ��3 = E sin��t� + N�t� , �2�

where � is the angular rotation of the top plate, � is the
damping coefficient, �o is the natural frequency for small
oscillations, E is the effective amplitude of the periodic ex-
citation, and N�t� is the effective noise in the excitation. The
nonlinear effects arising from � and � are characterized by a
constant18 �=3� /8�0−5�2 /12�0

3. From our device geom-
etry, the contribution of the quadratic nonlinearity �the �
term� to � is negligible compared to the cubic nonlinearity
�the � term� and our device can be regarded as a Duffing
oscillator in the absence of injected noise.

First, we focus on the response of the oscillator with no
injected noise in the excitation. We show in Fig. 1�b� the
frequency response of sample A at two different oscillation
amplitudes. Both responses have been scaled by their respec-
tive excitation voltages. For the smaller excitation, the reso-
nance peak is fitted well by the dotted line that corresponds
to the response of a damped harmonic oscillator. As the pe-
riodic excitation is increased, the cubic term in Eq. �2� leads
to nonlinear behavior in the oscillations. The resonance

FIG. 1. �a� A cross-sectional schematic of the micromechanical
torsional oscillator with electrical connections and measurement cir-
cuitry �not to scale�. �b� Frequency response of sample A scaled by
the excitation voltage amplitudes of 47 �V �squares� and 450 �V
�circles�. The dotted line represents a fit to the data at smaller ex-
citation using the response of a damped harmonic oscillator. For the
large excitation, two dynamical states coexist from 3278.76 Hz to
3280.8 Hz. The dashed line fits the data to a damped oscillator with
cubic nonlinearity �Ref. 18�, yielding �=−1.25�107 rad s−1.
curve becomes asymmetric with the peak shifting to lower
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frequencies, consistent with a negative value of �. At a high
enough excitation, hysteresis occurs in the frequency re-
sponse, as shown by the circles in Fig. 1�b�. Within a certain
range of driving frequencies, there are two stable dynamic
states with different oscillation amplitude and phase. De-
pending on the history of the oscillator, the system resides in
either the high-amplitude state or low-amplitude state. In the
absence of fluctuations, the oscillator remains in one of the
stable states indefinitely.

When sufficient noise is applied in the excitation, the os-
cillator is induced to escape from one dynamic state into the
other. Since this driven, bistable system is far from thermal
equilibrium and cannot be characterized by free energy, cal-
culation of the escape rate is a nontrivial problem. Theoreti-
cal analysis15,17 suggests that the rate of escape 	 at a par-
ticular driving frequency depends exponentially on the ratio
of an activation energy Ea to the noise intensity IN:

	 = 	0e−Ea/IN. �3�

Close to the bifurcation frequency where the high-
amplitude state disappears the activation energy is expected
to display system-independent scaling:

Ea 
 ����, �4�

where the frequency detuning �� is the difference between
the driving frequency and the bifurcation frequency. The ac-
tivation energy is predicted15,17 to increase with frequency
detuning with a critical exponent =3/2. This scaling rela-
tion is generic and is expected to occur in a number of non-
equilibrium systems. We describe below our comprehensive
experimental investigation of activated switching from the
high-amplitude to the low-amplitude state for two microme-
chanical oscillators with different resonant frequencies and
damping coefficients. The critical exponents measured for
both samples were in good agreement with theory.

In our experiment, we induce transitions from the high-
amplitude state to the low-amplitude state by injecting noise
in the excitation with a bandwidth of 100 Hz centered about
the resonant frequency. The bandwidth of the noise is much
larger than the width of the resonance peak. We chose a
sufficiently large sinusoidal excitation so that the hysteresis
loop exceeds twice the resonance peak width. Figure 2�a�
shows typical switching events at an excitation frequency of
3278.81 Hz for sample A where the oscillator resides in the
high-amplitude state for various durations before escaping to
the low-amplitude state. Due to the random nature of the
transitions, a large number of switching events must be re-
corded to determine the transition rate accurately. During the
time interval between switching events in Fig. 2�a�, the os-
cillator is reset to the high-amplitude state using the follow-
ing procedure. First, the noise is turned off and the driving
frequency is increased beyond the range of frequencies
where bistability occurs ��3280.8 Hz as shown in Fig. 1�b��.
The driving frequency is then decreased slowly towards the
target frequency so that the oscillator remains in the high-
amplitude state. Once the target frequency is reached, the
noise is turned back on and the time for the oscillator to
escape from the high-amplitude state is recorded. This pro-

cess is then repeated multiple times to accumulate the statis-
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tics for switching. Such a procedure is necessary because the
energy barrier for transitions from the low-amplitude state
back to the high-amplitude state is much larger than the bar-
rier for transition in the opposite direction. Thus, noise in-
duced transitions from the low-amplitude state to the high-
amplitude state will fail to occur in the duration of the
experiment and the oscillator must be reset to the high-
amplitude state using the steps described above. Figure 2�b�
shows a histogram of the residence time in the high-
amplitude state before a transition occurs. The exponential
dependence on the residence time indicates that the transi-
tions are random and follow Poisson statistics as expected.

To determine the activation energy for a particular detun-
ing frequency, we record a large number of transitions for
multiple noise intensities �IN�. The average residence time at
each noise intensity is extracted from the exponential fit to
the corresponding histograms. Figure 3 plots the logarithm of
the average transition rate as a function of inverse noise in-

FIG. 2. �a� In the presence of noise in the excitation, the oscil-
lator switches from the high-amplitude state to the low-amplitude
state at different time intervals. The system is reset to the upper
amplitude state between switching events. The detuning frequency
is ��=0.05 Hz. �b� Histogram of the residence time in the upper
state before switching occurs, at a detuning frequency of 0.05 Hz
for sample A. The dotted line is an exponential fit.

FIG. 3. Logarithm of the transition rate from the high-amplitude
state as a function of inverse noise intensity at a detuning frequency
�� of 0.25 Hz for sample A. The slope of the linear fit yields the

activation energy.
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tensity. The transition rate varies exponentially with inverse
noise intensity, demonstrating that escape from the high-
amplitude state is activated in nature. According to Eq. �3�,
the slope in Fig. 3 yields the activation energy for escaping
from the high-amplitude state at the particular detuning fre-
quency.

We repeat the above procedure to determine the activation
energy for other detuning frequencies �� ��� is the differ-
ence between the driving frequency and the bifurcation fre-
quency at which the high-amplitude state disappears� and
show the result in Fig. 4�a� for sample A and Fig. 4�b� for
sample B. All the detuning frequencies chosen for sample A
are smaller than its resonance peak width while the maxi-
mum detuning frequency for sample B is about four times its
resonance peak width. Fitting the activation energies with a
power law dependence on the detuning frequency yields
critical exponents of 1.38±0.15 and 1.4±0.15 for samples A
and B, respectively. Despite the different resonant frequen-
cies and a factor of 4 difference in damping, the critical
exponents obtained for both samples are in good agreement
with theoretical predictions.14–17 Such scaling behavior near
a spinodal point is expected to be universal in all systems far
from thermal equilibrium. Apart from periodically driven mi-
cromechanical oscillators,8 a critical exponent of 3 /2 was
recently observed in rf-driven Josephson junctions.9 Other
nonequilibrium systems such as nanomagnets driven by po-
larized current22 and double barrier resonant tunneling
structures23 are also expected to obey the same scaling rela-
tionship.

We remark that recently Aldridge and Cleland6 measured
noise-induced switching between dynamical states in a nano-
mechanical beam. They found a quadratic dependence of the
activation barrier on the distance to the critical point where
the two stable states of forced vibrations and the unstable
periodic state all merge together. Such quadratic dependence
arises11 when the parameters are changed along the line
where the populations of the two stable states are equal to
each other. This requires changing simultaneously both the
amplitude and the frequency of the driving field. In contrast,
in our experiment, we approach a bifurcation point where a
stable large-amplitude state and the unstable state merge to-
gether, while the stable small-amplitude state is far away. We
vary only one parameter, the detuning frequency, while

FIG. 4. Dependence of the activation energy on detuning fre-
quency for �a� sample A and �b� sample B. The solid lines are power
law fits, yielding critical exponents of 1.38±0.15 and 1.4±0.15,
respectively.
maintaining the periodic driving amplitude constant. We
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found that the activation barrier for escape is reduced to zero
with a critical exponent of 3 /2.

The vast majority of micro- and nanomechanical sensors
operate in the linear regime. Typically, sensing is achieved
by measuring the dc response or by monitoring variations in
the resonant frequency due to changes in device parameters.
The study of noise-induced switching between stable oscil-
lation states in a strongly driven, nonlinear mechanical oscil-
lator could open up new opportunities for sensing applica-
tions. For instance, the switching rate varies exponentially
with the noise intensity and the device parameters. When the
oscillator resides at the high amplitude state near the bifur-
cation point, small changes in device parameters lead to large
changes in the transition rate. Switching events can be easily
detected due to the jump in oscillation amplitude. Such a
strong dependence could be exploited for high sensitivity

signal detection.

I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, L. Frunzio, M. Met-
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In conclusion, we demonstrated the activated behavior of
noise induced switching of a thermally nonequilibrium sys-
tem, a nonlinear underdamped micromechanical torsional os-
cillators modulated by a strong resonant field. The measured
critical exponent for the activation energy near the bifurca-
tion point agrees well with the predicted value of 3 /2, veri-
fying the system-independent scaling of the activation en-
ergy in the vicinity of the bifurcation point. Such scaling
relationship also applies to other systems that are far from
equilibrium near the spinodal point, including rf-driven Jo-
sephson junctions,13,21 nanomagnets driven by polarized
current,22 and double barrier resonant tunneling structures.23

We thank M. I. Dykman and D. Ryvkine for useful dis-
cussions.
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