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We take into account three-body anisotropic forces between molecules to calculate the energy of the S0�0�
triplet in solid hexagonal close packed hydrogen under pressure. Three-body contributions result in one term
depending on the orientation of only one molecule �crystal field term� and two others that couple rotations of
different molecules �roton terms�. Three-body interactions contribute, to a large extent, to the roton frequen-
cies. Their inclusion in the calculation increases the calculated average frequency of the triplet, even at
relatively low density, changing substantially the estimate of the internuclear distance. By contrast, the triplet
splitting is substantially unaffected by three-body terms, resulting therefore a good candidate to test anisotropic
two-body potential models against experiment.
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The structure and the dynamical properties of solid hydro-
gen under pressure are exciting subjects of active research.1–6

In the low-pressure hexagonal close-packed �hcp� phase, the
molecules rotate in their lattice sites and J is a good quantum
number. In an ordered crystal �with only para-H2 molecules�,
the rotational excitation acquires a collective character, due
to the anisotropic interaction between molecules. The transi-
tion from the ground state �all molecules in the J=0 state� to
the state with one J=2 excitation gives rise, in the Raman
spectrum, to the S0�0� triplet, that has been observed experi-
mentally at low pressure7 and up to about 110 GPa.4,8–10

Above this pressure, solid para-hydrogen transforms to an
orientationally ordered phase �broken symmetry phase
�BSP��, whose crystal structure has been investigated theo-
retically,11–13 spectroscopically,3 and, recently, with more di-
rect methods as x-rays and neutron scattering.6 Values of the
S0�0� Raman frequencies and of their pressure evolution con-
tain information on the same anisotropic intermolecular po-
tential components which drive the transition to the BSP.

The quantitative analysis of these data by theories based
on known anisotropic pair potentials is extremely problem-
atical and is far from being satisfactory.4,14 One problem con-
cerns the splitting of the triplet which is always overesti-
mated, as underestimated is the transition pressure to the
BSP, if calculated analogously. The other quantity of impor-
tance is the average position of the triplet, which depends on
the rotational constant and therefore gives information on the
intramolecular distance and on its pressure dependence. The
information extracted with the analysis of the Raman data
depends, however, on our capability to calculate the contri-
bution of the anisotropic potential to the roton energies �av-
erage value and splitting� in the solid. The main contribution
to the splitting comes from the electric quadrupole-
quadrupole interaction, and is generally calculated within
first-order perturbation theory.1 Three other contributions
may have importance at high pressure: One comes from dif-
ferent components of the anisotropic pair-wise potential, one
from three-body irreducible potential, and finally one from
anharmonic effects �second-order perturbation theory�.14 Pre-
vious analyses have dealt differently with these contribu-

tions. In Ref. 14, the authors neglect these three contribu-
tions in the calculation, and propose an effective many-body
contribution to justify the discrepancy of the triplet splitting
at high pressure. With regard to the average frequency, they
find that the intramolecular distance �that they derive up to
about 40 GPa� falls off with pressure, reaches a minimum at
about 30 GPa ��220 mol/ l�, and then increases. Goncharov
et al.4 introduce an ad hoc interaction component to justify
the discrepancy between theory and the experimental triplet
splitting. This new component, due to its symmetry, does not
contribute to the average frequency.

It is probably worth mentioning here that all of the previ-
ous theories do not take into account phonon-roton interac-
tions. Indeed, it has been shown that motional renormaliza-
tion of the main interaction component, that is, the
quadrupole interaction, is less than 5% at 100 mol/ l and de-
creases with increasing density.15 Also, hybridization effects
take place in a limited range of density, and affect only the
roton with E2g symmetry.1 Such effects have been eliminated
by means of an interpolation procedure.

In a previous work, we have extended the theory to in-
clude all known pair potential components and the second-
order terms in the perturbative expansion.5 To compare with
experiments, due to the poor knowledge of the anisotropic
pair potential in the solid, in that paper we used a factor to
reduce the anisotropic components of the gas-phase potential
model.16,17 The same procedure has been used also by others
to calculate the transition pressure and is justified by a den-
sity functional theory calculation.18,19 In this way, we could
determine the rotational constant for higher densities than in
Ref. 14. The result is that the intramolecular distance shows
a minimum, as in Ref. 14 and then rapidly increases with
density. The intramolecular distance is not accessible directly
from experiments. Actually, a quantum Monte Carlo calcu-
lation20 shows that the intramolecular distance does not
change up to a density of about 150 mol/ l, which contradicts
both the results of Refs. 14 and 5.

In this paper, we demonstrate that three-body effects have
large importance for the calculation of the frequencies of the
S0�0� triplet. To this goal, we do not use in the calculation
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any reduction factor for the two-body potential, which is
taken equal to the gas-phase one16,17 throughout this paper.
The main three-body contributions are induction effects de-
termined by the molecular quadrupole moment, but correc-
tions due to overlap and dispersion will also be taken into
account as described in Ref. 21. Following the work of
Piecuch,22 we have considered three different three-body
contributions that we calculate at first order in the perturba-

tion theory. The first contribution ��
�c� is of “crystal field”

type, because it involves the orientation of only one mol-
ecule. In terms of purely quadrupolar induction, it would
correspond to the interaction of dipoles on molecule j and i,
both dipoles being induced by the quadrupole moment of
molecule 1.

The energies of the triplet at first order in the perturbation
theory are
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where B202��R� is related to the dipole induced on a molecule by a second molecule at a distance R apart.21 In Eq. �1�, � J K L
m n s

�
are 3j symbols, and YLm��ij� are spherical harmonics whose argument �ij is the orientation of the vector joining molecules j
and i in a fixed frame. The sum over molecules � ji� is limited to j�1 and i�1, j. If the dipole induction is purely quadrupolar,
then �=��=3 only, and B2023�R�=	3Q	 /R4 with 	 the polarizability and Q the quadrupole moment of hydrogen.23 In
general, the component with �=1 also becomes important and, in addition, B2023 is not purely quadrupole-induced.21 The
terms with L=2 in Eq. �1� are analogous to the one arising from the pair-wise potential component V202 which is known to give
a negligible contribution for an hcp lattice with c /a=	8/3.1 Indeed, this term is also completely negligible even when taking
the c /a variations24 with respect to the ideal value into account. The term with L=3 is zero. The term with L=4 has the same
symmetry properties as the component V404, postulated in Ref. 4. Even though it is much larger than the L=2 term, it amounts
to a small fraction of the “rotonic” contributions that will be introduced later. Finally, it can be shown that the contribution to
the average position of the triplet due to ��

�c� of Eq. �1� is zero.
A second term is of rotonic type because it involves the orientations of two molecules. In the quadrupolar induction

approximation, it can be viewed as the interaction of the dipole induced on molecule j by quadrupole on molecule 1 with the
quadrupole of molecule i. Explicitly, the equation reads
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The third term, still of “rotonic type,” corresponds to the following mechanism. The quadrupole on molecule 1 induces a
dipole on molecule j, the quadrupole on molecule j induces a dipole on molecule i, and finally dipoles on molecules j and i
interact. We indicate these contributions with the symbol ��

�r2�:
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We have calculated these three-body terms using, for the
induced dipole components B202��R�, those reported in Ref.
21. We add the three-body contributions to the two-body

ones �up to second order in the perturbation theory� calcu-
lated using for the anisotropic interaction potential, the V220,
V222 components given by Ref. 16 and the V224, V202 given
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by Ref. 17, as in our previous work.5 We have considered a
static lattice with c /a=	8/3, and rotational constants of the
isolated molecule.25 The quantities ��

�c� are negligible with
respect to the two “roton” terms ��

�r1� and ��
�r2�, that are large

and have opposite sign. It is interesting to note that the main
effect of the three-body terms is that of uniformly shifting
the lines of the triplet, which hardly affects the splitting. The
overall contribution of the three-body terms is by no means
small, even at relatively low densities as 100 mol/ l, being
twice as large as the sum of the first-order and second-order
two-body terms. It is therefore essential to take this effect
into account if one wants to analyze quantitatively experi-
mental data. In this respect, we report in Fig. 1 the results of
our computation together with the experimental data4,7–9 up
to a maximum density of 180 mol/ l. We notice that the in-
clusion of the three-body terms leads the calculation to al-
most coincide with the experimental values, up to a density
larger than 100 mol/ l, and reproduce satisfactorily these lat-
ter up to about 150 mol/ l.

For clarity, it is convenient to discuss separately the
�weighted� average roton frequency �CM =1/5��� and the
�average� splitting 
�=1/2��0−�1�, reported respectively in
Figs. 2 and 3. The importance of the successive theoretical
corrections is quite different in the two cases. While the suc-
cessive corrections to 
� are relatively small, and seem to
indicate a convergence, with respect to both the perturbative
and the many-body expansions, the same corrections for �CM
are very large. The inclusion of all considered contributions,
however, dramatically decreases the large disagreement be-
tween the experimental and the computed average frequency,

leading to a reasonable agreement up to about 150 mol/ l. We
want to stress that this agreement is obtained using in the
computation the molecular constants of the free molecule, in
particular the rotational constant B0. In our previous work,5

three-body contributions were not taken into account, and a
significant variation of the internuclear distance was needed,
to obtain agreement with the experiment. The inclusion of
three-body forces in the calculation leads us to conclude, in
the limits of the hypothesis made in this work but in contrast
to other work,5,14 that pressure effects on the molecular bond
are negligible up to 150 mol/ l. Above this pressure, the ex-
perimental average frequency presents a large softening,
which is not reproduced by any computation, where succes-
sive corrections do not seem to lead to a convergence.

Considering the average splitting 
� �see Fig. 3�, we
stress that the three-body correction to the first-order two-

FIG. 1. Frequencies of the S0�0� triplet in solid hydrogen. Lines
are theoretical results obtained with first-order �dotted lines� and
second-order �dashed lines� perturbation theory, using two-body in-
teractions, and adding three-body contribution �solid lines�. Sym-
bols are experimental results by various authors �� Refs. 8 and 9,
� Ref. 4, � Ref. 7, � Ref. 26�.

FIG. 2. Average frequency of the S0�0� triplet in solid hydrogen.
The symbol � refer to experimental results of Ref. 10 the other
symbols and lines as in Fig. 1.

FIG. 3. Splitting �1/2��0−�1�� of the S0�0� triplet in solid hy-
drogen. Lines and symbols as in Fig. 2.
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body perturbation theory is very small. Such a result is rea-
sonable. Indeed, while the main two-body anisotropy com-
ponent has the form of two interaction quadrupoles and
scales as Q2 /R5, with R the intermolecular distance, a typical
three-body term involves also the induction of a dipole
through the polarizability 	Q2	 /R8. The ratio of the two
terms amounts to 	 /R3, which is about 10% when R=2 Å
�about 300 mol/ l�. By the same reasoning, four-body contri-
butions amount to a fraction 	2 /R6 of two-body terms and
can thus be neglected over all densities considered in the
paper. This makes the theoretical results quite dependable,
and allows for a fruitful comparison with experiment. In par-
ticular, the small effect of three-body forces in the calcula-
tion demonstrates that the splitting depends mainly on the
pair-wise components of the interaction. We are thus led to
attribute the large discrepancy of experimental and calcu-

lated splitting to a poor knowledge of the anisotropic pair
potential at short distances.

To conclude, we have taken into account all possible con-
tributions listed in Ref. 14 and explicitly calculated the effect
of three-body forces, demonstrating their importance, mainly
for the determination of �CM. On the other hand, three-body
forces are negligible for the calculation of the triplet split-
ting. This experimental quantity can thus serve to determine
the anisotropic two-body interaction potential. The models
for the latter, available in the literature, have been tested and
given poor results for reproducing the experimental data. All
of these model are too repulsive, which calls for a careful
re-examination of pair-wise potential components at the
short intermolecular distances that are reached in high pres-
sure experiments.
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