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Octahedral tilt instability of ReO3-type crystals
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The octahedron tilt transitions of ABX3 perovskite-structure materials lead to antipolar arrangements of
dipoles, with the low temperature �T� structure having six sublattices polarized along various crystallographic
directions. It is shown that an important mechanism driving the transition is long-range dipole-dipole forces
acting on both displacive and induced parts of the anion dipole. This acts in concert with short-range repulsion,
allowing a gain of electrostatic �Madelung� energy, both dipole-dipole and charge-charge, because the unit cell
shrinks when the hard ionic spheres of the rigid octahedron tilt out of a linear alignment.
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In 1950 Slater1 presented an electrostatic theory of the
ferroelectric transition in BaTiO3 �perovskite ABX3 struc-
ture� by generalizing the Clausius-Mossotti �CM� picture. An
important ingredient is the fact that the local dipolar electric
field F� D at the X site differs from the Lorentz value �4� /3�P�

because the local symmetry is less than cubic. Here we
present a similar discussion, also highlighting the role of
dipole-dipole interactions, of the octahedron tilt commonly
found in perovskite structures. To simplify the many interac-
tions, this paper is confined to the ReO3 structure type2 with
the perovskite A sublattice empty. We take AlF3 as our pro-
totype.

Starting with the parent cubic structure, the �R3̄c rhombo-
hedral� low T phase of AlF3 is generated by a rigid rotation
of an AlF6 octahedron through angle ��0.3 rad around a
cubic �111� axis through an Al atom. Because neighboring
octahedra share corners, rotations alternate, doubling the unit
cell according to wave vector �� ,� ,��. A schematic view of
the distorted �111� plane is shown in Fig. 1. The Shannon
ionic radii3 of Al3+ and F− match almost perfectly to an oc-
tahedron with the central Al touching the six F anions, and
each F anion touching its eight F neighbors. Thus the rigidity
of the octahedron follows both from the Al-F covalency and
from ionic size effects. As the octahedra tilt, their spacing
shrinks, generating a rhombic primitive cell whose c /a ratio
�c is along cubic 111� increases by the factor 1 /cos��� rela-
tive to the cubic value, and the cell volume V decreases as
�V /V=−sin2 �.

The CM theory4,5 shows that a cubic lattice of polarizable
molecules may have a “polarization catastrophe” signaling
an instability towards ferroelectric polarization. The condi-
tion for instability is an increase of the product n� �density
times polarizability� to 3 /4�. A generalized version of this
statement is derived in the Appendix : a self-stabilized spon-
taneously electrically polarized state will occur when � in-
creases to 1/�max, where �max is the maximum eigenvalue of

the dipole-dipole interaction tensor �. The tensor �i�,j� is
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defined as the � Cartesian component of the dipolar electric

field F� D,i �at site R� i of the lattice� created by a unit dipole in

the Cartesian � direction at site R� j. In a 3−N-vector notation,
�FD�=� �	�. This generalization of the Clausius-Mossotti
theory requires no restrictions on the size or symmetry of the

FIG. 1. �Color online� The �111� planes of perovskite are alter-
nately AX3 and B layers. The AX3 sites constitute an fcc lattice with
close-packed triangular �111� planes occupied 75% by X anions
�shown as filled circles� and 25% by A cations �shown as open
circles and missing in the AlF3 structure.� Arrows denote displaced
X anions. Faint triangles with counter-clockwise rotations have their
nearest B cation in the plane below, and inverted faint triangles with

clockwise rotations have their nearest B cation in the plane above.
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system. The pattern of spontaneous polarization, given by the
corresponding eigenvector, is, in general, not a simple ferro-
electric.

Rigid tilts of octahedra occur in most low-T phases of
perovskites.6,7 AlF3 has the perovskite structure with the A
sublattice empty. Below 730 K the structure is rhombohedral
because of the cooperative rotation of AlF6 octahedra, as
shown in Fig. 1. We have successfully modeled this instabil-
ity in two different ways: �1� using the density-functional
theory �DFT�,8 and �2� using classical molecular dynamics
�MD�,9 including both short-range and electrostatic forces,
plus anion polarizability. In this paper we abstract from our
earlier results a simple picture that includes electrostatic ef-
fects of charged and polarizable point ions.

We focus on the dipole patterns �	� associated with octa-
hedral tilts. The component �i� �	� is the � Cartesian com-
ponent of the dipole 	� i on the ith ion. First define the “dis-
placive dipole” 	� D,i of the ith X anion as 	� D,i=−�eu� i, where

u� i is the anion displacement from the site R� i of the undis-
torted �cubic� structure, and −�e is the charge of the anion.
The unknown dimensionless parameter � absorbs the uncer-
tainty about what actual charge to assign. The dipole can be
imagined as a separated pair of opposite charges, the nega-

tive end at the anion nuclear coordinate R� i+u� i, and the posi-

tive end at the lattice site R� i formerly occupied by the anion.
Glazer6 has indexed the different types of octahedral tilt.

A small tilt, labeled by Glazer as 
 p� q� r, is a product of
tilts by angle 
 around x̂, by � around ŷ, and by � around ẑ.
The symbols p ,q ,r stand for +, −, or 0. There are six primi-
tive rotations. A ẑ tilt by angle � is denoted as 
0�0�±, where
p=q=0 indicates no rotation around x̂ or ŷ. This tilt belongs
to wave vector k� = �� ,� ,kz�. Rotations of adjacent octahedra
in the x̂ and ŷ directions are forced to be opposite in sign
�wave vector kx=ky =��, whereas in the ẑ direction, the next
octahedron can have a different rotation angle. Glazer’s con-
ventions are that r=+ corresponds to kz=0, while r=− indi-
cates kz=�. We have discovered the interesting fact, ex-
plained in the Appendix , that the corresponding dipole
patterns �	� for the six primitive rotations are eigenvectors of
�. The three �	�
0�0�+�� are degenerate with eigenvalue
��+�=14.383/a3, while the three �	�
0�0�−�� are degenerate
with eigenvalue ��−�=14.461/a3 �where a=3.43 Å in AlF3�.
Note that ��−� is the largest eigenvalue of �, and that ��+� is
only 0.5% smaller than ��−�. The dipole-dipole interaction
energy of an arbitrary tilt-induced dipole pattern
�	�
 p� q� r��=�C� ��� is −��C��2� /2. Thus a Glazer tilt has
dipole-dipole interaction energy

ED�
p�q�r� = −
1

2
��ea

2
	2


��p�
2 + ��q��2 + ��r��2� =

− 1
2 
��p�	x

2 + ��q�	y
2 + ��r�	z

2� , �1�

where 	x=�ea
 /2 is the amplitude of the dipole eigenarray
arising from the x̂ rotations, etc. When p ,q ,r are all negative
as in AlF3, the dipole-dipole interaction energy ED=
−�D �	� D�2 /2 is as negative as possible 
�D=��−� is maximal�
for any array of displacive dipoles of a fixed magnitude �	� D�.

For cases when the superscripts contain some +’s, i.e., for
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different Glazer tilting schemes, the energy is at worst 0.5%
smaller than optimum.

So far we have presented an argument showing that tilts
of corner-coupled rigid octahedra are strongly stabilized by
dipole-dipole interactions. Such tilt systems are “six-
sublattice” antiferroelectrics, because each of the six anions
of a BX6 octahedron has a separate direction of polarization.
It is controversial whether the term “antiferroelectric” should
be applied to dipolar-stabilized tilt patterns. Conventional
use often5,10 �but not always11� restricts “antiferroelectric” to
cases where an applied external field can switch the state to
ferroelectric. Therefore we use the term “antipolar.”

Now we need a theory for the total energy. From our
previous studies8,9 it is clear that the displacive dipole 	D
must be supplemented by an induced dipole 	I on the polar-
izable anion. This costs energy 	I

2 /2� per dipole, where � is

the anion polarizability. The isolated anion in a field F� has a

moment �F� which minimizes the total energy 	I
2 /2�

−	� I ·F� . For the F− anion, � depends somewhat on its envi-
ronment, but is in the range12 �0.85±0.05 Å3. We also need
to account for the total change of the electrostatic energy
when anions move, not just the cooperative dipole-dipole
part. Taylor expanding the Madelung energy  to second
order in displacements, two types of energy appear. �1� There
is the intersite �i� j� or dipole-dipole term already computed
which alters the energy bilinearly in the total moment 	I,i
+	D,i of dipoles at different sites i and j. �2� There is a

“Madelung” field �� i near R� i caused by the ideal undis-
torted lattice of other ions. This vanishes by inversion sym-

metry exactly at R� i and grows linearly 
�u� i ·�� i��� i /2� with
displacement from this site. This gives a single-site �i= j�
energy �M��	D�	D� /2. Uncertainty about actual charges is
absorbed into the same factor � which was used in the defi-
nition of the displacive dipole 	D. From the Poisson equation
�2=0, the trace of �M is zero. For cubic BX3 with charges
+3 for B and −1 for X, we find numerically that �M is diag-
onal in cube body axes, with elements �M =40.789/a3 in the
directions transverse to the B-X-B axis �where rotations ac-
tually occur� and an element −2�M in the direction parallel.
Thus there is an electrostatic restoring field FM =−�M	D at
the site of the displaced X anion nucleus. This field is nu-
merically bigger �differing by −2.8� than the destabilizing
dipolar field FD=�D	D previously found from the displace-
ments of the other X anions. This explains why the induced
moment 
	I=��FM +FD�� is opposite to the displacive mo-
ments Fig. 2.

The energy of the dipole array generated by a tilt is

Utot�	D,	I� = 1
2�	I

2 − 1
2�D�	D + 	I�2 + 1

2�M	D
2 + �M	D	I

− 1
2�V	D

2 . �2�

The third and fourth terms contain the Taylor expansion of
the Madelung energy as described above. The fifth term ac-
counts for destabilizing short-range interactions which have
not yet been discussed. The large Madelung electrostatic at-
traction of ionic crystals tries to shrink the lattice constant as
much as possible. Hard core repulsion, a quantum effect, is

needed to stabilize the lattice. In the simplified model of

-2



BRIEF REPORTS PHYSICAL REVIEW B 73, 172102 �2006�
impenetrable hard spheres, the ions touch at the hard sphere
radius, and the lattice constant a of the cubic phase is twice
the sum of the B and X ion radii. Pushing the X anions a
distance u off the B-X-B axis by a tilt, the lattice constant
changes to a+�a where �a=−2u2 /a. The Madelung
energy per cell of the B3+X3

−1 cubic lattice is UM�V�
=−17.908�2e2 /V1/3 per cell, where V=a3 is the volume per
cell. When V shifts to V+�V, where �V=a2��ax+�ay +�az�,
the first order shift UM�V+�V�−UM�V� under a rigid tilt by u
is thus −� 1

2
��V	D

2 , where �V= � 4
3

�17.908/a3 is the volume sta-
bilization energy per dipole caused by the tilt u.

The induced moment is the one which minimizes this en-
ergy, giving

	I/	D = − ��M − �D�/�1/� − �D� , �3�

For the parameters of AlF3, this gives 	I�−0.80	D. The
total energy, evaluated at this optimal choice of induced mo-
ment, is

Utot�	D,	I,opt� =
1

2
��M − �D − �V −

��M − �D�2

1/� − �D
		D

2 . �4�

If we had not included the anion polarizability �i.e., �→0�
then, for the parameters of B3+X3

−1, the net restoring coeffi-
cient �M −�D−�V would still be positive. In fact, our impen-
etrable sphere model probably overestimates �V, so stability
is still fairly strong. However, there is a critical polarizability
�c beyond which the quadratic restoring energy on dipoles
goes negative, given by

1

�c
= �D +

��M − �D�2

�M − �D − �V
. �5�

For our simplified model of AlF3, this is 0.136 Å3. Instability
thus occurs even for � well below the actual value for F−,
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FIG. 2. Electrostatic energy of BX3 with full ionic charges +3
and −1, as a function of the tilt angle � around the �111� axis. The
dashed curve is the full quadratic approximation, namely the sum of
the Madelung �M�, dipole-dipole �D�, and volume �V� terms. The
solid curve is the exact Madelung sum.
��0.85±0.05 Å .
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The theory presented here includes classical electrostatic
energies quite well �since nonoverlapping charge distribu-
tions interact to a good approximation as if they were point
charges and dipoles� but lumps all quantum effects into a
hard core, possibly overstating the amount of energy avail-
able in the volume contraction. Our theory omits all higher
than quadratic effects and thus cannot predict the magnitude
of the tilt. Nevertheless, we have offered a sensible approxi-
mation with no free parameters, which helps to explain
nicely the nearly universal instability of perovskite materials
to octahedron tilting. Furthermore, the model predicts very
little energy discrimination between different tilting schemes,
consistent with the wide range of tilts seen experimentally
�and sometimes adopted by the same material at different
temperatures�. The major influence of dipole-dipole interac-
tions and anion polarizability is an interesting surprise.
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APPENDIX

A generalized CM theory13 can be constructed as follows.
Consider an array of point polarizable molecules at fixed

positions R� i. The dipole-dipole �i� j� energy for an arbitrary
pattern of dipoles 	� i� is

E�	� i�� = �
i
�	i

2

2�
−

1

2
	� i · F� D,i	 =

1

2
�	�

1

�
1̂ − ��	� .

�A1�

Additional nondipolar electrostatic fields are included in Eq.
�2� of the main text, but are unnecessary here where the topic
is the � matrix. For dipoles on the X anions in perovskite
structure, there are three sublattice sites per cubic unit cell. A
vector space notation is used where �	� is a 9N-dimensional
column vector of the three Cartesian components of each of
the 3N dipoles in N unit cells, and � is the 9N�9N dipole-
dipole interaction matrix which has the elements

�i�,j� =
3Rij�Rij� − ���Rij

2

Rij
5 . �A2�

The lattice is stable against dipole formation if the quadratic
form Eq. �A1� is positive �all its eigenvalues should be posi-
tive�. The condition for instability is that the maximum ei-
genvalue � of the matrix � exceeds the restoring force con-
stant 1 /�. The corresponding eigenvector gives the pattern
of displacement dipoles �	� which has the most self-
stabilizing displacement pattern.

Bloch’s theorem allows eigenstates of � to be chosen as
� �
simultaneous eigenstates of translations T�R�, where R is any
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translation vector of the primitive �simple cubic� lattice. The
resulting Bloch states are labeled by wave vector k� which
lies in the first Brillouin zone. The eigenvalues were com-

14

FIG. 3. Eigenvalues of the dipole-dipole interaction � versus
wave vector for dipoles on the three F− sublattices of the perovskite
AlF3 structure. The largest eigenvalue is the fivefold degenerate
state at the R point �� ,� ,��, with eigenvalue 14.461. This results
from an accidental degeneracy of the three-fold T2g and two-fold Eg

eigenvectors. The accidental degeneracy can be understood from a
subprimitive translation symmetry of any two of the three F− sub-
lattices. At the right, the density of states is plotted horizontally
versus energy vertical.
puted numerically, using an Ewald method to converge the
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sums. Results are shown in Fig. 3. As a test of the code,
eigenvalues were also calculated for a model with a fourth
sublattice corresponding to the perovskite A sites. Together
with the three X sites, the resulting lattice is equivalent to the
face-centered cubic structure in a nonprimitive conventional
cube and a four-atom basis. It was found numerically that the
largest eigenvalue equaled 4�n /3 �with n=4/a3� and oc-
curred at k� = �000�. This is the known result of the CM
theory—when every molecule bears the same moment 	� and
sits on a site of cubic symmetry, the field at each site is given

by the classical Lorentz value �4� /3�P� , and a ferroelectric

instability occurs when the energy −P� ·F� exceeds the cost
	2 /2� to create the dipoles.

The flatness of the uppermost branch of � versus k in Fig.
3 indicates that there is not much interaction coupling the
xy-oriented dipoles in one xy plane to the xy-oriented dipoles
in adjacent planes. This result can be understood as a conse-
quence of the exponentially rapid transverse decay of the
electric field of a periodic array of dipoles.13 This fact helps
explain why the observed tilts of perovskites are so indis-
criminating in their preferred wave vector �� ,� ,0� vs.

�� ,� ,��, and even allow mixed wave vector solutions.
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