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In this paper, interatomic potential models used for atomistic simulations of insulating oxides are revisited
through the example of TiO2 rutile. The cohesive energy of oxides comprises an electrostatic part and a
short-range part whose relative importance differs with the models. The electrostatic part can be evaluated by
considering either point fixed atomic charges or, alternatively, charges that are allowed to vary in response to
the local atomic environment, with a shielding correction to coulombic interactions at short range. We deeply
analyzed this latter approach in the framework of the Rappé and Goddard QEq charge equilibration scheme.
We conclude that it is an efficient model to describe heterogeneous situations due to point defects or surfaces.
Moreover, whatever the description of the electrostatic part of the energy is, several short-range interatomic
potentials are found to describe in an acceptable way the crystal bulk properties �cohesive energy, elastic
constants, etc�. To compare the efficiency of various short-range potentials, we selected the TiO2 rutile whose
experimental formation energy of the oxygen vacancy is available. By combining it with the cohesive energy,
we have been able to accurately analyze the energetics of TiO2 as a function of those potentials. In this paper
we show first that Morse potential is not adapted to oxygen-oxygen interactions and that pair-wise potentials
between Ti-O pairs are not suitable to describe defects. As a result, we propose a model that combines the QEq
description for electrostatic energy, a Buckingham potential for O-O interactions and a N-body potential for the
covalent part of the Ti-O interactions. This model efficiency has been tested on bulk, oxygen vacancy, and
surfaces of rutile and turned out to provide results which fit very satisfactorily the experimental data.
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I. INTRODUCTION

As oxides play a major role in materials science, it is of
great interest to perform atomistic simulations on a great
number of atoms at finite temperature and as a function of
oxygen chemical potential, which is not conceivable by
means of ab initio techniques yet. This requires a realistic
and operational interatomic potential model �IPM�. Until re-
cently, most of the IPMs for oxides were based on the Born-
Madelung cohesive description of ionic solid. This involves
to consider coulomb interactions between fixed formal point
charges, often including a shell model1 to take the polariz-
ability of ions into account, and a repulsive term using some
combination of Born-Mayer and van der Waals potentials,
acting at short range �see, for example, Refs. 2–4, and refer-
ences therein�. Beyond bulk and surface properties of pure or
doped materials, there is a need to model materials in which
heterogeneous interfaces occur. As a matter of fact, proper-
ties of oxide/oxide and metal/oxide interfaces govern a num-
ber of technologically important devices, including thermal
barriers, gas sensors, fuel cells, catalytic devices, etc. It is
clear, in this case, that the picture of fixed charges �formal or
not� is incorrect. A model allowing charges to vary in re-
sponse to changes in the local environment of the ions is then
needed. Based on the earlier work by Mortier and others5,6

and on the QEq charge equilibration scheme of Rappé and
Goddard,7 many variable-charge models have been
proposed.8–15 These models mainly differ from, first, the pre-
dicted ion charges, that depend on the QEq parameters and,
second, from the type of short-range potentials to be em-
ployed. The more recent models use a two-body Morse po-
tential in a so-called “MS-Q” model.9,13,15

Our studies on oxides are aimed at simulating the oxide/
oxide and metal/oxide interfaces taking place in thin layer
materials synthesized in our laboratory. More precisely, we
are interested in the dependence of chemical and structural
properties of the interfaces on temperature and partial pres-
sure of oxygen, including the important role of point defects.
We were first interested in TiO2 because it holds an impor-
tant place in material science due to the wide range of tech-
nical fields where it is employed �for a recent review see Ref.
16�. Moreover, the rutile polymorph of TiO2 can be consid-
ered as a model oxide for several reasons: �i� it is one of the
most investigated systems, experimentally and theoretically,
both for bulk and surface properties,16 �ii� it has relatively
strong covalent characteristics, �iii� although it seems simple
to model theoretically, its open structure based on tetragonal
centered titanium cell poses problems with regard to more
compact structures, and �iv� the formation energy of an oxy-
gen vacancy has been measured accurately,17,18 which is not
often the case. Further, this energy has been reproduced with
a very good precision by ab initio calculations.19 In contrast,
whatever the set of potential parameters may be, the MS-Q
models proposed for TiO2, �Refs. 13 and 15� do not allow us
to obtain a satisfactory value for the formation energy of an
oxygen vacancy. We therefore revisited these MS-Q models
in order to analyze the reasons of their failure. In this paper,
we present a detailed analysis of the energetics of TiO2, in-
cluding that of oxygen vacancy, in the framework of various
models. Our analysis led us to propose several major im-
provements of the MS-Q model, in particular, the use of
N-body short range potentials which is in agreement with the
description of the covalent character of the Ti-O bond by
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means of the second moment approximation of the tight-
binding scheme.20

The structure of the paper is as follows. In Sec. II, we
recall the main differences between the fully ionic descrip-
tion of the fixed formal charge model and the QEq scheme
with two aims in view. First, this is useful to discuss some
arguments developed in Ref. 15 about the QEq scheme,
which is done in Sec. III. Second, this allows us to examine
the pieces that go into the calculation of the energy of the
oxygen vacancy and the role that this calculation plays in
checking the model. In Sec. III, we discuss the MS-Q models
proposed13,15 and their limitations. In Sec. IV, we propose
some improvements to these models and present results on
bulk, oxygen vacancy, and surfaces of rutile TiO2 and on
bulk anatase and brookite, the two other natural polymorphs
of TiO2. All our calculations were performed using a general
Monte Carlo code �SMASH�21 that we developed. Many cal-
culations were checked using GULP �Ref. 22� and DL_POLY23

codes.

II. FIXED FORMAL CHARGE MODEL VS. QEq SCHEME

By definition, the cohesion of a solid is the formation of
this solid from gaseous atoms, taken as zero of energy. For
ionic solids, a stage of the formation consists in creating ions
by transfer of electrons. In the case of a perfect TiO2 crystal,
this can be written as

Ti�g� + 2O�g�→
�1a�

Ti4q+ + 2O2q−→
�1b�

TiO2�s� , �1�

where q is the charge transfer by unit charge between cations
and anions �q� �0,1��. The cohesive energy, corresponding
to the whole process �1�, is Ecoh=−19.9 eV/TiO2 formula.24

A. The fixed formal charge model (FFCM)

The formal charges of the ions Ti �qTi= +4� and O
�qO=−2� correspond to q=1 in the process �1�. In this case,
the ionic energy of the process �1a�, Eion, is known experi-
mentally and is the sum of the four first ionization energies
of titanium �91.1 eV�24 minus twice the first and second elec-
tron affinities of oxygen −2�1.46−8.75��14.6 eV,25 that is
to say Eion=105.7 eV in all.

The lattice energy, corresponding to the process �1b�, is
Elatt=Ecoh−Eion=−19.9−105.7=−125.6 eV. Elatt is the sum
of the Madelung energy �EM� and of the short-range energy
�Ecoh

SR �. Classically, EM may be simply evaluated by

EM =
�M � qTi � qO

2 � r0
= − 142.4 eV, �2�

where �M =4.82 is the Madelung constant of the rutile
structure with respect to the first neighbor distance Ti-O,
r0=1.95 Å �on average�. Thus, the short-range energy,
Ecoh

SR =Elatt−EM =16.8 eV is positive �repulsive�. To sum up,
in the FFCM, the cohesive energy of rutile is the sum of a
large cohesive electrostatic part Ecoh

elec=Eion+EM, and a repul-
sive short-range part

Ecoh = Ecoh
elec + Ecoh

SR = − 36.7 + 16.8 eV = − 19.9 eV. �3�

Now, a convenient way to sharpen the energetics analysis
of rutile TiO2 is to focus on the formation, at constant pres-
sure, of an oxygen vacancy VO for which the formation en-
ergy is known: EVO

=7.5 eV.17–19 Usually, in the framework
of the FFCM, this energy corresponds to the following pro-
cess:

2Ti4+ + O2− → O�g� + 2Ti3+ + VO. �4�

EVO
has three components: an ionic component EVO

ion

to form one neutral oxygen from one oxygen ion and two
Ti3+ from two Ti4+, a loss in Madelung energy EVO

M and a
short-range interaction part EVO

SR. The ionic term is known
�EVO

ion=−93.8 eV�24,25 and EVO

M can be evaluated by Monte
Carlo simulations: EVO

M �108 eV for relaxed energy. One can
then deduce

EVO

SR = EVO
− EVO

ion − EVO

M � − 6.5 eV. �5�

Now, it is convenient to assume that almost all of the
short-range interactions are due to the first neighbors �this is
confirmed in all our calculations�. In TiO2, a titanium atom
has 6 oxygen atoms at first neighbors and an oxygen atom
has 3 titanium atoms and 11 oxygen atoms at first neighbors
�these 11 oxygen atoms lie between 2.57 and 2.95 Å, and we
consider a single shell of neighbors at a mean distance of
2.77 Å�. Note that the Ti-Ti short range interactions are ne-
glected, as in a number of models �see Ref. 2, and references
therein�. Limiting ourselves to these shells and assuming pair
interactions, the short-range part of the cohesive energy Ecoh

SR

and of the energy of formation of the oxygen vacancy EVO

SR

can be expressed, respectively,

Ecoh
SR = 6VTi-O + 11VO-O � 16.8 eV �6�

and

EVO

SR = − 3VTi-O − 11VO-O � − 6.5 eV, �7�

where VTi-O and VO-O are the short-range pair interactions
between first neighbor Ti-O and O-O pair, respectively.
Equations �6� and �7� lead to

Ecoh
SR + EVO

SR = 3VTi-O � 10.3 eV, �8�

and therefore to

VTi-O � 3.5 eV and VO-O � − 0.35 eV. �9�

In the FFCM, short-range Ti-O interactions must be re-
pulsive and O-O interactions attractive, which is not intui-
tive.

Let us consider, for example, the often cited Catlow
et al.,2 model. Buckingham potentials are used for Ti-O
and O-O pair interactions �see Fig. 1�. At first neighbor, the
O-O interaction is slightly attractive �−0.06 eV�, because of
the predominance of the Van der Waals term, and the
first neighbor interaction of the Ti-O pair is repulsive
�5.3 eV� and represents 95% of the short range energy.
The sign of the interactions is in agreement with Eq. �9�,
but the model clearly overestimates short-range repulsive in-
teractions. These interactions lead to Ecoh

SR =31 eV �Eq. �6��,
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overestimating Ecoh
SR by 15 eV, which represents the differ-

ence between calculated and experimental lattice energy
�−110 eV instead of −125.6 eV2� or, equivalently, between
calculated and experimental cohesive energy �Ecoh=−4 eV
instead of −19.9 eV�. In the same way, the model leads to
EVO

SR =−15 eV, which yields, by use of Eq. �5�, EVO
�−1 eV.

This negative value, not physically correct, was confirmed
by our Monte Carlo calculations at constant pressure,
whether or not shell model was included. Note that the origi-
nal result in Ref. 2 �positive vacancy energy� was obtained
by static simulations using the Mott-Littleton method at con-
stant volume. This exemplifies the important role that point
defect data can play to check potentials.

Thus, the parameters of the potentials have to be better
fitted to make the FFCM usable. Nevertheless, even in these
conditions, the latter model has an important shortcoming: it
does not allow the charge transfer when a source of hetero-
geneity occurs �point defect, surface, interface�. In the pre-
ceding, we considered that the charge transfer during the
formation of an oxygen vacancy is carried out by forming
two reduced cations at first neighbor, even though the
charges may be delocalized in reality, at least between the
three Ti first neighbors of the vacancy. Concerning the sur-
faces the charge transfer do not exceed ten percent �with
respect to the charges of the bulk� and could be neglected as
a first approximation. Nevertheless, we shall see in the fol-
lowing that this charge transfer has a noticeable effect on the
atomic relaxations near the surface. Last but not least, if one
considers an interface between a metal and an oxide or be-
tween two oxides, a fixed charge model is clearly inappro-
priate. Now, studying such interfaces is one of our ultimate
goals, and we need for that a model that permits to calculate
the atomic charges with respect to the local environment of
the atoms. Such a model is discussed in the next section.

B. The QEq scheme

The QEq scheme is based on the electronegativity equal-
ization principle of Rappé and Goddard:7

� = �i =
�Ecoh

elec

�qi
, �10�

where Ecoh
elec=Eion+EM is the electrostatic part of the cohesive

energy, qi the charge on the ion i, and �i the electronegativ-

ity. In other words, at equilibrium, the charges qi carried by
the ions are those that minimize Ecoh

elec with the condition
�qi=0. These charges are smaller than the formal charges
and therefore, the parameter q in Eq. �1� is smaller than 1. A
number of models based on this scheme have been devel-
oped for different systems: for example oxides8–15 and liquid
water.26

Calculation of Ecoh
elec requires that the energy Eion of the

process �1a� be evaluated first for q�1 and then the electro-
static interaction EM.

Eion=2EO+ETi where EO �ETi� is the self-energy of an
oxygen �titanium� ion with a charge qO �qTi� not known a
priori �the relation 2qO+qTi=0 must be fulfilled�. The self-
energy of oxygen and titanium ions as a function of charge is
shown in Fig. 2. Following Rappé and Goddard,7 the self-
energy of the ion i can be expressed to the second order as

Ei = Ei�0� + �i
0qi +

1

2
Ji

0qi
2, �11�

where �i
0 and Ji

0 are related to electronegativity and hardness,
respectively. These parameters can be derived from atomic
data as in the original work of Rappé and Goddard.7 Never-
theless, the values used by these authors for oxygen do not fit
very well the data of Fig. 2�a�. For this reason, most of the
authors consider �i

0 and Ji
0 as adjustable parameters.8,15 We

acted in the same way. Moreover, it has to be noted that the
minimum of the function Ei= f�qi� corresponds to qi=0 for
metals �see Fig. 2�b�� that leads to �i

0=0 �whereas for oxygen
the minimum lies between qO=0 and qO=−1�. Ji

0 is then
adjusted to reproduce the curve Ei= f�qi� in the vicinity of

FIG. 1. Short-range Buckingham potentials used in the fixed
formal charge model of Ref. 2. Ti-Ti interactions are neglected in
this model. Dashed lines refer to first and second neighbor shells.

FIG. 2. Atomic self-energy of ion �a� O, �b� Ti as a function of
charge.
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the expected charge of the metal ion �between 2 and 3 for Ti,
see further�.

The electrostatic interaction depends on the form of the
Coulomb potential Jij between ions i and j. For large sepa-
ration rij, classically we have Jij =14.4/rij �where the conver-
sion factor 14.4 allows r0 to be in Å and Jij in eV�. In the
QEq scheme, for distances such that the electronic distribu-
tions of ions overlap, the classical Coulomb potential �corre-
sponding to point charges� is replaced by the Coulomb inte-
gral between two single s-type Slater orbitals

�i�r� = Nnrn−1e−�r, �12�

where Nn is the normalization constant and n is the quantum
number of the outer valence orbital. The exponent � is given
by

� = �2n + 1�/�4RA� , �13�

where RA is the covalent radius for atom A in the original
QEq formulation.7 In the present study, following Thomas et
al.15 we use RO and RTi as adjustable parameters which are
determined by the bulk equilibrium atomic charges. Assign-
ing a charge to an atom in an ionocovalent compound is
somewhat arbitrary. Nevertheless, in order to use tractable
models, it is necessary to associate a fictitious charge to each
atom, which is necessarily smaller than the formal charge. A
starting point may be ab initio calculated Mulliken charges27

which varies from 2.23 to 2.82 for Ti in rutile.12,15,28–30 Ji
0 is

therefore adjusted for qTi� �2,3�. This leads to the QEq pa-
rameters reported in Table I for oxygen and titanium. Jij as a
function of rij, corresponding to these QEq parameters, are
plotted in Fig. 3.

The main consequence of the decrease of the ion charges
and of the shielding of the Coulomb interaction is to drasti-
cally decrease the absolute value of the electrostatic part of

the cohesive energy 	Ecoh
elec	, which becomes smaller than the

absolute value of the total cohesive energy 	Ecoh	. Therefore,
the short-range part Ecoh

SR changes sign with respect to the
FFCM and becomes negative �cohesive�. Moreover, the
short-range part of the formation energy of the oxygen va-
cancy EVO

SR becomes positive, of the order of 4 eV. This im-
plies that now VTi-O must be negative and cannot longer be
described with a Buckingham potential. As for VO-O, it must
be slightly positive. This is a radical change with regard to
the preceding model.

III. THE MS-Q MODEL

The most recent QEq-type model applied to TiO2, is the
MS-Q model by Swamy and Gale �SG�.13,14 It is based on
the work by Demilrap et al.9 on SiO2, where the original
QEq scheme of Rappé and Goddard is combined with short-
range Morse potentials31 of the form

Vij�rij� = Dij��1 − e−aij�rij−rij
0 ��2 − 1� �14�

or, equivalently,

Vij�rij� = Dije
−2aij�rij−rij

0 � − 2Dije
−aij�rij−rij

0 �, �15�

where Dij, aij and rij
0 are positive adjustable parameters. rij

0 is
the equilibrium intermolecular separation when dealing with
diatomic molecules. Vij�rij� has a minimum �=−Dij� when
rij =rij

0 . The crystal structures and bulk moduli of eleven TiO2
polymorphs were quite satisfactorily reproduced with this
model14 which, nevertheless, suffers from some shortcom-
ings. On the one hand, the charges yielded by the QEq pa-
rameters used by the authors are very low: qTi� +1.15. Con-
sequently, the absolute value of the cohesive energy of rutile
is underestimated �	Ecoh 	 =8 eV instead of 19.9 eV �. On the
other hand, the surface formation energies are not correctly
reproduced �the �110� surface is slightly less stable than the
�100� one�.32 In fact, Monte Carlo simulations show that the
�110� surface is not stable at all: the outer oxygen atoms
move away from the surface without finding an equilibrium
position.

The SG’s MS-Q model was analyzed by Thomas et al.
�TMB�.15 Their conclusions are rather unfavorable to the
QEq scheme and have to be discussed again. First, the au-
thors observed that the results of the SG’s MS-Q model are
almost identical to the predictions of a MS model, which is
simply the MS-Q model without electrostatic forces. They
concluded that the short-range Morse potentials are largely
responsible for the results yielded by the MS-Q model and
that charges have little effect, which limits the transferability
of models based on the QEq scheme and calls into question
their functional form. If this observation is effectively cor-
roborated in the case of the SG’s MS-Q model by our Monte
Carlo calculations, this is no longer the case for the improved
model �MSB-Q� proposed further. This result is therefore not
general and the functional form of the QEq scheme is there-
fore not implicated; in our opinion, the observations of TBM
are due to the combination of two effects present in the SG’s
MS-Q model: the Morse potentials �particularly the Ti-O po-
tential� impose bond lengths against electrostatic forces
manifestly too weak.

TABLE I. QEq parameters for Ti and O used in this study.

O Ti

�0 �eV� 7.543 0.0

J0 �eV� 12.162 10.572

RA �Å� �MB-Q model� 0.63 0.75

RA �Å� �SMB-Q model� 0.6 0.77

FIG. 3. Jij in the QEq scheme corresponding to the QEq param-
eters �0 and J0 displayed in Table I.
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Another important point discussed by TMB is the ques-
tion of the transferability of the MS-Q model and more gen-
erally of the QEq-type models. First, let it be emphasized
that, whatever the fitted parameters may be �those of the SG
model13 or those of the modified TMB one15�, the Morse
character has an effect only upon the Ti-O bond. As a matter
of fact, as shown in Fig. 4, on the one hand, the Ti-Ti inter-
actions are negligible and, on the other hand, the O-O inter-
actions are repulsive at short range, due to the very large
value of rOO

0 with respect to the first neighbor O-O distance
�3.7 and 5.98 Å in the two models respectively, compared to
2.77 Å�. We shall show further that, for this reason, a Morse-
type potential is not adapted for O-O interactions. Now, the
Morse potential for the Ti-O bond �see Eq. �15�� is divided
into a repulsive term and an attractive one, the latter describ-
ing the electronic delocalization between Ti and O, or, in
other words, the covalent character of the bond. This term
must tend towards zero for fully ionic compounds and, co-
herently, does not appear in fully ionic models like the
FFCM. In ionocovalent cases, this term depends on the co-
valent character of the bond that is estimated by the charge
transfer 2− 	qOx	. Therefore, an IPM cannot be transferable
between oxides of different stoichiometries. For example, the
titanium oxides TiO2, Ti3O5, Ti2O3 and TiO have not the
same charge states. The Ti-O bond over the series, which
goes from insulator to metallic conductor, cannot be modeled
by the same IPM. Moreover, as discussed in Ref. 33, cation-
cation interactions are also expected to be dependent on the
electronic state �Ti4+ ,Ti3+ ,Ti2+� of the cations. The fact that
there are not outer d electrons in Ti4+ ions explains why
Ti4+-Ti4+ interactions are negligible in TiO2 polymorphs,
which is not the case for other stoichiometries. On the other
hand, an IPM can be transferable to different polymorphs
when the bond character is similar. This is the case for the
TiO2 polymorphs considered by SG.

As already mentioned, TMB �Ref. 15� revisited the
SG’s MS-Q model, first by fitting again the QEq parameters
to obtain qTi= +2.23 in TiO2, which is undoubtedly more
realistic than the SG’s value �qTi= +1.15�. Secondly, they
also fitted again the Morse parameters �see Fig. 4�, which
allows them to obtain a better cohesive energy than SG,
Ecoh�−24.2 eV, divided into −8 eV for the electrostatic part
and −16 eV for the short-range part. Now, at first neighbor,
their model yields VTi-O=−0.25 eV and VO-O=1.16 eV �the

Ti-Ti interactions are insignificant, see Fig. 4�, which leads,
from Eq. �6�, to Ecoh

SR =11.3 eV for the short-range cohesive
energy. This high positive value is completely in disagree-
ment with the fact that the greatest part of the short-range
energy �−16 eV� must be yielded by first neighbors. The
short-range cohesive energy becomes negative only for
rij 	8 Å and decreases up to the cut off radius rc=12.2 Å.
This behavior is clearly unphysical and is due to the negative
contribution of O-O interactions for rij 	4.5 Å �see Fig. 4�.
As already mentioned, this situation is due to the fitted value
of rOO

0 �5.98 Å� of the Morse potential, which is very large in
comparison with the first neighbor O-O distance �2.77 Å�.
This behavior is in fact always observed, more or less pro-
nounced, when describing O-O interactions with Morse-type
potential:9,13,15 in all models, VO-O is positive at first neigh-
bor and becomes negative at much longer range, which en-
sures the stability of the compound. One can conclude that
the Morse-type potential is ill suited to describe the O-O
interactions. As a matter of fact, there is no physical reason
to explain this change of sign. In order to ensure repulsive
O-O interactions it is better to use a Buckingham potential.
Moreover, Ti-Ti interactions can be neglected in TiO2 poly-
morphs. On these bases, we improved the MS-Q model in
two steps, as presented in the next section.

IV. IMPROVEMENTS OF THE MS-Q MODEL

A. The MB-Q model

First, we used a mixed Morse-Buckingham-QEq model
�MB-Q model�: short range Ti-O interactions are described
by a Morse potential, O-O interactions by a Buckingham
potential, Ti-Ti interactions are neglected and the QEq
scheme is implemented as described in Sec. II B. The QEq
parameters �i

0 and Ji
0 are given in Table I. Using the code

SMASH,21 potential parameters are adjusted in order to repro-
duce the lattice parameters a, c, u �u is the internal coordi-
nate for oxygen�, the cohesive energy, six elastic constants
plus the bulk modulus of the relaxed structure of rutile. The
Morse-Buckingham potentials are shown in Fig. 5, the pa-
rameters are listed in Table II and the calculated lattice prop-
erties that derive from the model are listed in Table III �third
column�. These properties fit satisfactorily the experimental
data �Table III, second column�. From this model we calcu-

FIG. 4. Morse potentials used by Thomas et al. �Ref. 15� in their
MSQ model. Vertical lines indicate the first neighbor distance for
each pair of atoms.

FIG. 5. Morse-Buckingham potentials used in our MB-Q model.
Vertical lines indicate the first neighbor distance for each pair of
atoms.
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lated the energy and the volume of formation of an oxygen
vacancy, the energy of formation of the three relaxed sur-
faces �110�, �100�, and �001�, the linear coefficients of ther-
mal expansion parallel and perpendicular to the c axis be-
tween 2 and 300 K ��a and �c, respectively�, as well as the
heat capacity CP �see Table IV, third column�. The defect
formation energies �vacancy and surfaces� were calculated
with allowing the charges to relax around the defect up to a
cutoff radius of 6 Å, which ensures the convergence of the
charges toward the bulk values. The Coulomb energy was
calculated by means of the charge neutrality method of Wolf
et al.36 that is very well adapted to nonperiodic systems and
that avoids carrying on calculations in the reciprocal space.
The obtained results are good in some cases and not for
others. The good hierarchy observed between the energies of
the three surfaces is a positive point. In contrast, the results
concerning the oxygen vacancy are not satisfactory, particu-
larly the low value of the formation energy �EVO

=1.6 eV
instead of 7.5 eV�. From the detailed analysis of the energet-
ics reported in Table V, it can be seen that the low value of
EVO

is mainly due to the very low value of the short-range
part EVO

SR, and also to the loss of energy during relaxation.

At first neighbors, the interaction energies given by the
model �parameters in Table II� are VTi-O=−2.64 eV
�rij =1.95 Å� and VO-O=0.69 eV �rij =2.77 Å�. Using Eq. �6�,
these interactions yield Ecoh

SR =−8.25 eV at first neighbors,
that is to say 80% of the total short-range cohesive energy.
It is therefore pertinent, in the following, to discuss 80%
of the expected value of EVO

, at first neighbors, that is to say
6 eV. In these conditions, a value of EVO

SR �unrelaxed� of, at
least, 4 eV instead of 1 eV obtained here is required in order
to compensate the relaxation. Applying Eqs. �6�–�8� with
Ecoh

SR =−8.25 eV and EVO

SR =4 eV leads to VTi-O�−1.4 eV and
VO-O�0.02 eV at first neighbors. The values given by the
present model �VTi-O=−2.64 eV and VO-O=0.69 eV�, are
therefore clearly too high �in absolute values� and no set of
parameters allowed a better result. Our conclusion is that the
MS-Q model, while suitable for describing the bulk proper-
ties of the perfect crystal, fails for describing defects. We
think that this conclusion can be generalized to pairwise in-
teractions models which are not relevant in the presence of
broken bonds, due to their additive nature. This is a well
known result already mentioned in Ref. 8. In the case of
transition metals for example, the use of N-body potentials is
required to obtain reliable behavior for vacancy or near
surfaces.37 The short-range energy calculated with N-body

TABLE II. Fitted potential parameters of the MB-Q model for
TiO2 rutile.

Ti-O O-O

�Morse parameters� �Buckingham parameters�

D �eV� 2.7593 A �eV� 215.1638

a �Å−1� 1.8687 � �Å� 0.4824

r0 �Å� 1.8248 C �eV� 0.0

TABLE III. Observed and calculated crystal properties used to
fit the potential parameters of the MB-Q and of the SMB-Q models
for TiO2 rutile.

Calculated

Experimental �MB-Q model� �SMB-Q model�
qTi 2.48 2.51

a �Å� 4.594a 4.594 �0%� 4.581 �−0.3% �
c �Å� 2.959a 2.944 �−0.5% � 2.966 �+0.2% �
u 0.3053a 0.3020 �−1% � 0.3025 �−0.9% �
Ecoh �eV� −19.9b −19.7 �−1% � −19.9 �0% �
Ecoh

elec �eV� −9.3 −9.45

Ecoh
SR �eV� −10.4 −10.45

C11 �GPa� 268.0c 299.0 �+11% � 293.0 �+9% �
C33 �GPa� 484.0 407.0 �−16% � 400.0 �−17% �
C12 �GPa� 175.0 177.0 �+1% � 203.0 �+16% �
C23 �GPa� 147.0 145.0 �−1% � 164.0 �+11% �
C66 �GPa� 190.0 177.0 �−7% � 183.0 �−3.5% �
C44 �GPa� 124.0 145.0 �+17% � 128.0 �+3% �
B �GPa� 211.0 216.0 �+2% � 228.0 �+8% �
aRef. 42.
bRef. 24.
cElastic constants from Ref. 34.

TABLE IV. Energy and volume of the oxygen vacancy, surface
energies, thermal expansions and heat capacity of TiO2 rutile cal-
culated with the MB-Q model and the SMB-Q model, compared
with experimental �ex� or ab initio �ab� data.

Calculated

Experimental
or ab initio �MB-Q model� �SMB-Q model�

EVO
�eV� ex,ab7.5a,b 1.6 �−80% � 4.8 �−36% �

VVO
�Å3� ab4.b −5.0�sign� +1. �−75% �

E�110� �j m−2� ab0.9c 0.49 �−45% � 0.68 �−24% �
E�100� �j m−2� ab1.12c 0.64 �−43% � 0.85 �−24% �
E�001� �j m−2� ab1.7c 2.0 �+18% � 1.74 �+2% �
�a �10−6 , °C−1� ex7.3d �30–650 °C� 2.6 �−64% � 10.0�+37% �
�c �10−6 , °C−1� ex8.8d �30−650 °C� 9.3 �+5% � 16.0�+82% �
CP �J mol−1 K−1� ex55.0d �298 K� 40.0�−27% � 50.0�−10% �
aRefs. 17 and 18.
bRef. 19.
cRef. 35.
dRef. 16.

TABLE V. Electrostatic �EVO

elec� and short-range �EVO

SR� contribu-
tions of the total formation energy of the oxygen vacancy �EVO

�,
calculated with the MBQ model. 
E is the difference between re-
laxed and unrelaxed energies.

unrelaxed relaxed 
E �eV�

EVO

elec �eV� +4.1 +1.5 −2.6

EVO

SR �eV� +1 +0.1 −0.9

EVO
�eV� +5.1 +1.6 −3.5
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potentials is less sensitive to a change in coordination than
that calculated with pair potentials. In other words, when
bonds are broken, the remaining bonds are reinforced. In
metals, the N-body potential is used to account for the cohe-
sive band energy.38 In the same manner, we shall use N-body
potential in oxides for the short-range covalent part of the
Ti-O bond, in place of the right term of Eq. �15�.

B. The SMB-Q model

An analytical model based on the second moment ap-
proximation of the tight-binding approach, which account for
the mixed ionocovalent character of the oxygen cation bond
in insulating oxides has been developed few years ago.20 In
this model, assuming only nearest neighbors, the covalent
energy of the bond Ecov is proportional to 
Z, where Z is the
oxygen coordination number, and to a term depending on the
charge transfer 2− 	qOx	. For a fixed value of the charge,
which is assumed as a first approximation in this work, Ecov
is proportional to 
Z, as in transition metals.38–40 Conse-
quently, we use for the Ti-O bond the following form of the
potential, which is similar to the one employed in our earlier
works on metallic alloys:41

Esite
i = �

j

AIJe
−pIJ�rij/r0

IJ−1� − ��
j

�IJ
2 e−2qIJ�rij/r0

IJ−1��1/2
.

�16�

At each site i, the Ti-O �or O-Ti� energy is a sum of a
pairwise repulsive term of the Born-Mayer type and a
N-body attractive term accounting for the covalent energy of
the bond. AIJ, pIJ, �IJ, qIJ are adjustable parameters, where I
and J stand for Ti and O, respectively. r0

IJ is the first neighbor
Ti-O distance. Unlike for a Morse potential �Eqs. �14�, �15��,
r0

IJ is not an additional adjustable parameter. The O-O inter-
actions is again described by a Buckingham potential. This
mixed second-moment-Buckingham-QEq model is referred
as the SMB-Q model in the following.

As usual, we fitted the parameters of the SMB-Q model
using lattice properties of TiO2 rutile. The resulting param-
eters are listed in Table VI and the calculated properties us-
ing the model are listed in Table III �fourth column�. Once
again, the calculated properties fit the experimental data
well. The transferability of the model has been checked by
calculating, without fitting any parameter, the unit cell pa-
rameters and the bulk moduli of the two other natural TiO2
polymorphs: anatase and brookite. The results reported in
Table VII globally show a satisfactory agreement with ex-

perimental data, the maximum deviations being −5 and
+4.6 %, respectively, for the cell parameter c and the internal
coordinate of oxygen u of the anatase structure. In fact, these
two parameters are not independent as the product c�u is
equal to the greatest Ti-O distances �along the c axis� of the
TiO6 octahedra on which all the TiO2 polymorph structures
are built. The calculated distance is 1.96 Å, which compares
very well with the experimental value �1.979 Å�.What hap-
pens is that the octahedra plane perpendicular to the c axis is
distorted in anatase, two opposite oxygen atoms being
shifted by a distance x �in c unit� and the two other by a
distance −x �x and u are such that u+x=1/4�. Experimen-

tally, this creates an angle Ti-O-̂Ti of 156° �instead of 180°
in an undistorded octahedra�. Our calculations yield 162° �
+3.8% �. The conclusion is that our model is a slightly too
rigid and leads to a relative smoothing of the plane. This
small effect would merit thinking about but this is well be-
yond the scope of this work.

TABLE VI. Fitted potential parameters of the SMB-Q model for
TiO2 rutile �r0

Ti-O=1.95Å�.

Ti-O O-O

�SM parameters� �Buckingham parameters�

A �eV� 0.112 A �eV� 540.6167

p 15.127 � �Å� 0.3489

� �eV� 2.261 C �eV� 0.0

q 1.853

TABLE VII. The simulated �SMB-Q model� unit cell param-
eters, bulk moduli, cohesive energy, and average Ti-O nearest
neighbor distance for the three natural TiO2 polymorphs compared
with experimental data when available.

Phase Parameter Expt. SMB-Q

Rutile 	qO 	 =1.26

a �Å� 4.594a 4.581 �−0.3% �
c �Å� 2.959a 2.966 �+0.2% �

u 0.3048 0.3025 �−0.7% �
B �GPa� 211.0c 228. �+8% �
Ecoh �eV� −19.9b −19.9 �0%�

dTi-O� �Å� 1.956 1.96

Anatase 	qO 	 =1.25

a �Å� 3.785d 3.825 �+1. % �
c �Å� 9.512d 9.03 �−5. % �

u 0.2080 0.2161 �+4.6 %�
B �GPa� 179.0e 220. �+23% �
Ecoh �eV� −19.84

dTi-O� �Å� 1.947 1.947

Brookite 	qO 	 =1.26

a �Å� 9.174f 9.259 �+0.9% �
b �Å� 5.449f 5.444 �+0.1% �
c �Å� 5.138f 5.229 �+1.9% �

B �GPa� 227.

Ecoh �eV� −19.65

dTi-O� �Å� 1.955 1.973

aRef. 42.
bRef. 24.
cRef. 34.
dRef. 43.
eRef. 44.
fRef. 45.
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Let us now come back to rutile. As before, defect proper-
ties, thermal expansion coefficients and heat capacity were
calculated and are shown in Table IV, fourth column. One
observes that the results concerning both the oxygen vacancy
and the surfaces are really better than those obtained with the
MB-Q model.

As regards the oxygen vacancy, the formation energy, al-
though still too weak, is three times greater than it was with
the MB-Q model, and the volume of formation is now
slightly positive in agreement with ab initio calculations
�note that no significant effect has been observed experimen-
tally�. The detail of the energetics reported in Table VIII
shows that the loss of energy due to relaxation is reduced to
2 eV instead of 3.5 eV for the MB-Q model, and concern
only the electrostatic part. The N-body term �for which the
relaxation energy is positive� represents the major part of the
formation energy of the vacancy �5.4 eV�, which shows its
efficiency with respect to the pair-wise interaction. The
analysis of the energetics given by Eqs. �6�–�8� in the case of
pair potentials must be revisited for the SMB-Q model. At
first neighbors �rij =r0

Ti-O� Eq. �16� yields

Esite
Ti = 6A − 
6� �17�

and

Esite
O = 3A − 
3� , �18�

where A and � stand for ATi-O and �Ti-O, respectively. Then,
Ecoh

SR and EVO

SR can be expressed as

Ecoh
SR = Esite

Ti + 2Esite
O + 11VO-O,

Ecoh
SR � 12A − 6� + 11VO-O, �19�

and

EVO

SR = − �Esite
O + 11VO-O� + 3��5A − 
5�� − �6A − 
6��� ,

or

EVO

SR � − 6A + 2.4� − 11VO-O. �20�

Using Eqs. �19� and �20� the following values are obtained:

Ecoh
SR = − 10.1 eV, EVO

SR�O-O� = − 2.1 eV,

EVO

SR�Ti-O� = 4.75 eV.

The comparison with the values displayed in Tables III
�Ecoh

SR � and VIII �EVO

SR� shows that the analysis at first neigh-
bors is pertinent. It remains that EVO

SR �2.7 eV� is globally too
small by, say, 2.8 eV in order to reach the expected value.
From Eqs. �19� and �20�, we obtain

EVO

SR = 0.4	Ecoh
SR 	 − 6.6VO-O − 1.2A . �21�

Now 	Ecoh
SR 	 is worth typically 10±0.5 eV for qTi

� �2.2,2.8�. Therefore, the maximum accessible value for
EVO

SR is 4.2 eV �the term 1.2 A is neglected in this estimation�
unless we consider VO-O�0 which is out of the limits of the
model. The conclusion is that the SMB-Q model intrinsically
underestimates slightly the vacancy energy.

Let us now consider the three low index surfaces. The
energies of formation calculated with the SMB-Q model, re-
ported in Table IV �last column�, fit rather well the ab initio
results. In the case of the �110� surface �the most stable sur-
face, shown in Fig. 6�, the atomic relaxations along the �110�
axis as well as the transfer of charges near the surface has
been calculated and are reported in Table IX. The calculated
relaxations are compared with the most complete experimen-
tal quantitative structure determinations currently
available.46,47 Significant differences are present between
these two experimental studies and are analyzed in Ref. 47.
Our calculations are in a very good agreement with the most
recent study,47 the major difference being for the Ti�4� and
Ti�10� atoms, and satisfactorily agree with the ab initio re-
sults of Swamy et al.32 not reported here.

As mentioned above, relaxations were calculated allowing
a local charge transfer �up to 6 Å�, reported in Table IX �last
column� for the SMB-Q model. The charge transfer is par-
ticularly noticeable between the bridging oxygen atoms
�O�1�� and the fivefold coordinated Ti atoms �Ti�4��, that is,
between atoms having lost a bond. This is in qualitative
agreement with tight-binding calculations,28 though the
transfer is more important.

TABLE VIII. Electrostatic �EVO

elec�, short-range O-O pairs
�EVO

SR�O-O�� and Ti-O pairs �EVO

SR �Ti-O�� contributions to the total
energy of the oxygen vacancy �EVO

�, calculated with the SMB-Q
model. 
E is the difference between relaxed and unrelaxed
energies.

unrelaxed relaxed 
E �eV�

EVO

elec �eV� +4.1 +2.1 −2.0

EVO

SR �O-O� �eV� −2.25 −2.7 −0.45

EVO

SR �Ti-O� �eV� +4.95 +5.4 +0.45

EVO
�eV� +6.8 +4.8 −2.0

FIG. 6. The structure of the unrelaxed stoichiometric �110� sur-
face of rutile.
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V. CONCLUSIONS AND FUTURE PROSPECTS

Through the example of rutile TiO2, some atomistic mod-
els aimed at performing atomistic simulations on ionocova-
lent oxides were revisited, particularly the variable charge
models based on the QEq formalism of Rappé and Goddard.7

These models are very important because they are suitable to
simulate heterogeneous systems such as metal/oxide or
oxide/oxide interfaces. Many papers have been devoted to
the subject in the literature but none of them, in our opinion,
was sufficiently explanatory and critical about the choice of
the parameters and the potentials used in the models and the
consequence on the calculated lattice or surface properties.
In this paper, we analyzed in detail each part of the formal-
ism and of the energetics in order to render the model as
transparent as possible.

In the QEq models, the electrostatic energy contribution is
reduced with respect to formal charge models, first by the
reduction of ionic charges and second by the shielding be-
tween charges. In absolute value, this energy is smaller than
the cohesive energy �about half for TiO2�, which must be
compensate by cohesive short-range interactions. Once the
QEq parameters are determined, the choice of the short range
interactions is of great importance and they depend on the
electronic structure of the studied oxide. In the case of insu-
lators �as TiO2�, the cation-cation interactions are expected
to be small �they were neglected here� because of the lack of
outer electrons on cation sites. The cation-anion interactions
depends on the covalent character of the bond. In this work,
we took advantage of the knowledge of the energy of forma-
tion of an oxygen vacancy �in addition to the cohesive en-
ergy� to check several type of potentials. We showed that
Morse potential is not adapted to oxygen-oxygen interac-
tions, because it introduces a non physical long-range attrac-
tive contribution. We also showed that pairwise interactions
for metal-oxygen do not allow us to render an account of the
defect properties of the crystal �oxygen vacancy and sur-
faces�. On the other hand, N-body potential yields satisfac-
tory results on energetics and also on atomic relaxations at
surface despite of the underestimation of 1/3 of the oxygen
vacancy energy. Its 
Z form, where Z is the coordination
number, is in accordance with the prediction of tight-binding
model for the covalent energy in insulating oxides.20

Nevertheless, some leads may be explored to still improve
the model, particularly introducing the dependence of the
covalent energy on the local charge transfer in the vicinity of
defects. The role of the oxygen polarizability may be ex-
plored too. Works are in progress to exploit this model for
the study on ZrO2, SrTiO3, and the interface between these
two oxides.

ACKNOWLEDGMENTS

The authors acknowledge G. Boureau �Chimie-Physique,
Paris, France�, C. Noguera �INSP, Paris, France�, and B. Leg-
rand �CEA, Saclay, France� for very fruitful discussions.

1 B. G. Dick and A. W. Overhauser, Phys. Rev. 112, 90 �1958�.
2 C. R. A. Catlow, R. James, W. C. Mackrodt, and R. F. Stewart,

Phys. Rev. B 25, 1006 �1982�.
3 H. Sawatari, E. Iguchi, and R. J. D. Tilley, J. Phys. Chem. Solids

43, 1147 �1982�.
4 C. R. A. Catlow, C. M. Freeman, and R. L. Royle, Physica B & C

131, 1 �1985�.
5 W. J. Mortier, K. Van Genechten, and J. Gasteger, J. Am. Chem.

Soc. 107, 829 �1985�.
6 W. J. Mortier, S. K. Gosh, and S. Shankar, J. Am. Chem. Soc.

108, 4315 �1986�.
7 A. K. Rappé and W. A. Goddard III, J. Phys. Chem. 95, 3358

�1991�.
8 F. H. Streitz and J. W. Mintmire, Phys. Rev. B 50, 11 996 �1994�.
9 E. Demiralp, T. Cagin, and William A. Goddard III, Phys. Rev.

Lett. 82, 1708 �1999�.
10 X. W. Zhou, H. N. G. Wadley, J.-S. Filhol, and M. N. Neurock,

Phys. Rev. B 69, 035402 �2004�.
11 F. H. Streitz and J. W. Mintmire, J. Adhes. Sci. Technol. 8, 853

�1994�.
12 S. Ogata, H. Lyetomi, K. Tsuruta, F. Shimojo, R. K. Kalia, A.

Nakano, and P. Vashista, J. Appl. Phys. 86, 3036 �1999�.
13 V. Swamy and J. D. Gale, Phys. Rev. B 62, 5406 �2000�.
14 V. Swamy, J. D. Gale, and L. S. Dubrovinsky, J. Phys. Chem.

Solids 62, 887 �2001�.
15 B. S. Thomas, N. A. Marks, and B. D. Begg, Phys. Rev. B 69,

144122 �2004�.
16 U. Diebold, Surf. Sci. Rep. 48, 53 �2002�.
17 C. Picard and P. Gerdanian, J. Solid State Chem. 14, 66 �1975�.
18 F. Millot, M. G. Blanchin, R. Tétot, J. F. Marucco, B. Poumellec,

TABLE IX. Atomic relaxations �
w� for the �110� surface of
rutile �see Fig. 6� along the �110� direction calculated with the
SMB-Q model compared to the two available experimental sets of
data. In the last column are reported the differences of site charges
with respect to the bulk charges. The number of atoms are reported
in Fig. 6.


w �Å� along the �110� direction 
q /bulk

experimentala experimentalb SMBQ model

O �1� −0.27 0.10 0.08 +0.305

Ti �2� 0.12 0.25 0.13 −0.05

O �3,5� 0.05 0.27 0.28 −0.065

Ti �4� −0.16 −0.19 −0.02 −0.13

O �6� 0.03 0.06 0.13 −0.035

O �7� 0.00 0.00 0.07 −0.055

Ti �8� 0.07 0.14 0.10 0.03

O �9,11� 0.02 0.06 0.11 0.005

Ti �10� −0.09 −0.09 0.06 0.02

O �12� −0.09 0.01 0.07 +0.035

aRef. 46.
bRef. 47.

USE OF A VARIABLE-CHARGE INTERATOMIC¼ PHYSICAL REVIEW B 73, 165406 �2006�

165406-9



C. Picard, and B. Touzelin, Prog. Solid State Chem. 17, 263
�1987�.

19 N. Capron and G. Boureau, Int. J. Quantum Chem. 99, 677
�2004�.

20 C. Noguera, Physics, and Chemistry at Oxide Surfaces �Cam-
bridge University Press, Cambridge, 1996�.

21 SMASH �Simulation des MAtériaux de Structure Hétérogène� is a
general Monte Carlo code developed by two of us �R. Tétot and
M. Hallil� and aimed at study heterogeneous systems including
oxides, as functions of temperature, and partial pressure of oxy-
gen. A fitting procedure allows us to adjust potentials and QEq
parameters on structural and physical properties of compounds.
For who is interested, contact R. Tétot at the address
robert.tetot@lemhe.u-psud.fr

22 J. D. Gale, J. Chem. Soc., Faraday Trans. 93, 629 �1997�.
23 W. Smith, Computational Chemistry Group Fax, Computational

Science and Engineering, Department CCLRC, Daresbury
Laboratory, Daresbury Warrington WA4 4AD, United Kingdom.

24 CRC Handbook of Chemistry and Physics, 83rd ed., edited by D.
R. Lide �CRC, Boca Raton, FL, 2002�, Sec. 5.

25 P. W. Atkins, in Physical Chemistry, 3rd ed. �Oxford University
Press, Oxford, 1986�, p. 91.

26 S. W. Rick, S. J. Stuart, and B. J. Berne, J. Chem. Phys. 101,
6141 �1994�.

27 R. S. Mulliken, J. Chem. Phys. 23, 1833 �1955�.
28 P. K. Schelling, N. Yu, and J. W. Halley, Phys. Rev. B 58, 1279

�1998�.
29 A. Fahmi, C. Minot, B. Silvi, and M. Causa, Phys. Rev. B 47,

11717 �1993�.
30 J. Muscat, N. M. Harrison, and G. Thornton, Phys. Rev. B 59,

2320 �1999�.
31 I. M. Torrens, Interatomic Potentials �Academic Press, New

York, 1972�.
32 V. Swamy, J. Muscat, J. D. Gale, and N. M. Harrison, Surf. Sci.

504, 115 �2002�.
33 H. le Roux and L. Glasser, J. Mater. Chem. 7, 843 �1997�.
34 D. G. Isaak, J. D. Cares, H. Cynn, and E. Hake, Phys. Chem.

Miner. 26, 31 �1997�.
35 M. Ramamoorthy, D. Vanderbilt, and R. D. King-Smith, Phys.

Rev. B 49, 16 721 �1994�.
36 D. Wolf, P. Keblinski, S. R. Phillpot, and J. Eggebrecht, J. Chem.

Phys. 110, 8254 �1999�.
37 G. Allan and M. Lannoo, Surf. Sci. 40, 375 �1973�.
38 V. Rosato, M. Guillopé, and B. Legrand, Philos. Mag. A 59, 321

�1989�.
39 F. Ducastelle, J. Phys. �Paris� 31, 1055 �1970�.
40 A. P. Sutton, Electronic Structure of Materials �Oxford Science

Publication, Oxford, 1993�.
41 J. Creuze, F. Berthier, R. Tétot, and B. Legrand, Phys. Rev. B 62,

2813 �2000�.
42 S. C. Abrahams and J. L. Bernstein, J. Chem. Phys. 55, 3206

�1971�.
43 C. J. Howard, T. M. Sabine, and F. Dickson, Acta Crystallogr.,

Sect. B: Struct. Sci. 47, 462 �1991�.
44 T. Arlt, M. Bermejo, M. A. Blanco, L. Gerward, J. Z. Jiang, J. S.

Olsen, and J. M. Recio, Phys. Rev. B 61, 14414 �2000�.
45 E. P. Meagher and G. A. Lager, Can. Mineral. 17, 77 �1979�.
46 G. Charlton, P. B. Howes, C. L. Nicklin, P. Steadman, J. S. G.

Taylor, C. A. Muryn, S. P. Harte, J. Mercer, R. McGrath, D.
Norman, T. S. Turner, and G. Thornton, Phys. Rev. Lett. 78, 495
�1997�.

47 R. Lindsay, A. Wander, A. Ernst, B. Montarini, G. Thornton, and
N. M. Harrison, Phys. Rev. Lett. 94, 246102 �2005�.

HALLIL, TÉTOT, BERTHIER, BRAEMS, AND CREUZE PHYSICAL REVIEW B 73, 165406 �2006�

165406-10


