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The shot noise of the current through a single electron transistor, coupled capacitively with an electronic
box, is calculated, using the master equation approach. We show that the noise may be sub-Poissonian or
strongly super-Poissonian, depending mainly on the box parameters and the gate. The study also supports the
idea that not negative differential conductance, but charge accumulation in the quantum dot, responds for the
super-Poissonian noise observed.
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Deviations of the shot noise �SN� from the full �Poisso-
nian� value in nanostructures have been the subject of a great
number of works, both experimental1–9 and theoretical.2,10–16

Mathematically, the measure of these deviations is the Fano
factor Fn, defined as the ratio of the actual noise spectral
density to the full SN value 2eI, where e is the elementary
charge and I is the average current. Physically, it is widely
accepted that the Pauli exclusion and the charge interaction
are the two correlations, which cause observed SN devia-
tions. While the Pauli exclusion always causes a suppression
of SN, the charge correlation may suppress or enhance the
noise, depending on the conduction regime. The typical non-
Poissonian behaviors of SN can be found in resonant tunnel-
ing diodes �RTD�, where the noise is partially suppressed
�sub-Poissonian noise� at low bias voltages �preresonance�
and becomes very large �super-Poissonian� in the negative
differential conductance �NDC� region.2,3,6,8,12 For Coulomb
blockade quantum dot �QD� structures, a suppression of SN
is widely demonstrated, both experimentally1,4,9 and
theoretically.10,11,13,14 Recently,16 we have shown that in a
system of two metallic QDs, coupled in series, the SN is
always sub-Poissonian even in NDC regions. However, in
some particular QD structure, as that considered in Ref. 5, a
positive correlation in the electronic motion through QDs,
leading to a super-Poissonian noise, might be developed. In
this paper we will show that even in a simple structure of a
symmetrical single electron transistor �SET�, coupled capaci-
tively to an electronic box, as that measured in Ref. 17, the
super-Poissonian noise can be easily realized even in a posi-
tive differential conductance �PDC� region. Furthermore, in
consistency with Refs. 6 and 7, our study supports the idea
that the charge accumulation, not NDC, is ultimately respon-
sible for the super-Poissonian noise observed.

The equivalent circuit diagram of the structure studied is
drawn in Fig. 1�a�, where the left QD �D� forms a SET, while
the right QD �B� acts as an electronic box. Two QDs are
coupled to each other by a capacitance Cm, but the electron
tunneling between them is forbidden. The current through
the SET depends not only on the bias voltage V and the gate
voltage Vg, but also on the charge state in the box. Such a
SET-to-box coupling may produce a NDC as experimentally
observed in Ref. 17.

Within the framework of the Orthodox theory18 the state
�i� of the system under study is entirely determined by the

numbers of excess electrons in two QDs, n in D and m in B.
At a given �n ,m� state, the free energy of the system can be
written as

F = Qd
2/2Cd

* + Qb
2/2Cb

* + QdQb/Cp
*

− �C1 + C3�V2/2 − CgVg
2/2 − nqeV , �1�

where Cd
*=� /Cb; Cb

*=� /Cd; Cp
* =� /Cm with �=CdCb−Cm

2 ,
Cd=C1+C2+Cm+Cg ,Cb=C3+Cm; Qd=C1V+CgVg+ne; Qb
=C3V+me; and nq is the number of electrons that have en-
tered the structure from the top lead �the bottom one is
grounded�. Any electron transfer across junctions results in a
change in free energy F. In the system of interest there are
six possible sequential electron transfers across three junc-
tions �1, 2, and 3� upward �+� or downward �−�. The change
in free energy associated with these transfers can be deduced
from Eq. �1� as follows:

�F1
± = e2�1 � 2n�/2Cd

* � me2/Cp
* � eCgVg/Cd

*

� �C1/Cd
* + C3/Cp

* + 1�eV

�F2
± = e2�1 ± 2n�/2Cd

* ± me2/Cp
* ± eCgVg/Cd

*

± �C1/Cd
* + C3/Cp

*�eV

�F3
± = e2�1 � 2m�/2Cb

* � ne2/Cp
* � eCgVg/Cp

*

� �C1/Cp
* + C3/Cb

* + 1�eV . �2�

At zero temperature the rate of a sequential electron transfer
across any � junction ��=1,2, or 3� is well-known18

�� = ��− �F����F��/�e2R�� , �3�

where � is the step function, R� is the tunneling resistance of
the � junction, and �F� is the corresponding change in free
energy defined in Eq. �2�.

Using expressions �2� and �3�, in principle, one can solve
the master equation �ME� or perform Monte Carlo simula-
tion to yield the current as a function of bias voltage V�I-V
characteristics� and further to calculate the noise. The Monte
Carlo method is very useful for complicated structures at
finite temperature, but it is not efficient for the system under
study. Moreover, in this work we will discuss only the zero-
temperature case and therefore the ME method should be
used. Denoting p�i� as the probability of the state �i�
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��ni ,mi� of the system, the ME can be written in the matrix
form10

dp̂�t�/dt = M̂p̂�t� , �4�

where p̂�t� is a column matrix of elements p�i , t� and M̂ is an
evolution matrix with elements defined as follows: M�i , j�
=�2

+�j�+�1
−�j� �if nj =ni−1 and mj =mi�; �2

−�j�+�1
+�j� �if nj

=ni+1 and mj =mi�; �3
+�j� �if nj =ni and mj =mi+1�; �3

−�j� �if
nj =ni and mj =mi−1�, and M�i , i�=−��1

+�i�+�1
−�i�+�2

+�i�
+�2

−�i�+�3
+�i�+�3

−�i��.
Solving the ME �4� under condition �ip�i , t�=1, we can

further calculate the net current

I�t� = q1I1�t� + q2I2�t� + q3I3�t� , �5�

where I��t�=e�i���
+�i�−��

−�i��p�i , t� is the statistical average
current through the � junction ��=1,2, or 3�, the factors q�

are defined as:19 q1= �CmC2+C2C3� /�; q2= �CmC1+CmC3

+C1C3� /�; and q3=CmC2 /� with � given in Eq. �1�. Here it
should be noted that as discussed in detail by Blanter and
Büttiker �see Ref. 13, p. 24�, to ensure the current conserva-
tion, for the time-dependent currents �5� as well as for the
noise expression shown below we have to consider not only
the currents I1�t� and I2�t�, but also the displacement current
I3�t� associated with the charge state in the metallic box.

Next, the noise spectrum S�	� of the current I can be
calculated in the way similar to that developed in Refs. 11
and 16

S�	� = 2�
�

q�
2A� + 4e2�

�

�
ij

q�q
���
+�i� − ��

−�i��

� B̂ij��

+�j�
−�pst�j�
−� − �


−�j�
+�pst�j�
+�� . �6�

Here, A�=e�I�
++ I�

−� with I�
±=e�ipst�i���

±; the conditional
probability p�i← j ��� for having state �i� at the time t=�
�0 under the condition that the state was �j� at an earlier
time t=0 obeys the same ME as for the probability p�i , t�;
the stationary probability pst�i� is defined as p�i← j ��→  �

= pst�i��ij; B̂=Re��i	Î−M̂�−1	; 
j ��±� is the state obtained-
from the state �j� = �nj ,mj� by transferring an electron
across the � junction upward �+�/downward �−�; the tunnel-
ing rates ��

± and the factors q� are defined in Eqs. �3� and �5�,
respectively. Similarly, we can also obtain the noise expres-
sion for currents through junctions, I1 or I2.16

Thus, using the tunneling rates �3�, in principle, we can
solve the ME �4� and further to calculate the current �5� and
the noise �6�. In practice, however, this ME cannot be exactly
solved with all possible states except some simple cases at
low bias voltages. Let us consider such a simple case, when
the SET is symmetrical, C1=C2�C and R1=R2�R, and the
box parameters are as follows: C3=C, R3=R, and Cm be-
longs to the range ��6−1�C /5�Cm� ��3+1�C. The gate is
neglected. With all these assumptions, in the way similar to
that developed in Refs. 16 and 20 we can solve the ME �4� as
well as calculate the current �5� and the noise �6� exactly in
some ranges of low bias. Neglecting lengthy, but elementary,
algebraic calculations the final results for the current can be
reviewed as follows: �1� the Coulomb blockade region has
the threshold voltage of V0= �e /2C��Cm+C� / �5Cm+3C�; �2�
in the next range of bias voltage, V0�V�V1��e /2C��Cm
+2C� / �5Cm+4C�, the current has been found as I
=e�2

+�1��1
+�0� / ��2

+�1�+�1
+�0��, where two states �1�

��−1,0� and �0� ��0,0� are written for short; �3� the cur-
rent is equal to zero in the range of bias V1�V�V2
��e /2C��3Cm+C� / �5Cm+3C� �second Coulomb blockade
gap�; and �4� in the last range of bias, V2�V�V3��e /2C�
��3Cm+2C� /5Cm+4C�, where the ME �3� can be still
solved exactly, the current is given by

I =
�a + b�cdh + bcdg

cdh + bcd + �a + b�dh + �g + h�cb
, �7�

where we introduce a=�1
+�0� ;b=�3

+�0� ;c=�2
+�1� ;d

=�1
+�2� ;g=�2

+�3�; and h=�3
−�3�. Two states �2� ��0,−1�

and �3� ��1,−1� are also written for short.
Now, we can calculate the noise �6� in two ranges of bias,

V0�V�V1 and V2�V�V3, where the current is finite and
already known. As an example, we show the noise expres-
sion obtained in the last range of bias, V2�V�V3

S�	� = 2�q1
2A1 + q2

2A2 + q3
2A3� + 4e2DrBDc. �8�

Here, A1=A2=eI �I defined in Eq. �7��; A3=2e2bcdh / �cdh
+bcd+ �a+b�dh+ �g+h�cb�; Dr is a row-matrix of four ele-
ments: q1a+q3b ,q2c ,q1d and q2g−q3h; Dc is a column ma-
trix of four elements: q2�a+b�cdh /Q , �q1acdh
−q3bcdh� /Q , �q2bcdg+q3bcdh� /Q, and q1�g+h�bcd /Q with

Q=cdh+bcd+ �a+b�dh+ �g+h�bc; and B̂=Re�i	Î−M̂�−1

with

i	Î − M̂

=
i	 + a + b − c 0 0

− a i	 + c 0 − b

− b 0 i	 + d − g

0 0 − d i	 + g + h
� .

�9�

The expression �8� gives the SN of the net current I as a

FIG. 1. �a� Equivalent circuit diagram of the structure under
study. �b� The normalized noise S�	� /2eI calculated from Eq. �8� is
plotted as a function of frequency for some values of bias voltages
V �from top�: 0.25, 0.26, and 0.27. Inset: The current I �7� �dashed
line, see the left axis� and the Fano factor �10� �solid line, see the
right axis� as a function of bias voltage in the range V2�V�V3

�see the text�. The structure parameters: Cm=C3=C2=C1�C, R3

=R2=R1�R, without gate.
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function of frequency 	 and of bias V. In the right-hand side
of this expression �as well as expression �6�� the first term
associated with the self correlation of a given tunneling event
with itself describes the noise in the high-frequency limit11

and the second term is due to the finite-time correlation be-
tween two different tunneling events.

In Fig. 1�b�, for example, we present the normalized noise
S�	� /2eI as a function of frequency, calculated at some bias
voltages, for the structure with parameters given in the fig-
ure. Here and below, for symmetrical SETs of equal capaci-
tances C and tunneling resistances R, it is convenient to
choose the elementary charge e, the capacitance C, and the
resistance R as basic units. The voltage, the current, and the
frequency in figures are then measured in units of e /C,
e /CR, and �CR�−1, respectively. It seems from Fig. 1�b� that
the normalized noise obtained for the net current always de-
creases as the frequency increases and within the framework
of the model considered there exists a large frequency limit:
S�	� /2eI�0.5.

Particularly, in the limit of zero frequency, when all the
noises, for the net current and for currents through partial
junctions, are coincident,16 we found an explicit expression
for Fano factor21

Fn � S�0�/2eI = 1

+ 2� ach�a + h��d + g + h� + bdg�a + b + c��g + h�
�dh�a + b + c� + bc�d + g + h���h�a + b� + bg���

−
cd�bc + dh + �a + b + c��d + g + h���h�a + b� + bg�

��dh�a + b + c� + bc�d + g + h��2 � ,

�10�

where the quantities a ,b ,c ,d ,g, and h are defined in Eq. �7�.
Clearly, this expression �10� shows that Fn may be greater or
smaller than 1, depending on relative values of two terms
with opposite signs in the braces. In other words, we have
exactly shown that at least for the simple case under study
the SN may be super-Poissonian or sub-Poissonian, depend-
ing on the structure parameters and bias voltage. Such an
interesting noise behavior can be seen in the inset of Fig.
1�b�, where, as an example, we present the current I �7� and
the corresponding Fano factor Fn �10� �valid in the range of
bias V2�V�V3� for the same structure as in the main figure.
While the current monotonously increases �with a PDC�, the

noise is super-Poissonian �Fn�1� at V�0.26 and becomes
sub-Poissonian at higher biases.

To extend calculations to higher biases and different vari-
eties of structure parameters, we solve the ME �4� and cal-
culate the current �5� and the noise �6� numerically. In Fig.
2�a� we present obtained results of the current I �dashed line�
and Fano factor Fn �solid line� for the structure with the same
parameters as in Fig. 1�b� except the SET-to-box capacitance
Cm. Apparently,22 the I-V characteristics obtained is very
similar to that reported in Ref. 17 with a clear second Cou-
lomb gap. Compared to this experiment, the calculation has
been extended to higher bias voltages, where one more NDC
region has been recognized. Along with such an I-V curve
the Fano factor Fn strongly varies with the bias V and
reaches super-Poissonian peaks, Fn=1.31 and 3.01, at V
=0.27 and 0.43, respectively. Note that the lower value of V
belongs to a PDC region, while at the higher one we have a
NDC. Statistics of numerical results for structures with dif-
ferent varieties of parameters show that the noise-versus-bias
behavior is very sensitive to the SET-to-box capacitance Cm.
A change in Cm can make a super-Poissonian noise sub-
Poissonian and inversely. This can be seen, for example, by
comparing two figures, Figs. 2�a� and 2�b�. The structures
studied in these figures are the same except the capacitance
Cm, which is equal to 2C in �a� and 10C in �b�. While two
I-V curves �dashed lines� are not much different from each
other and, particularly, the NDC regions are still clearly
maintained in both figures, in Fig. 2�b� the noise is sub-
Poissonian in the whole range of bias voltages under study.
The study demonstrates that by changing only Cm it is pos-
sible to get the noise as large as F�100. Such a giant en-
hancement of noise has been suggested in a quantum shuttle
at the shutting threshold.23

Results similar to those in Fig. 2 have been also obtained
when we change only the box parameter C3 or R3. Noting
again that the SET is still symmetrical, our study thus dem-
onstrates an important role of the box in affecting both the
I-V characteristics and the noise behavior of the SET.

All the results presented in Figs. 1 and 2 are for the case
without gate. The gate leads to an additional term in the free
energy F �1� and simply makes numerical calculations a little
lengthier. As an example, the current �dashed line� and nor-
malized zero-frequency noise �solid line�, calculated at the
bias V=0.44, are plotted against the gate parameter CgVg in
Fig. 3 for the same structure as in Fig. 2. The Fano factor
decreases from the value of 1.59 �super-Poissonian� in the

FIG. 2. Numerical results: The current, calcu-
lated from Eq. �5� �dashed line, see the left axis�
and the Fano factor, Fn=S�0� /2eI, calculated
from Eq. �6� �solid line, see the right axis�, are
plotted against the bias voltage V. The structure
parameters are the same as in Fig. 1�b� except
Cm, which is equal to 2C in �a� and 10C in �b�.
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case without gate �CgVg=0� to the sub-Poissonian value of
0.5 at CgVg=0.85 and then sharply rises to a large value of
�11.2. Note that as the gate parameter CgVg varies the
changes of conductance and of noise are not always in ac-
cordance with each other: the noise may be either suppressed
or enhanced in NDC regions. Experimentally, for the struc-
ture measured in Ref. 7, it was noted that the super-
Poissonian peaks can be observed in only specific ranges of
gate voltage.

The fact that a super-Poissonian noise is not necessarily
accompanied by a NDC has been claimed by Song et al.6 and
by Safanov et al.7 Comparing the I-V curves and the noises
measured in a super-lattice diode and in a RTD, Song et al.

concluded that not NDC, but charge accumulation in the
well, responds for the super-Poissonian noise observed in
RTD. Safanov et al., measuring the noise in resonant tunnel-
ing via interacting localized states, observed a super-
Poissonian noise in the range of bias, where there is no NDC.
They have also pointed out that the effect on noise of the
Pauli exclusion principle and the Coulomb interaction are
similar in most mesoscopic systems. For our structure of
study, in solving the ME, we are able to exactly analyze the
charge states of the dot and the box at bias voltages, where
the super-Poissonian peaks are observed. Studies strongly
support the idea6,7 that the charge accumulation in the dot
causes the super-Poissonian noise observed.

In conclusion, we have calculated the current and the SN
in a SET capacitively coupled to an electronic box, using the
ME approach. In a particular case we were able to derive
exact expressions for the I-V characteristics as well as the
noise as a function of both frequency and bias voltage. For
different varieties of structure parameters, including the gate,
in a large range of bias voltage the calculation has been
performed numerically. The obtained results show that the
noise may be sub-Poissonian or strongly super-Poissonian,
depending mainly on the box parameters and the gate. The
super-Poissonian noise observed in the structure is not nec-
essarily accompanied by an NDC. The study supports the
idea that not NDC, but charge accumulation in the dot, re-
sponds for the super-Poissonian noise observed. Such an ac-
cumulation may be produced in correlation with charge
states in the box.
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