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A theory of electric dipole spin resonance �EDSR�, that is caused by various mechanisms of spin-orbit
coupling, is developed as applied to free electrons in a parabolic quantum well. Choosing a parabolic shape of
the well has allowed us to find explicit expressions for the EDSR intensity and its dependence on the magnetic
field direction in terms of the basic parameters of the Hamiltonian. By using these expressions, we have
investigated and compared the effect of specific mechanisms of spin orbit �SO� coupling and different polar-
izations of ac electric field on the intensity of EDSR. It is our basic assumption that the SO coupling energy is
small compared with all different competing energies �the confinement energy, and the cyclotron and Zeeman
energies� that allowed us to describe all SO coupling mechanisms in the framework of the same general
approach. For this purpose, we have developed an operator formalism for calculating matrix elements of the
transitions between different quantum levels. To make these calculations efficient enough and to derive explicit
and concise expressions for the EDSR intensity, we have established a set of remarkable identities relating the
eigenfrequencies and the angles defining the spatial orientation of the quantizing magnetic field B�� ,��.
Applicability of these identities is not restricted by EDSR and we expect them to be useful for the general
theory of parabolic quantum wells. The angular dependences of the EDSR intensity, found for various SO
coupling mechanisms, show a fine structure consisting of alternating up and down cusps originating from
repopulating different quantum levels and their spin sublevels. Angular dependences of the EDSR intensity are
indicative of the relative contributions of the competing mechanisms of SO coupling. Our results show that
electrical manipulating electron spins in quantum wells is generally highly efficient, especially by an in-plane
ac electric field.
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I. INTRODUCTION

Efficient manipulation of electron spins by an external
ac field is one of the central problems of semiconductor
spintronics,1,2 quantum computing3 and information
processing.4 The original proposals regarding spin manipula-
tion were based on using a time-dependent magnetic field

H̃�t�. However, there is a growing understanding of the ad-
vantages of spin manipulation by a time-dependent electric

field Ẽ�t� that allows the access to electron spins with na-
nometer precision and can provide much stronger coupling
to electron spins through various mechanisms of SO
interaction.5,6 Different options of electrical manipulating
electron spins in semiconductor nanostructures range from
adiabatic pumping spin currents from quantum dots7 to ma-
nipulating electron spins in quantum wells �QWs� at the spin
resonance frequency by employing various mechanisms of
SO coupling. Spin orbit interaction

ĤSO = Ĥorb�k̂,�� + ĤZ�r,�� �1�

can be usually represented as a sum of the orbital contribu-

tion Ĥorb�k̂ ,�� depending on the momenta k̂ and Pauli ma-

trices �, and the Zeeman contribution ĤZ�r ,�� depending
on the coordinates r and matrices �. Because both terms

include orbital operators �k̂ or r� and matrices �, they rep-
resent different mechanisms of SO coupling.

For two-dimensional �2D� electrons in QWs, two basic
mechanisms of the orbital SO coupling are directly related to
the QW symmetry properties. They stem from the structure
inversion asymmetry �SIA� mechanism described by the
Rashba term,8,9 and the A3B5 compound bulk inversion
asymmetry �BIA� mechanism described by the Dresselhaus
term.10 In the principle crystal axes, the bulk Dresselhaus

three-dimensional �3D� spin-orbit interaction ĤD can be
written as5

ĤD = ��� · �̂�, �̂x = k̂yk̂xk̂y − k̂zk̂xk̂z, �2�

where �̂y and �̂z can be derived from �̂x by cyclic permuta-

tions, and � is a parameter. Here k̂j�j=x ,y ,z� are the projec-

tions of the momentum operator k̂=−i� +eA /�c of an elec-
tron, A is the vector potential of the magnetic field B�� ,��,
� and � are the polar angle and the azimuth of B, and −e is
the electron charge. In a strong confinement limit, when car-

riers are in a quasi-2D regime, ĤD reduces to a 2D Dressel-
haus Hamiltonian. For a rectangular �001� QW of the width
d,

ĤD = �D�	xk̂x − 	yk̂y� �3�

with �D=−��kz
2�=−��
 /d�2.11–15 The 2D Dresselhaus Hamil-

tonian possesses a discrete symmetry C2v of the �001� face of
a cubic lattice of the Td symmetry typical of the zinc blende
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modification of A3B5 crystals, while the Rashba SO Hamil-
tonian

ĤR = �R�	xk̂y − 	yk̂x� �4�

possesses a continuous group C�v of the rotations about the
�001� axis. Experimental data of Refs. 16–18 suggest that for
GaAs QWs both SIA and BIA terms are of the same order of
magnitude. It is a general consensus that in narrow-gap com-
pounds the SIA mechanism typically dominates,19 however,
the ratio of the coupling constants of only �R /�D�2 has
been recently reported for InAs QWs of width d=15 nm.20

The tunability of �R by gate voltage21–23 is believed to be of
critical importance for the operation of semiconductor spin-
tronic devices.

The spatial dependence of Zeeman energy ĤZ�r ,�� stems
either from the inhomogeneity of the field B24 or from a
position-dependent g factor.25–28 Recently Kato et al.29

achieved operating electron spins in parabolic AlxGa1−xAs
QWs through the ĝ-tensor modulation technique based on
the difference in the spatial dependences of the various com-
ponents of ĝ= ĝ�z�. Graded parabolic QWs were originally
designed for producing a high mobility electron gas30,31 by
applying the modulation doping technique.32 The early work
on their dynamical responses was mostly concerned with the
effect of electron-electron interaction on the electron orbital
dynamics and the related transition frequencies,33 and also
with generalizing the Kohn theorem.34 The recent success in
electrical spin manipulation29 shifted the interest to the spin
flip transitions in such systems and the effect of various
mechanisms of SO interaction.

The existence of several mechanisms of SO coupling
makes it important to develop reliable experimental tech-
niques for identifying them. Also, the relative efficiency of
different SO coupling mechanisms strongly depends on the
choice of the semiconductor materials and the shape of a QW
or a heterojunction. The efficiency of ĝ-tensor modulation
technique29 is based on the anomalously small g-factor value
in AlxGa1−xAs, �g��0.1, and is therefore specific for GaAs
based devices. Developing similar techniques for narrow-gap
A3B5 semiconductors with typically large g values, �g�
10,
needs different approaches, and we show that orbital
mechanisms of SO coupling can be rather efficient for
them. Moreover, we prove that the efficiency of different
mechanisms depends strongly on the polarization of the ac

electric field Ẽ.
To consider all these problems in a framework of an uni-

fied approach and to derive analytical expressions for the
transition probabilities, we make two basic assump-
tions. First, we choose a parabolic shape for the QW. Second,
we accept that SO coupling is not too strong, i.e., the SO
coupling energy ESO is small compared with all differ-
ent energies, including the confinement energy ��0, the cy-
clotron energy ��c, and the Zeeman energy ��s. Here �0
is the characteristic frequency of the parabolic potential,
�c=eB /mc is the cyclotron frequency of electrons with the
effective mass m, and �s=g�BB /� is the spin resonance fre-
quency, with �B=e� /2m0c being the Bohr magneton. These

assumptions allow one to account for ĤSO only in the matrix

elements of spin transitions and disregard the effect of ĤSO
on the position of energy levels.35 In this approximation, one
can take advantage of the exact solution38,39 for the quanti-
zation of electron levels in a magnetic field tilted with re-
spect to the confinement plane.

Meanwhile, applying the exact solution found by Maan38

and Merlin39 is not straightforward when it comes to calcu-
lating matrix elements of spin flip transitions. Indeed, their
solution depends on an auxiliary angle � defined by the de-
coupling condition of two normal modes, hence, all matrix
elements depend on �. We have found an extensive set of
remarkable identities relating �, frequencies ��,���� of two
eigenmodes, and the polar angle �. The symmetry of the
problem underlying these identities is far from obvious, but
the identities permitted us to eliminate � and find all final
results in an explicit form. Some of these results, without the
derivation, were published in our previous papers.40,41 We
expect that the technique will facilitate developing the theory
of different properties of parabolic QWs which is timely be-
cause of the recent progress in experimental work25,29 and
the competition of the different mechanisms of SO coupling
that manifests itself in various phenomena.

In this paper we develop a general theory of electric di-
pole spin resonance �EDSR� in QWs which is caused by the

standard Hamiltonians of the Ĥorb�k̂ ,�� type for two basic
geometries: with the ac electric field in the QW plane and
perpendicular to this plane. We solve exactly the problem of
an electron confined in a parabolic QW being a subject to a
tilted magnetic field B and find the EDSR intensity in the
Dresselhaus and Rashba models versus the B direction. Our
results show that electric dipole spin resonance is especially
strong when it is excited by an in-plane electrical field. How-
ever, we show that it is also strong enough in the geometry
when the time-dependent potential is applied to a gate. Our
results demonstrate convincingly that an efficient electrical
spin manipulation can be achieved through the orbital
mechanisms of spin-orbit coupling. Our results also suggest
that the angular dependence of EDSR intensity is a unique
characteristic of various competing mechanisms of spin-orbit
coupling contributing to EDSR.

The paper is organized as follows. In Sec. II we develop a
theoretical approach to an electron in a parabolic quantum
well and derive operator expressions for the basic variables
like the coordinates and kinetic momenta. While we apply
these results for calculating the EDSR intensity, they are
rather general and can be applied to different problems re-
lated to parabolic quantum wells. In Sec. III we calculate the
EDSR intensity for the Dresselhaus and Rashba 2D spin-
orbit coupling Hamiltonians for the two basic geometries
with an in-plane and perpendicular-to-plane electric field. We
also investigate in detail the dependence of the EDSR inten-
sity on the direction of the magnetic field and present figures
that illustrate the basic mechanisms and characteristic fea-
tures that should help assigning specific EDSR bands when
experimental work begins. In Sec. IV we develop a theory of
EDSR in a parabolic well with a 3D Dresselhaus SO inter-
action and unveil the specific features of EDSR that distin-
guish it from the results of the 2D model corresponding to a
strong confinement limit. The discussion of obtained results
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and estimates of the EDSR intensity are given in Sec. V.
Appendix A includes a number of identities that have been
highly instrumental in deriving the results of Secs. III and IV,
and that we expect to be useful for future theoretical work on
parabolic quantum wells. Appendix B supports the calcula-
tions of Sec. IV.

II. AN ELECTRON IN A PARABOLIC WELL A SUBJECT
TO A TILTED MAGNETIC FIELD

Everywhere in what follows we suppose that SO correc-
tions to the energy levels are small as compared with the
separation between adjacent Landau levels and Zeeman sub-
levels. Therefore, we disregard the effect of SO coupling on
the energy spectrum and begin with the Hamiltonian of the
orbital motion in a parabolic quantum well

Ĥ0 =
�2

2m
	− i � +

e

�c
A
2

+
1

2
m�0

2z2, �5�

where A is the vector potential of the magnetic field B. Be-
cause the Hamiltonian is quadratic in the coordinates, the
problem can be solved exactly, and the energy spectrum is
well known.38,39 However, because for calculating matrix el-
ements of EDSR we need explicit expressions for the opera-
tors of coordinates and momenta, somewhat lengthly calcu-
lations should be performed.

A. Diagonalization of the Hamiltonian

First, we perform a transformation U from the original
coordinate system x ,y ,z related to the principal crystal axes
to a new �“primed”� reference system x� ,y� ,z� with the z�
axis parallel to B and the y� axis lying in the x ,y plane. The
coordinates in both systems are related as

�x

y

z
� = Û�x�

y�

z�
� ,

where

Û = �cos � cos � − sin � sin � cos �

cos � sin � cos � sin � sin �

− sin � 0 cos �
� . �6�

Similar equations are valid for momenta projections,

k̂i= Ûii�k̂i�, where i=x ,y ,z and summation over repeated co-
ordinate indices is implied. Because y� does not appear in the
potential energy m�0

2z2 /2, it is convenient to choose the Lan-
dau gauge with Ax�=0, Ay�=Bx�, Az�=0. Then y� is a cyclic
variable, the Landau momentum k
ky� is a c number, and

Ĥ0 =
�2

2m
�− �x�

2 − �z�
2 + �k + x�/�2�2�

+
1

2
m�0

2�− sin �x� + cos �z��2, �7�

where �=�c� /eB is the magnetic length. To decouple the

motion in two degrees of freedom in Eq. �7�, we perform a
rotation

x� = cos �� + sin �� ,

z� = − sin �� + cos �� . �8�

Then the cancelation condition for the mixed product ��
results in an equation on the auxiliary angle �

sin 2� = ��0/�c�2 sin�2�� + ��� �9�

and the coefficients at �2 and �2, together with the kinetic
energy, define the eigenfrequencies

��
2��� = �c

2 cos2 � + �0
2 sin2�� + ��

��
2��� = �c

2 sin2 � + �0
2 cos2�� + �� �10�

of two normal modes, � and �. Equations �9� and �10� com-

plete the diagonalization of the quadratic part of Ĥ0 and are
in agreement with the results by Maan38 and Merlin.39

Eliminating in Eq. �7� the term that is linear in x� can be
achieved by shifting � and � by

�0 =
− k�2 cos �

cos2 � + ��0/�c�2 sin2�� + ��
= − �2k

cos�� + ��
cos �

,

�0 =
− k�2 sin �

sin2 � + ��0/�c�2 cos2�� + ��
= − �2k

sin�� + ��
cos �

.

�11�

In these equations, first expressions for �0 and �0 come di-
rectly from calculations, while the simplified form of them
can be found by using Eqs. �A13�.

The free term in Eq. �7� equals

E0�k� =
�2k2

2m
−

m

2
��0

2��
2 + �0

2��
2� = 0. �12�

Vanishing of this term follows from Eqs. �9�–�11�, and inde-
pendence of the energy from the Landau momentum k is a
consequence of the translational symmetry in the �x ,y�
plane. The shifts �0 ,�0 satisfy the identities

cos ��0 + sin ��0 = − �2k ,

sin�� + ���0 − cos�� + ���0 = 0. �13�

Equation �10� allows one to find the spectrum of the sys-
tem, i.e., the set of two frequencies, ������ ,������. How-
ever, because Eq. �10� includes the auxiliary angle � that
should be found from Eq. �9�, the shape of the curves ��

2���
and ��

2��� is not obvious, depends on the ratio �c /�0, and
identification of a specific eigenvalue as ��

2��� or ��
2��� is a

matter of convention. In what follows, we identify ����� and
����� as the frequencies that at �=0 coincide with the cy-
clotron frequency �c and the confinement frequency �0, re-
spectively. Then, using Eqs. �A14� and �A16�, we derive ex-
plicit expressions for ��

2��� and ��
2���

��
2��� =

1

2
��0

2 + �c
2 − �2 sign��0 − �c�� ,
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��
2��� =

1

2
��0

2 + �c
2 + �2 sign��0 − �c�� , �14�

where

�2��� = ��0
4 + �c

4 − 2�0
2�c

2 cos 2� . �15�

This spectrum is plotted in Fig. 1�a� as a function of
�c /�0 for three values of the polar angle �. For �=0, the
spectrum consists of the cyclotron and confinement
branches, � and �, respectively. However, for ��0 the

branches interchange at �c=�0. Left parts of the lower
branches and right parts of the upper branches are described
by the �� solution and show a cyclotron-like behavior. The
opposite parts of the same branches are described by the ��

solution and show a confinement-like behavior. Of course,
all branches are continuous and smooth.

The same spectrum is plotted in Fig. 1�b� as the function
of � for three values of �c /�0. All branches retain their iden-
tity, � or �, in the whole interval 0���
 /2. All � branches
originate at the same frequency ����=0�=�0; they are upper
branches for �c��0 and lower branches for �c��0. On the
contrary, � branches are lower branches for �c��0 and up-
per branches for �c��0; they originate at the frequencies �c
that are B dependent. For �c=�0, the spectrum is described
by a simple equation �±���=�0�1±sin ��1/2. These curves
are separatrices dividing � and � regions, hence, neither �
nor � identity can be ascribed to them.

The Hamiltonian Ĥ0 of Eq. �7�, when written in the vari-
ables � and �, reads

Ĥ0 = �
�
�−

�2

2m
��

2 +
1

2
m��

2�� − �0�2� , �16�

where the summation is performed over �=� ,�. After intro-
ducing step operators

� − �0 = ��/2m���a�
+ + a�� ,

k̂� = − i�� = i�m��/2��a�
+ − a�� , �17�

the Hamiltonian takes the standard oscillator form

Ĥ0 =
1

2�
�

����a�
+a� + a�a�

+� . �18�

B. Operator representation for coordinates and momenta

Similarly to Eq. �6�, one can express the components

k̂j =−i� j + �e /�c�Aj of the kinetic momentum in the crystal
frame through its components in the primed frame. In the
latter frame, the vector-potential A contributes only to the

component k̂y� that equals

k̂y� = k + x�/�2 = �cos ��� − �0� + sin ��� − �0��/�2.

�19�

When deriving Eq. �19�, the upper identity of Eq. �13� has

been used. Using Eq. �8�, one can express k̂x� and k̂z� through
the derivatives �� and rewrite the components of the mo-
menta in the crystal frame in terms of a� ,a�

+ by applying Eq.
�17�

k̂x = �
�

�X�a� + X�
*a�

+� ,

k̂y = �
�

�Y�a� + Y�
*a�

+� ,

FIG. 1. �Color online� The energy spectrum of electrons con-
fined in a parabolic quantum well in a tilted magnetic field. Here,
�0 is the confinement frequency, �c=eB /mc is the cyclotron fre-
quency, � is the polar angle of the field B, �� and �� are the
frequencies of two eigenmodes ��, �=� ,�. �a� The dependence of
�� on the ratio �c /�0 for three values of �. Cyclotron-like modes
are shown by dotted lines and confinement-like modes by full lines.
For �=0 these modes intersect, while for ��0 they interchange at
�c=�0. �b� The dependence of �� on � for three values of �c /�0.
The modes retain their identity in the whole interval 0���
 /2,
and ����� for �c��0 while ����� for �c��0. At the degen-
eracy point, �c=�0, the two ��,� branches have no specific identity.
They are separatrices dividing the plane into one � �gray� and two
� �white� regions.
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k̂z = �
�

�Z�a� + Z�
*a�

+� . �20�

Here

X� =�m��

2�
�− i cos�� + ��cos � −

�c

��

cos � sin �� ,

X� =�m��

2�
�− i sin�� + ��cos � −

�c

��

sin � sin �� ,

Y� = −�m��

2�
�i cos�� + ��sin � −

�c

��

cos � cos �� ,

Y� = −�m��

2�
�i sin�� + ��sin � −

�c

��

sin � cos �� ,

Z� = i�m��

2�
sin�� + �� ,

Z� = − i�m��

2�
cos�� + �� . �21�

These coefficients depend only on the angles �� ,�� and
the eigenfrequencies �� and do not depend on k, �0, and �0.
Therefore, despite the fact that Eqs. �20� and �21� have been
derived in the Landau representation, the final results are
gauge invariant and may be conveniently employed for find-
ing operators �x̂ , ŷ , ẑ� of the coordinates �x ,y ,z�.

It is seen from Eq. �5� that the operator ẑ can be found in

terms of �a� ,a�
+� from the difference H0−�2k̂2 /2m. Employ-

ing Eqs. �18�, �20�, and �21� and some of the identities of
Appendix A, we arrive after somewhat lengthly algebra at

ẑ = �
�

�i�/m���Z��a� + a�
+� . �22�

The sign of ẑ has been found from the commutation relation

�k̂z , ẑ�=−i, and one can easily check that ẑ̇= �i /���Ĥ0 , ẑ�
=�k̂z /m.

For finding x̂ and ŷ, we generalize the Johnson and
Lippman42 procedure for the quantization of electron motion
in a strong magnetic field for an electron confined in a para-
bolic quantum well. Using the equations of motion for the
operators of momenta and coordinates

k̇
ˆ

x = �c�byk̂z − bzk̂y�, k̇
ˆ

y = �c�bzk̂x − bxk̂z� , �23�

ẋ = �k̂x/m, ẏ = �k̂y/m, ż = �k̂z/m , �24�

where b=B /B, and eliminating the components of the mo-

mentum k̂, we arrive at the equations

x̂̇ = ��2k̇
ˆ

y + bxẑ̇�/bz, ŷ̇ = �− �2k̇
ˆ

x + byẑ̇�/bz. �25�

Equations �25� suggest existence of two integrals of motion

x̂0 = x̂ − �bxẑ + �2k̂y�/bz, ŷ0 = ŷ − �byẑ − �2k̂x�/bz, �26�

that generalize the well known guiding center coordinates.
They obey the same commutation relation

�x̂0, ŷ0� = i�2/cos � �27�

and commute with operators a�. Remarkably, in a parabolic
well the operators x̂0 and ŷ0 involve the vertical coordinate ẑ.
Nevertheless, Eq. �27� ensures that the degeneracy of states
is completely controlled by Bz, the component of B perpen-
dicular to the QW plane, and is described by the standard
Landau formula nL���=cos � /2
�2.

Because the operators k̂x, k̂y, and ẑ are already known, Eq.
�26� allows one to find x̂ and ŷ. To derive explicit expres-
sions for these operators, it is convenient to use identities

Y� + �i�c/���sin � cos �Z� = �i�c/���cos �X�,

X� + �i�c/���sin � sin �Z� = �i�c/���cos �Y� �28�

that can be checked using Eqs. �10� and �21�. Finally, the
operators of in-plane coordinates are

x̂ = �
�

�i�/m����X�a� − X�
*a�

+� + x̂0,

ŷ = �
�

�i�/m����Y�a� − Y�
*a�

+� + ŷ0. �29�

Because Z�
*=−Z�, Eqs. �29� are similar to Eq. �22� and differ

from it only by presence of the guiding center operators.
Therefore, six operators of coordinates and momenta, xj

and k̂j, j=x ,y ,z, are expressed in terms of four Bose opera-
tors �a� ,a�

+� and two generalized guiding center coordinates
�x̂0 , ŷ0�. The latter commute with all operators �a� ,a�

+�;
hence, their presence in Eq. �29� does not influence electron
dynamics in homogeneous external fields that are coupled to
an electron only through the operators �a� ,a�

+�. Operators x̂j

and k̂j, defined by Eqs. �20�, �22�, and �29� obey the standard
commutation relations

�k̂j, x̂�� = − i� j�,�k̂j, k̂�� = − i�−2� j�mBm/B , �30�

where � j�m is the Levi-Civita tensor.

III. INTENSITY OF EDSR

The EDSR occurs in QWs due spin-orbit Hamiltonians

ĤSO described by Eqs. �2�–�4� which mix the electron spin
projections on the magnetic field direction, hence, each elec-
tron state acquires admixture of the opposite spin projection

that is small when ĤSO is weak. As a result, a time-dependent

electric field Ẽ�t� causes EDSR, i.e., electrically induced
spin-flip transitions. Matrix elements of EDSR are comprised
of two contributions, of which one comes from the perturba-
tion of the wave functions of stationary states and the second

from the direct coupling of the electron spin to the field Ẽ�t�.
A convenient way for calculating EDSR matrix elements is

THEORY OF ELECTRIC DIPOLE SPIN RESONANCE IN¼ PHYSICAL REVIEW B 73, 165325 �2006�

165325-5



based on employing a canonical transformation exp�T̂� elimi-

nating Ĥso in the first order of perturbation theory.5,6 After

the transformation, the time-independent part of Ĥ conserves
the electron spin projection on the magnetic field direction,
and spin-flip transitions are induced only by the spin-orbit

contribution e�vso · Ã� /c to the time-dependent part of Ĥ,

where Ã�t� is a time-dependent vector potential, and v̂so is
the spin-orbit part of the velocity operator.

Because of the equation of motion v̂= �i /���Ĥ , r̂�, the ma-
trix elements of the operators v̂ and r̂ for spin-flip transitions
are related as �v̂�= i�s�r̂�, with �s being the spin-flip transi-
tion frequency. Neither of the two competing contributions to
v̂ includes the factor �s, hence, it indicates the existence of
massive cancellations that tremendously complicate calcula-
tions based on the operator v̂. It is much more convenient to

write the time-dependent part of the Hamiltonian as Ĥint�t�
=e�r̂ · Ê�t��. In the original representation, the coordinate op-

erator r̂ is diagonal in spin indices, and Ĥint�t� produces spin-

flip transitions due to the level mixing. However, after the T̂

transformation the operator r̂ acquires a SO part r̂so= �T̂ , r̂�
that drives spin-flip transitions.

The total Hamiltonian of an electron confined in a para-

bolic QW is Ĥ= Ĥ0+ ĤZ+ Ĥso+ Ĥint�t�, with ĤZ= 1
2g�B�� ·B�.

The energy levels of the Hamiltonian Ĥ0+ ĤZ are

E	�n�,n�� = �
�

�������n� + 1/2� + ��s	/2, �31�

where n�,��0 and the spin index 	= ±1. The spin-flip fre-
quency �s should be taken algebraically; �s�0 for electrons
in negative g-factor semiconductors. The time-independent

spin-orbit interaction Ĥso will be considered as a perturba-
tion.

The term Ĥso=HD, ĤD, or ĤR in the time-independent

part of the Hamiltonian Ĥ leads to the mixing of spin sub-
levels. As we have stated above, it can be eliminated in the
first order of the perturbation theory by a canonical transfor-

mation exp�T̂�. The operator T̂ is nondiagonal in the orbital
quantum numbers �n� ,n��, and its matrix elements are

�n��,n�� ,	��T̂�n�,n�,	� =
�n��,n�� ,	��Ĥso�n�,n�,	�
E	��n��,n��� − E	�n�,n��

. �32�

In terms of T̂, the matrix elements of spin-flip transitions
diagonal in �n� ,n�� are

�n�,n�,↑��Ẽ · r̂so��n�,n�,↓�

= �
n��,n��

��n�,n�,↑�T̂�n��,n�� ,↓��n��,n�� ��Ẽ · r̂��n�,n��

− �n�,n���Ẽ · r̂��n��,n����n��,n�� ,↑�T̂�n�,n�,↓�� , �33�

with n��=n�±1 and n�� =n�±1. The sum in Eq. �33� is re-
stricted because the operator r̂ is linear in �a� ,a�

+�, cf. Eqs.
�22� and �29�. This restriction significantly simplifies matrix

elements �n�� ,n�� , ↑ �T̂�n� ,n�↓ � since their denominators do
not depend on �n� ,n�� and are equal to ��±��+�s�.

When the operator ĤSO is linear in momenta and conse-
quently in the operators �a� ,a�

+�, Eq. �33� reduces to

�n�,n�,↑��Ẽ · r̂so��n�,n�,↓�

= − �
�=�,�

� �Ẽ · l*
���0�,↑�Ĥso�1�,↓�
���� − �s�

+
�Ẽ · l���1�,↑�Ĥso�0�,↓�

���� + �s�
� �34�

with

lx� =
i�

m��

X�, ly� =
i�

m��

Y�, lz� =
i�

m��

Z�. �35�

Remarkably, this matrix element does not depend on �n� ,n��.
For calculating the matrix element �↑�Ĥso�↓ � in Eq. �34�, we
transform Pauli matrices from the crystal frame �x ,y ,z� to

the primed frame �x� ,y� ,z�� as 	̂i= Ûii�	̂i�, similarly to Eq.
�6�. Substituting 	̂x,y into the 2D Dresselhaus and Rashba
Hamiltonians of Eqs. �3� and �4�, and using �↑�	̂x��↓ �=1,
�↑�	̂y��↓ �=−i, and �↑�	̂z��↓ �=0, we arrive at

�↑ �Ĥso�↓� = �
�

�H�
−â� + H�

+â�
+� , �36�

with the matrix elements H�
± that should be found from Eqs.

�20� and �21�. Applying Eq. �A13�, we find for a Rashba
Hamiltonian

HR,�
� = �R

�m��/2����/�c ± 1�f�, �37�

with f�=cos��+�� and f�=sin��+��, and for a 2D Dressel-
haus Hamiltonian

H2D,�
� = �D�m��

2�
�i cos 2�	 ��

�c cos �
� cos �


− sin 2�	��

�c
� 1
� f�. �38�

Substituting Eq. �36� into Eq. �34�, we find

�n�,n�,↑��Ẽ · r̂so��n�,n�,↓� = −
1

�
�

�

1

��
2 − �s

2

� ����H�
−�l� · Ẽ�* + H�

+�l� · Ẽ��

+ �s�H�
−�l� · Ẽ�* − H�

+�l� · Ẽ��� .

�39�

A. Electric field perpendicular to the QW plane

Let us start with a time-dependent electric field perpen-

dicular to the QW plane, Ẽ�t� � ẑ. In this geometry lz,�

= lz,�
* , and the matrix element of Eq. �39�, Lz

= �n� ,n� , ↑ �ẑso�n� ,n� , ↓ �, equals
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Lz = −
1

�
�

�

lz����

H�
− + H�

+

��
2 − �s

2 + �s

H�
− − H�

+

��
2 − �s

2 � . �40�

For a Rashba SO coupling, substituting Eq. �37� into Eq. �40�
results in

LR
z =

�R

2�
	1 +

�s

�c

�s���

2 − ��
2�

D���
sin 2�� + �� , �41�

with

D��� 
 ���
2 − �s

2����
2 − �s

2�

= �0
2�c

2 cos2 � − �s
2��0

2 + �c
2 − �s

2�; �42�

here, Eq. �A10� has been applied. By using Eq. �A15�, one
arrives at the final result40,43

LR
z = −

�R�s

2�

��c + �s��c

D���
sin 2� . �43�

For Dresselhaus SO coupling, a similar procedure leads to
the matrix element of Ref. 40

LD
z = −

�D�s

�

�c sin �

D���
�sin 2� cos ���c − �s�

− i cos 2���c cos2 � − �s�� . �44�

B. Electric field in the quantum well plane

For an in-plane electric field, we calculte the scalar prod-

uct �l� · Ẽ�. If the field Ẽ�t� is polarized at the angle � to the

crystal x axis, Ẽ�t�= Ẽ�t��cos � , sin � ,0�, then �l� · Ẽ�
= l�

�Ẽ�t� with

l�
� = lx� cos � + ly� sin �

=� �

2m��

f��cos�� − �� − i
��

�c cos �
sin�� − ��� .

�45�

When deriving Eq. �45�, the identity of Eq. �A7� has been

used. Equation �45� allows one to rewrite the matrix element
L�= �n� ,n� , ↑ �x̂so cos �+ ŷso sin ��n� ,n� , ↓ � of Eq. �34� as

L� = −
1

�
�

�

Re�l�
�����

H�
− + H�

+

��
2 − �s

2 + �s

H�
− − H�

+

��
2 − �s

2 �
+

i

�
�

�

Im�l�
����s

H�
− + H�

+

��
2 − �s

2 + ��

H�
− − H�

+

��
2 − �s

2 � . �46�

For Rashba SO coupling, using Eq. �37� results in

LR
� = −

�R cos�� − ��
�

�
�
� 1

�c

f�
2��

2

��
2 − �s

2 + �s

f�
2

��
2 − �s

2�
− i

�R sin�� − ��
cos ���c

	1 +
�s

�c

�

�

f�
2��

2

��
2 − �s

2 . �47�

Applying identities of Eq. �A3�, one finds an explicit expres-
sion for the dependence of the matrix element on the mag-
netic field direction

LR
� = −

�R

�
cos�� − ��

�
�c cos2 ���0

2 − �s
2� + �s��0

2 + �c
2 sin2 � − �s

2�
D���

− i
�R

�
cos � sin�� − ��

��c + �s���0
2 − �s

2�
D���

. �48�

In the strong 2D limit, when �0��c, this expression simpli-
fies significantly, and we arrive at the result of Ref. 41.

LR
� = −

�R

���c
*2 − �s

2�
�cos�� − ����c

* cos � + �s�

+ i sin�� − ����c
* + �s cos ��� . �49�

Here �c
*=�c cos � is the cyclotron frequency in a tilted mag-

netic field; from now on � is defined as 0���
 /2.
For a 2D Desselhaus SO coupling, substituting Eq. �38�

into Eq. �46� results in

LD
� /�D = −

cos�� − ��
�

�
�
� f�

2��
2

��
2 − �s

2

i cos 2� − sin 2� cos �

�c cos �
+

�sf�
2

��
2 − �s

2 �sin 2� − i cos 2� cos ���
−

i sin�� − ��
cos ���c

�
�

f�
2��

2

��
2 − �s

2��s�i cos 2� − sin 2� cos ��
�c cos �

+ sin 2� − i cos 2� cos �� . �50�

By using identities of Eq. �A3�, an explicit expression for this matrix element can be found

LD
� /�D = −

cos�� − ��
�

��c cos ���0
2 − �s

2�
D���

�i cos 2� − sin 2� cos �� + �s

��0
2 + �c

2 sin2 � − �s
2�

D���
�sin 2� − i cos 2� cos ���

−
i sin�� − ��

�

��0
2 − �s

2�
D���

��s�i cos 2� − sin 2� cos �� + �c cos ��sin 2� − i cos 2� cos ��� . �51�
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In the strong 2D limit, �0��c, through a number of
transformations this expression can be brought to the final
form41

LD
� =

�D

���c
*2 − �s

2�
�sin�� + ����c

* cos � − �s�

− i cos�� + ����c
* − �s cos ��� . �52�

In conclusion, we note that in this and the previous sub-

section we considered the Hamiltonians ĤD and ĤR on a
similar footing. However, there is a considerable difference

in their ranges of applicability. The Hamiltonian ĤD origi-

nates from the 3D Hamiltonian ĤD and is valid only in the
strong confinement limit when d�kF

−1 ,�, where kF is the
Fermi momentum. When the confinement length d becomes
comparable to kF

−1 or the magnetic length �, additional terms
like kxky

2 should be included in the 2D Hamiltonian. From
this standpoint, only Eq. �52� has a real physical meaning
while Eq. �51� should be only considered as an auxiliary one.
Having those limitations in mind, Eq. �52� will be applied in
Sec. III C 2 only to electrons confined at the ground level,
n� ,n�=0. Equation �44� is subject to similar restrictions, and

EDSR with n� ,n��0 electrons in a field Ẽ � ẑ will be con-
sidered in Sec. IV in the framework of a more general theory.

The applicability range of the Hamiltonian ĤR is much
wider because it is applicable not only to zinc blende crystals
under the conditions of 2D confinement but is inherent in the
wurtzite modification of A3B5 compounds as a bulk
property.6,8 Currently, active experimental work on SO prop-
erties of microstructures including the wurtzite modifications
of InAs,44 InN,45 GaN,46–48 etc., is under way, and large SO
splittings up to 9 meV have been reported.47 Following the
initial calculations of the band structure of wurtzite-type
compounds,49 more general models have been developed
recently,50,51 and it looks like the band folding in the hexago-
nal direction �resulting from the different size of the elemen-
tary cells in the zinc blende and wurtzite lattices� plays a role
in developing large spin splittings.52 Therefore, the Hamil-

tonian ĤR will be applied for arbitrary n� ,n��0.

C. Polarization dependence of EDSR intensity: General
properties

In this section, we discuss at a qualitative level the basic
properties of EDSR following from the equations of Secs.
III A and III B.

In all cases, the intensity of EDSR shows a pole when one
of the eigenfrequencies coincides with ��s�, ����pole�= ��s�. It
is seen from Fig. 1�b� that such a pole always exists be-
cause one of the frequencies ����� vanishes for �=
 /2.53

For �0��c it happens to the �� mode while for �0��c to
the �� mode. The magnitude of �pole depends on the rela-
tive magnitudes of �0, �c, and �s. For �0��c, �pole depends
mostly on the ratio �s /�c. It is very close to 
 /2 for GaAs
because of its anomalously small g factor, and equals
�pole�0.89�
 /2 for InAs and �pole�0.78�
 /2 for InSb.
Therefore, for the materials like InAs and InSb the maximum
can still be achieved in the range of � and B values where the

transformation of Eq. �32� remains justified. Additional de-
pendence of the matrix elements on � comes from the nu-
merators of Eqs. �43� and �44� and their analogs for an in-
plane electric field. This dependence is SO coupling specific.
Singularities at the poles are cut off by a level width.

The � dependencies of the EDSR transition matrix ele-

ment for Ẽ � ẑ and Ẽ� ẑ are significantly different. First, for
the perpendicular-to-plane polarization, the factor sin 2� in
Eq. �43� and the factor sin � in Eq. �44� nullify these matrix
elements at �=0. There are no such factors in the matrix
elements of Sec. III B. Therefore, EDSR can be observed

only in a tilted magnetic field B when Ẽ�t� � ẑ, but an arbi-
trary orientation of B can be used �including B � ẑ� for an

in-plane Ê�t�.
The second difference in EDSR with different Ẽ�t� polar-

izations concerns its intensity. This difference is essentially
pronounced in the strong confinement regime, �0��s ,�c.
Comparing Eqs. �43� and �44� with Eqs. �49� and �52�,
one can estimate the corresponding matrix elements as

��R,D�s /��0
2 for Ẽ�t� � ẑ and as ��R,D /��c for Ẽ�t�� ẑ,

respectively, when the inequality �c
 ��s� is satisfied. The

first estimate indicates that when Ẽ�t� � ẑ, EDSR is possible
only due to the deviation of the system from the strict 2D

limit. On the contrary, when Ẽ�t�� ẑ, EDSR survives in the
strict 2D limit. The ratio of the matrix elements is about
�c�s /�0

2�1, hence, in the strong confinement limit an in-

plane field Ẽ�t� is much more efficient than a perpendicular-
to-plane field.

For BIA, it is also instructive to compare the magnitudes
of the EDSR transition matrix elements in a strong 2D con-
finement limit, LD

� , described by Eq. �52�, and in the bulk,
L3D��m /�2, as found by Rashba and Sheka.5 We find
LD

� /L��0 /�c�1 using �D��m�0 /� from Eq. �67� below.
This enhancement of EDSR in a QW in in-plane geometry
can be attributed to a strong confinement with the square of
the confinement momentum, m�0 /�, large compared with
�−2. Extraordinarily high efficiency of EDSR in the in-plane
geometry has been emphasized in Ref. 41.

We note that despite the fact that the intensity of EDSR

with Ẽ�t� � ẑ is much less than with Ẽ�t�� ẑ, it is usually high
enough for efficient electrically manipulating electron spins.
Specific estimates can be found in Ref. 40 and will be given
in Sec. V below.

As has been discussed above, there is a similarity in some
of the properties of EDSR caused by BIA and SIA. The most
striking difference in the effect of these mechanisms is seen
in the angular dependences of the EDSR intensity, especially
in its dependence on the azimuth �, as will be discussed in
Sec. III C 2.

1. Dependence of EDSR on the polar angle

Using the equations of Sec. III A, we will provide and
discuss here the dependence of the EDSR intensity on the
polar angle � as applied to InAs. We restrict ourselves to SIA
because Eq. �3� for 2D Dresselhaus coupling is applicable
only under strong confinement conditions when �0��c; cf.
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Sec. III B. A theory of BIA controlled EDSR will be dis-
cussed in Sec. IV in the framework of a more general ap-
proach.

It is seen from Fig. 1�b� that the energy spectrum is rather
different for �c��0 and �c��0. Therefore, these two cases
will be considered separately.

The angular dependence of the EDSR intensity is con-
trolled by the dependence of the square of the matrix element
LR

z on �, Eq. �43�, and by the population difference of the
two spin sublevels that depends on the filling factor
 ���=ne /nL���, ne being the concentration of 2D electrons.
To cut off LR

z ��� near its pole and to find a realistic estimate
of EDSR intensity versus �, we introduce a phenomenologi-
cal level width !.

When �c��s, one can consider a single spin-split level
E0±��s /2 with 0� �2. For a Lorentzian level shape, the
difference " of the filling factors of two sublevels equals

" =
1



�arctan

�� − E0� + ��s/2

!
− arctan

�� − E0� − ��s/2

!
� ,

�53�

where �� � is the chemical potential that can be found from
the equation

�� � − E0

!
= −

1

tan 
� − 1�
+ sign� − 1�

�� 1

sin2 
� − 1�
+ 	��s

2!

2

. �54�

The dependence of " on  is shown in the Fig. 2. For small
!, this is a triangle. Its vertices can be considered as cusps of
the " versus  curve. An up cusp appears at  =1, and two
down cusps at  =0 and 2. Note, the up cusp appears at odd

 , while down cusps at even  values. With increasing !, the
cusps are smeared, however, they manifest themselves as a
well pronounced maximum and two minima even for ! as
large as !=��s /2. Below, we will find similar patterns in the
spectra of multi-level systems that are well pronounced even
for a strongly tilted field B when �c cos ���s. However,
because of level crossings the regular alternation of up and
down cusps �and their correspondence to odd and even  
factors, respectively� can be violated; an example of such an
anomaly can be seen in Fig. 3�b�.

In what follows, we use a Gaussian level shape exp�−�E
−E0�2 /!2� because it provides pronounced features in the
intensity distribution that can be reliably assigned. This pro-
cedure will be applied to the denominator D��� of Eq. �43�
where it cuts the pole and also when calculating the popula-
tions of different orbital levels and their spin sublevels. How-
ever, we do not renormalize the frequencies �c and �s in the
numerator of Eq. �43�, and a similar procedure will be ap-
plied everywhere below.

In Fig. 3�a� is shown the dependence of EDSR in-
tensity on � for �c=�0 /2 and the electron concentration
ne=2nL��=0�. Therefore, for �=0 both spin sublevels of the
n�=0,n�=0 level are filled, while all upper levels are empty.
The EDSR develops only when B becomes tilted, nL��� de-
creases, and the n��1,n�=0 levels are getting occupied.
The general shape of the curve is dominated by a pro-
nounced maximum that is achieved near the pole of the de-
nominator, ��= ��s�, and shifts to lower angles with increas-
ing !. Strong suppression of the EDSR intensity for small
angles and for ��
 /2 originates from the factor sin 2� in
Eq. �43�.

Assigning specific features in Fig. 3�a� can be done by
following the populations of successive levels and the behav-
ior of the chemical potential � with increasing �; ���� is
shown in the inset. For small ! values, populating n� level
begins only after both spin components of the previous level,
with the quantum number �n�−1�, are completely occupied.
This regularity holds up to  =10 and manifests itself in regu-
lar tooth-like pattern of the curve �� � for small level width,
! /��0=0.01. The same regularity can also be seen from the
� dependence of the EDSR intensity for ! /��0=0.05. Simi-
larly to Fig. 2, up cusps correspond to odd filling factors  ,
while down cusps to even  . The larger is the gap between
the successive energy levels, the larger is the “jump” in �� �,
and the more pronounced is the corresponding cusp. Small
shifts of the cusps from integer  values originate from the
final level width !. Because of the general growth of the
EDSR intensity with � at the left slope of the principal maxi-
mum, up cusps at this slope are shifted to the right from odd
 values while down cusps are shifted to left from even  
values. Remarkably, all these features are distinctly seen in
the intensity pattern for ! /��0=0.05 despite the fact that the
function �� � is already rather smooth for this level width.

We have calculated only transition intensities and did not
calculate the corrections to the g factor that originate from
the band nonparabolicity and SO coupling. These corrections
should depend on the quantum numbers n� ,n�. Because of
the regular level alternation described above, only a single
spin-flip frequency should be seen inside each window con-

FIG. 2. �Color online� The difference of the filling factors, " ,
of the two components of a spin doublet of an isolated energy level
as a function of the total filling factor of this level 0� �2. For a
small level width !, its shape is close to a triangular form, and an
up cusp develops at  =1. In a plot including adjacent energy levels,
down cusps at the end of this interval will arise. With increasing !,
the cusps are smeared. However, at ! as large as !=��s /2, pro-
nounced extrema at  =1 and  =0,2 are still seen.
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fined between two successive even values of  ; n� values for
specific windows are indicated in the inset to Fig. 3�a�. Two
spin-flip frequencies can be seen simultaneously only inside
narrow regions of � where  passes through even values.

The EDSR intensity for �c /�0=2 and the electron con-
centration ne=2nL��=0� is shown in Fig. 3�b�; in this case,
�� is the lower spectrum branch. The basic shape of the
spectrum is the same: it is dominated by a strong maximum
at �����s�. However, there is a considerable difference in
the fine structure. First, because the principal maximum is
achieved at a lesser value of �, fine structure is distinctly
seen on both sides of the maximum. Second, level intersec-
tions arise at relatively small quantum numbers n�; the inter-
section of �1, ↓� and �2, ↑� levels is the first one. However, of
much more importance is the intersection of �2, ↓� and �3, ↑�
levels because Fermi energy � passes through the intersec-
tion point. As a result, the simple regularity in populating
successive levels does not hold any more, and alternation of
up and down cusps is violated. Between the well pronounced
 =5 up cusp and the  =7 down cusp there exists a smeared
 =6 up cusp. For this reason, signs of the following cusps
change: a strong odd- cusp  =7 turns into a down cusp,
while an even- cusp  =8 becomes an up cusp.

The intersection of �2, ↓� and �3, ↑� levels happens when
3��− ��s� /2=2��+ ��s� /2, i.e., it coincides with the zero of
the denominator of Eq. �43� and the principal peak of EDSR.
Because this intersection point also coincides with the Fermi
level, to the left from this point only the �2, ↑ �→ �2, ↓ � tran-
sition to the half-populated �2, ↓� level is allowed. On the
contrary, to the right from the intersection point both the
�2, ↑ �→ �2, ↓ � transition to the empty �2, ↓� level and the
�3, ↑ �→ �3, ↓ � transition to the half-populated �3, ↓� level
are allowed, hence, the intensity of EDSR is expected to
increase abruptly by a factor of 3. The inflection point seen
between the  =5 cusp and the maximum of the curve reflects
this discontinuity smeared by the level width !; smearing is
rather strong because the slopes of �3, ↑� and �2, ↓� levels
plotted versus � are very close. The asymmetry of the peak
with respect to the ��= ��s� point, including shifting its
maximum to the right from this point, is a different manifes-
tation of the effect of the increase in the number of electronic
channels at the intersection point. Also, the coexistence of
two transition channels, �2, ↑ �→ �2, ↓ � and �3, ↑ �→ �3, ↓ �,
manifests itself in the high EDSR intensity of the back-
ground over which the even- cusp at  =6 is hardly seen.

The coexistence regions of different transitions are shown
in the inset to Fig. 3�b�. Transitions between spin sublevels
of the levels n�=2 and n�=3, coexisting in a wide region of
filling factors, should manifest themselves through splitting
the spin-flip line into two components with close g factors.
The same is valid for n�=3 and n�=4 levels �for larger �
values�.

All the above analysis is based on a phenomenological
approach with a single level width parameter !. In the frame-
work of such a theory, it describes both the widening of �
and � energy levels and the width of the spin-flip transition
lines. However, the real physics might be rather different. It
has been shown by Mel’nikov and Rashba55 that impurity
scattering results in a dramatic narrowing of spin-flip lines,
and narrow EDSR lines have been observed in dirty semi-
conductor materials by Bell long before.56 The underlying
mechanism is the dynamical narrowing that is also respon-
sible for the D’yakonov-Perel’ spin relaxation mechanism.57

FIG. 3. �Color online� The dependence of the EDSR intensity on
the polar angle � of a magnetic field B for Rashba spin-orbit cou-
pling, Eq. �4�. The electric field is perpendicular to the confinement

plane, Ẽ � ẑ. The ratio of spin-flip and cyclotron frequencies,
�s /�c=−0.17, is typical of InAs; �0 being the confinement fre-
quency. The calculations were performed for three values of the
level width !, as specified in the figure. For B � ẑ, electrons com-
pletely populate the ground level, n�=n�=0. �a� Strong confine-
ment, �c /�0=0.5. With increasing � electrons populate higher
cyclotron-like � levels, while they remain at the ground � level. �b�
Weak confinement, �c /�0=2. With increasing � electrons populate
higher � levels, while they remain at the ground � level. In both
cases, the principal peak originates from the resonance ��= ��s�
with �=� for �a� and �=� for �b�. The fine structure of the spec-
trum, distinctly seen for small level width !=0.05�0, originates
from populating higher n� levels in a tilted magnetic field B. Up
cusps are marked by up arrows and down cusps by down arrows. In
�b�, the inflexion point seen between the  =5 cusp and the EDSR
maximum reflects an abrupt change in the population of intersecting
levels at ��= ��s�. Insets show the dependence of the chemical po-
tential �� � on the filling factor  and the quantum numbers of
partially populated states, n� or n�, that contribute to spin-flip tran-
sitions inside the various regions of filling factor values.
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Therefore, when two or more wide � or � levels are partially
populated, one should anticipate observing several narrow
spin-flip lines in the EDSR spectrum. Indeed, two narrow
spin-flip lines were observed in n-type inversion layers on
InSb, one of them showing a Fano-type profile;58 apparently,
they were caused by EDSR, but the mechanism has not been
specified. The detailed theory of such spectra should be
model dependent.

Therefore, EDSR spectra include rich and nontrivial in-
formation about energy spectra. Extracting it can be achieved
by a detailed analysis of the spectra supported by calculating
energy levels and their populations.

2. Azimuth dependence of EDSR intensity

In the previous section, we considered a perpendicular-to-

plane electric field, Ẽ � ẑ, concentrated on the details of the
EDSR dependence on the polar angle �, and restricted our-
selves with SIA. Because of the axial symmetry of the

Hamiltonian ĤR, the azimuth dependence of EDSR intensity
was isotropic.

In this section we provide the full angular dependence of
EDSR intensity with a special emphasis on its azimuth de-
pendence; and with this end in view we consider both basic

polarizations of the ac field Ẽ and both 2D Hamiltonians, ĤD

and ĤR. Because the equations of Sec. III B derived for the

Hamiltonian ĤD are applicable only under the conditions of
strong confinement, we accept that �0��c ,�s, and that the
electron concentration is low enough, hence, electrons popu-
late only the lowest quantization level, n� ,n�=0, for all polar
angles � of interest; this restriction will be removed in the
more general theory of Sec. IV. To suppress fine features of
the � dependence, we choose a relatively large level width,
!=0.2�0; it suppresses the resonance at ��= ��s� and en-
hances EDSR in the small � region.

At first we keep Ẽ � ẑ and consider the � dependence

originating from the Hamiltonian ĤD. It possesses only the
twofold symmetry of the C2v group. However, the matrix
element LD

z of Eq. �44� is odd to 
 /2 rotations. Therefore,
the intensity of EDSR acquires the fourfold symmetry that

manifests itself in Fig. 4�a�. However, the joint effect of ĤD

and ĤR �the latter one is totally symmetric!� eliminates this
additional symmetry. The effect of the interference of BIA
and SIA is seen in Fig. 4�b�; it is especially strong for
�D= ±�R. The degree of asymmetry should allow measuring
the ratio �D /�R.

Now we turn to the in-plane geometry, Ẽ� ẑ, where the
symmetry of the indicatrix is additionally lowered because

the azimuth � of the field Ẽ establishes a new preferred
direction in the �x ,y� plane. Figures 5�a� and 5�b� are based

on Eq. �49�. Because of the isotropy of the Hamiltonian ĤR,
the EDSR intensity depends only on the difference of the

azimuths � and � of the electric field Ẽ and magnetic field
B, respectively. Therefore, for �=�, the EDSR intensity
does not depend on the azimuth as it is reflected in the rota-
tional symmetry of Fig. 5�a�. Remarkably, in this geometry
Eq. �49� reduces to its first term that vanishes when

�c
2 cos2 �+�s=0. That is why the angular indicatrix of Fig.

5�a�, drawn for InAs with �s=−0.17�c, consists of two
sheets touching in a single point. The low-� feature became
visible because of the large !=0.2�0. From this standpoint,
it is instructive to compare the figures from our previous
paper, Ref. 41, with the set of figures of this section; they
complement each other rather well. In Fig. 5�b�, the direction
of electric field is fixed along the �110� crystallographic axis,
and the � dependence of the EDSR intensity shows only the
twofold axis symmetry.

Figures 5�c� and 5�d� are based on Eq. �52�. For Fig. 5�c�,
Ẽ �B� and therefore �=�, B� being the projection of B onto
the confinement plane. The matrix element of Eq. �52� has
only a twofold symmetry axis that corresponds to the sym-

metry of the Hamiltonian ĤD. However, its square possesses
fourfold symmetry that one easily recognizes in Fig. 5�c�. In

Fig. 5�d�, direction of Ẽ is fixed as Ẽ � �110�, and the sym-
metry of EDSR intensity is reduced again to a twofold axis.

Figure 5�e� illustrates the joint effect of ĤR and ĤD

Hamiltonians for Ẽ �B�. This figure, drawn for �R=�D,
reflects the twofold symmetry inherent in the BIA Hamil-

tonian ĤD.

D. Experimental data

EDSR is well documented in 3D where various mecha-
nisms of it have been discovered and identified.6,56,59,60 Ex-
perimental data regarding 2D systems are very scarce yet.
Ironically, in 2D the effect of spin-orbit coupling on spin
resonance is best understood in Si/SiGe quantum wells
where SO coupling is notoriously weak;27,61 the success is
mostly based on long spin coherence times. Electrical moni-
toring of electron spins in AlGaAs parabolic quantum wells
near the g�0 point has been achieved by the ĝ-tensor modu-
lation technique.29 It was only very recently that EDSR
driven by the orbital mechanism has been reported for a

FIG. 4. The dependence of the EDSR intensity on the magnetic
field direction for a �001� quantum well. The electric field is per-

pendicular to the QW plane, Ẽ � ẑ. The electron concentration is low,
hence, for all � values electrons populate only the ground level,
n� ,n�=0. The level width, !=0.2�0; �c /�0=0.5, �s /�c=−0.17. �a�
2D Dresselhaus spin-orbit coupling mechanism, Eq. �3�. The four-
fold symmetry of the figure reflects the symmetry of the square of
the spin-flip transition matrix element. �b� Interference of 2D
Dresselhaus and Rashba spin-orbit coupling mechanisms. The two-
fold symmetry of the figure reflects the C2v symmetry of the Hamil-

tonian ĤD; coupling constants have been chosen as �D=�R.
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A3B5 quantum well.62 And ironically again, this observation
has been made with an AlAs quantum well where the weak-
ness of SO coupling manifested itself in a small g shift,
g�1.99. Nevertheless, the intensity of EDSR exceeded the
intensity of electron paramagnetic resonance �EPR� �excited
by the magnetic component of microwave field� by four or-
ders of magnitude. As Schulte et al. emphasize in their
paper,62 the very fact of the observation of a spin-flip line
represented a puzzle because in their sample the EPR inten-

sity was two orders of magnitude smaller than the noise
level.

We note that AlAs is not a propitious material for apply-
ing our theory because of the relatively large effective mass,
m /m0=0.46, and small g factor, g=1.99. As a result, even for
magnetic fields B�1 T, the cyclotron and spin frequencies
are in the microwave range and the criterion of strong cyclo-
tron quantization is at the verge of its applicability. In Ref.
62, fc#p=2.4 and fs#p=1.1 for B=1.219 T, and fc#p=0.67
and fs#p=0.31 for B=0.3349 T, where fc,s=�c,s /2
 and #p is
the momentum relaxation time. Apparently for this reason,
Ref. 62 does not include any data regarding cyclotron ab-
sorption, and all the discussion is provided in terms of non-
quantized orbital dynamics. The basic conclusions of Schulte
et al.62 are as follows. The signal of spin resonance origi-
nates from the effective magnetic field caused by the SO
interaction. The polarization dependence of the resonance is
well described by the effective field Beff= �2�R /g�B��k� ẑ�
following from the Hamiltonian of Eq. �4�, and its intensity
suggests �R�5�10−12 eV cm as a crude estimate for the SO
coupling constant.

The high intensity of EDSR in the B � ẑ geometry, even
when the sample was positioned close to the node of the

microwave electric field Ẽ, was observed only when the field

Ẽ was in-plane polarized; unfortunately, EDSR in a tilted
magnetic field has not been studied. EDSR has not been seen

with Ẽ � ẑ.62 These observations are in agreement with the
predictions of Refs. 40 and 41 and the conclusions of Sec.
III C.

IV. 3D DRESSELHAUS HAMILTONIAN

The physical parameter that allows reducing the Hamil-

tonian ĤD of Eq. �2� to its 2D form ĤD is a small confine-
ment length d or, what is the same, a large confinement fre-
quency �0. Therefore, the expressions found in Sec. III for
the 2D Dresselhaus Hamiltonian of Eq. �3� and arbitrary val-
ues of �c /�0 and �n� ,n�� are mostly of methodical interest.
They have provided, side by side with equations found for
the Rashba Hamiltonian of Eq. �4�, an important outlook on
the comparative strength of EDSR excited by in-plane and

perpendicular-to-plane electric fields Ẽ�t�. However, a con-
sistent description of 3D Dresselhaus systems can be

achieved only by using the Hamiltonian ĤD. Technically,
calculating matrix elements of EDSR for that Hamiltonian is
a challenging task. We will show in this section, as applied to

a field Ẽ�t� � ẑ, that using the operators of Sec. II B in con-
junction with the identities of Appendix A is a powerful tool
that allows solving the problem and deriving explicit expres-
sions for matrix elements.

In the primed reference frame, the term ĤD acquires a

form ĤD=�	 j��̂ j� with �̂ j�=Ujj��̂ j, because the matrix U is
orthogonal, hence, U−1=UT. Of all the multitude of terms
that enter in this expression, we need to select only those that
contribute to the matrix element of Eq. �33�. First, the selec-
tion rules in the spin operators show that

FIG. 5. The dependence of the EDSR intensity on the magnetic
field direction for a �001� quantum well. The electric field is in the

QW plane, Ẽ� ẑ. The electron concentration is low; parameter val-
ues are the same as in Fig. 4. �a� and �b�—Rashba spin-orbit cou-

pling, Eq. �4�. For �a�, the electric field Ẽ is parallel to the projec-

tion B� of the field B onto the confinement plane, Ẽ �B�, hence, the
intensity is rotationally symmetric. For �b�, the electric field is par-

allel to the �110� crystallographic axis, Ẽ � �110�. �c� and �d�—2D

Dresselhaus spin-orbit coupling, Eq. �3�. For �c�, the electric field Ẽ

is parallel to B�, Ẽ �B�, hence, the intensity shows fourfold sym-

metry. For �d�, Ẽ � �110�, and the gross features are similar to those

of figure �b�. For �e�, Ẽ �B�, the two spin-orbit coupling mecha-
nisms with �D=�R interfere; the symmetry is lowered because of
their interference.
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�↑ �ĤD�↓� = �K̂ = ���̂x�
� − i�̂y�

� � . �55�

Second, because the operators of coordinates are linear in
�a� ,a�

+�, the selection rules in the orbital operators in equa-
tions similar to Eq. �33� select only those parts of the opera-
tors �̂ j�

� that change one of the quantum numbers, either n� or
n�, by ±1. Therefore, in what follows we denote by �̂ j�

� these
parts of the operators. Straightforward calculations in the
crystal coordinate frame result in the following expressions
for them:

�̂ j� = �
�

�Cj;��â�n̂� + Cj;��
* n̂�â�

+�

+ �
����

�Cj;���â� + Cj;���
* â�

+��2n̂�� + 1� , �56�

where n̂�= â�
+â�. Coefficients Cx;��� read as

Cx;��� = Y��X��Y��
* + Y��X��

* � − Z��X��Z��
* + Z��X��

* �

+ X���Y���
2 − �Z���

2� �57�

and coefficients Cy;��� and Cy;��� can be found from Cx;��� by
cyclic permutations of X, Y, and Z factors in the right hand
side of Eq. �57�. In these notations,

K̂ = �
�

�C��
− â�n̂� + C��

+ n̂�â�
+� + �

����

�C���
− â� + C���

+ â�
+��2n̂�� + 1�

�58�

with C���
±

C���
+ = �Ujx� − iUjy��Cj;���

* ,

C���
− = �Ujx� − iUjy��Cj;���. �59�

To calculate the probability of the spin-flip transition

caused by a perpendicular-to-plane field Ẽ�t� � ẑ, we express
the z-coordinate operator in terms of operators �â� , â�

+�

ẑ = �
�=�,�

lz��â� + â�
+� , �60�

where lz� are defined in Eq. �35�. Substituting Eqs. �58� and
�60� into Eqs. �32� and �33�, one arrives at

Lz�n�,n�� = �n�,n�,↑�ẑso�n�,n�,↓�

= −
�

�
�
��� 

�2n�� + 1�
�z�C���

 

�� +  �s
�61�

with  =±. Remarkably, despite the fact that diagonal and

nondiagonal coefficients C��� enter into K̂ in a nonsymmetri-
cal way, in Eq. �61� the symmetry is restored, and � and ��
take both values, � ,��=� ,�. Equation �61� can be conve-
niently rewritten as

Lz�n�,n�� = −
�

�
�
���

lz��2n�� + 1�

�	��

C���
− + C���

+

��
2 − �s

2 + �s

C���
− − C���

+

��
2 − �s

2 
 . �62�

It is important for following calculations that the depen-
dence of coefficients Cj;��� on indices � and �� can be factor-
ized �see Appendix B� as

Cj;��� = $���djRj� + �R� � D� j� �63�

with

$� = − m��/2�, $� = m��/2� . �64�

Therefore, the dependence of the coefficients Cj;��� on the
last subscript is universal and rather trivial. Their depen-
dence on the two first subscripts and the angles �� ,�� can be
written in terms of three 3D vectors

R� = �X�,Y�,Z��, d = �bY−Z,bZ−X,bX−Y� ,

D = �bYZ,bZX,bXY� , �65�

of which the first one is defined by Eqs. �21�, while d and D
depend only on �� ,��. This structure of coefficients Cj;���
can be established by direct calculations. Formulas for coef-
ficients b with different indices are given by Eq. �B2�.

Details related to calculating matrix elements of Eq. �62�
are described in Appendix B. We present the final expression
following from Eqs. �B11� in the form that is similar to Eq.
�44� to simplify the comparison with the results of Sec. III A

Lz�n�,n�� = −
�D

eff�n�,n���s

�

�c sin �

D���
sign��0 − �c�

� �sin 2� cos �Fs − i cos 2�Fc� , �66�

where

�D
eff�n�,n�� = �D

* �0����1 + 2n�� − ���1 + 2n���/�2���

with �D
* = − �m�0/2� . �67�

Functions Fs and Fc are defined as

Fs��� = ��c − �s� +
1

�0
2�2�c�s

2 − 3�c
32 cos2 � − sin2 �

2

+ �c
2�s

1 + 3 sin2 �

2
� , �68�

Fc��� = ��c cos2 � − �s� +
1

�0
2 ��c�s

2�1 + cos2 �� − �c
3 cos2 �

+ �c
2�s cos 2�� . �69�

It is seen from Eq. �67� that the effective coupling constant
�D

eff depends on the population of both the � and �-type
energy levels. This factor reduces to a constant when �i�
only the lower level of the spatial quantization is populated,
n�=0, and �ii� the Fermi energy is small compared to the
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spatial quantization energy, n������. In the strong confine-
ment limit, with �2��0

2, we get �D
eff�−�m�0 /2�. Having

in mind that m�0 /2���
 /d�2, d playing the role of the con-
finement length, we arrive at the usual estimate for �D. How-
ever, when the criterion of strong spatial quantization is not
fulfilled, �D

eff influences the dependence of the EDSR inten-
sity on the polar angle of B.

Functions Fs and Fc are defined in such a way that their
first terms dominate in the strong confinement limit,
�0��c ,�s, and these coefficients coincide exactly with the
corresponding coefficients in Eq. �44�. Therefore, in this case
Eq. �66� reduces to Eq. �44�. However, it will be shown in
the next section that when �0��c ,�s, the factors Fs and Fc
profoundly influence the intensity of EDSR.

A. Angular dependence of EDSR

In Figs. 3�a� and 3�b� the dependence of the EDSR inten-
sity on the polar angle � has been presented for the Hamil-

tonian ĤR describing SIA. It has been discussed at the end of

Sec. III A that the applicability of the Hamiltonian ĤD is

more restricted as compared to ĤR. Therefore, for calculating
the angular dependence of EDSR intensity coming from BIA
in a wide range of polar angles �, we apply the general
results derived in the previous section. Comparison of Eqs.
�44� and �66� shows that this generalization influences EDSR
intensity in three ways. First, through new terms in functions
Fs��� and Fc���. Second, through � dependence of ����.
Third, the transition probability acquires a dependence on
population numbers n� ,n� entering into the effective cou-

pling constant �D
eff�n� ,n��. Also, as distinct from ĤR, the

Hamiltonian ĤD does not possess continuous rotational sym-
metry about the z axis. Therefore, we calculate the � depen-
dence of the EDSR intensity for two specific values of �,
�=0 and �=
 /4.

The polar angle dependencies of the EDSR intensities
presented in Fig. 6 have been calculated for the same values
of �c /�0 and �s /�0 as the data of Fig. 3 and ne=2nL��
=0�. We have also used the same Gaussian level broadening.
Because we disregarded the effect of SO coupling on the
energy spectrum, all the above discussion of the energy spec-
trum and the � dependence of the chemical potential ���� is
completely applicable to the current case. Hence, the basic
behavior of the intensity including the principal maximum
near ��= ��s� and existence of a system of up and down
cusps remains intact. The difference comes from the enve-
lope factors Fs��� and Fc���, from the � dependence of �D

eff,
and from the fact that for BIA the matrix element of EDSR
does not vanish when �→
 /2. For large � the cyclotron
frequency �c���=�c cos � vanishes and our theory becomes
inapplicable. Therefore, we restrict ourselves with the region
��0.9�
 /2.

In Fig. 6�a�, the EDSR intensity is displayed for �=0. It
shows cusps similar to Fig. 3�a�, however, all features seem
small in the scale of the figure. This difference in the scale
can be understood from the shape of the envelope function
shown in the inset. It includes the factors from Eq. �66� that
depend on � explicitly and do not involve quantum numbers

n� ,n�. As distinct from the envelope function of Fig. 3�a�
that includes a factor sin2 2�, Eq. �43�, this envelope function
changes slowly on the right from the principal maximum at
�����s� and does not vanish at �=
 /2. Therefore, the
EDSR intensity remains strong for large �, and we have
shown a curve for a very small !=0.02��0 to demonstrate
the persistence of the principal maximum. At larger ! values
the maximum washes out, and for �c cos ��! /� our ap-
proach is no more applicable. Remarkably, for �c=�0 /2 the
envelope function is close to its shape in the strong confine-
ment limit as one can see from the inset.

In Fig. 6�b�, the intensity of EDSR is shown for the same
value �c /�0=0.5 but for �=
 /4. In this case the envelope
function includes a factor sin2 2� and vanishes for �=
 /2.
For this reason, Fig. 6�b� bears much more similarity with
Fig. 3�a�. Deviation of the envelope function from its strong
confinement limit is by a factor of about 2. Comparison of
Figs. 6�a� and 6�b� suggests a considerable azimuth depen-
dence of EDSR intensity, especially in the large � region.

It is very instructive to compare panels �c� and �d� of Fig.
6 drawn for �c /�0=2 with the panels �a� and �b� of the same
figure. The first difference is easily seen from the envelope
functions shown in insets. They show zeros for intermediate
values of �, ��0.82�
 /2 and ��0.61�
 /2 for �=0 and
�=
 /4, respectively. The corresponding minima originate
from the zeros of functions Fc��� and Fs���, respectively,
appear only for specific values of the azimuth �, and
strongly influence the EDSR intensity.63 The existence of an
additional zero that is common for both panels �c� and
�d� �but absent from �a� and �b�� and persists for arbi-
trary � is the second difference. It originates from the zero
of �D

eff�n� ,n�� at 3�����=����� that is located at ��0.42
�
 /2. For this � value, the filling factor  is within
2� �3. Hence, the spin-flip transitions involve the
n�=0,n�=1 electrons. The third important difference is a
strong enhancement of EDSR intensity at �c=2�0 as com-
pared with �c=�0 /2. Intensities in Fig. 6 are given in arbi-
trary units, but these units are the same for all panels when
normalized on the confinement frequency �0. The origin of
the enhancement can be easily understood from Eq. �44� that
in the strong confinement regime includes a factor �D�s /�0

2

with �D%�0. Therefore, when B increases, one can expect
enhancement in EDSR intensity by a factor of about
��s /�0�2.

V. DISCUSSION

The results of our calculations allow one to evaluate the
intensity of EDSR and to compare it with the intensity of the
usual electron paramagnetic resonance �EPR� caused by a
time-dependent magnetic field. Their ratio depends on the
SO coupling mechanism and the geometry of the experiment.
In both the EDSR and EPR experiments, the efficiency is
controlled by two major factors: �i� by the characteristic
length l which in the case of EDSR is equal to the matrix
element of the spin-flip transition of Eq. �33�, and �ii� by the
population difference of two spin sublevels that depends on
the 2D electron concentration and the polar angle � between
the external magnetic field and direction of 2D confinement.
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The effect of the latter factor does not depend on the
mechanism of spin-flip transitions and influences in a similar
way both the EDSR and EPR. It manifests itself in the modu-
lation of the spin-flip transition intensity as a function of �
and depends on the population of spin sublevels controlled
by the � dependent position of the chemical potential ����.
The corresponding up and down cusps are seen in Figs. 3
and 6 showing the polar angle dependence of EDSR intensity
for both basic SO coupling mechanisms. Level broadening
washes out this population dependent fine structure. How-
ever, for a reasonably small broadening, ! /��c�0.1, this
fine structure should allow studying the energy spectra of
quantum wells.

A geometry with the electric field Ẽ perpendicular to the
confinement plane, similar to the one used by Kato et al.,29 in
principle allows access to electron spins at a nanometer
scale. However, spin-flip transitions occur only in a tilted
magnetic field and vanish when �=0, as is seen from Eqs.
�43�, �44�, and �66�. Indeed, it is a tilted magnetic field that

couples the in-plane and perpendicular to the plane electron
motions and allows a perpendicular to the plane field Ẽ to
produce cyclotron and spin-flip transitions.

The efficiency of the Dresselhaus mechanism of EDSR in
this geometry can be evaluated by using the effective length
lD
�=Lz�n�=0,n�=0� defined by Eq. �66�. In the strong con-

finement limit, �0��c ,�s, this length is about lD
�

���D
* /��0���s /�c���c /�0� when expressed in terms of the

effective coupling constant �D
* =−�m�0 /2� of Eq. �67�. The

factor �c /�0 reflects the fact that the deviation of the system
from a strictly 2D geometry, �0→�, is critical for the gate-
voltage controlled EDSR. The numerical factor �s /�c
=gm /2m0 is about 0.16 for GaSb and InAs and about 0.34
for InSb. Even for a weak magnetic field �c /�0=0.1, we
estimate lD

��5�10−11 cm to 5�10−10 cm using a typical
value m�0.05m0 for the mass and also ��20 eV Å3 for
GaAs and 200 eV Å3 for InSb and GaSb.64 Hence, under
these least favorable conditions the EDSR length lD

� is com-
parable to the similar length for EPR that is about lEPR

FIG. 6. �Color online� The dependence of the EDSR intensity on the polar angle � of a magnetic field B for Dresselhaus spin-orbit

coupling, Eq. �2�, for two values of the azimuth �. The electric field is perpendicular to the QW plane, Ẽ � ẑ. The notations and basic
parameter values are the same as in Fig. 3. Similarly to Fig. 3, the spectra show the principal maximum at ��= ��s� and the fine structure of
up and down cusps indicating repopulation of different energy levels with � changing. The major distinctions from Fig. 3 include �i� a
minimum at �=0.42�
 /2 originating from a zero in the effective coupling constant �D

eff�n� ,n�� of Eq. �67�, �ii� additional minima in panels
�c� and �d� originating from the zeros of functions Fc��� and Fs��� at �=0.82�
 /2 and �=0.61�
 /2, respectively, and �iii� smearing of
the main peak in panel �a� because of the slow angular dependence of the envelope function shown in the inset to that panel. The insets to
panels �a� and �b� demonstrate that the results found for the strong confinement limit still retain reasonable accuracy for �c=�0 /2. The insets
to panels �c� and �d� demonstrate the positions of the zeros of functions Fc and Fs.
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��g�&C /4�10−10 cm, with &C=� /m0c�4�10−11 cm for
the electron Compton length and �g��10 for the electron g
factor.

Remarkably, there are two factors related to the electronic
confinement in a quantum well and the experimental geom-
etry that can increase lD

� essentially. The first one is related to
the resonance behavior of lD

� in the angle range near
�c cos ����s�. The resonance in lD

���� is cut off by the level
broadening, and the increase in the effective length is about a
large factor of �c /!�1. The second factor is related to the
ratio �c /�0 reflecting the deviation of the system from the
strict 2D geometry; it is not necessary small. For example, in
the experiment of Kato et al.29 this ratio was about �c /�0
�0.5 because a wide parabolic well with an effective width
about 50 nm and a strong magnetic field B=6 T were used.
A nearly 16 time increase of the EDSR intensity due to a
four time increase of �c /�0 from 0.5 to 2 is seen in Fig. 6,
where the intensity of EDSR for all cases was calculated in
arbitrary but the same units based on a fixed confinement
energy �0. The increase in �c /�0 leads to a similar increase
in the intensity of the EDSR controlled by Rashba spin-orbit
coupling as one can see from Fig. 3.

The magnitude of the Dresselhaus spin-orbit coupling
constant �D

* is controlled by the bulk parameter � and cannot
be modified significantly. Even in the wide quantum wells
used in the experiments of Kato et al.,29 the effective 2D
coupling constant reaches only the value �D

* �0.3
�10−10 eV cm. This is much less than the typical value of
the Rashba constant �R�10−9 eV cm for InAs based quan-
tum wells.21 Even larger values �R��3–6��10−9 eV cm
were reported in Refs. 23 and 65. Large �R values should
significantly enhance the efficiency of EDSR whose magni-
tude can be estimated using Eq. �43� and gives the effective
magnetic length lR

����R /��0���s /�c���c /�0�. This sug-
gests that asymmetric quantum wells should have a potential
for enhancing EDSR. However, calculations of �R depend
strongly on the boundary conditions,66 and the dependence
of �R on the well width has not been investigated yet. An
increase in �0 might happen to be a price for increasing �R.
From this standpoint, the potential of wurtzite-type materials
where �R emerges as a bulk parameter should be investigated
in more detail.

The estimates provided above show that electrically ma-
nipulating electron spins is preferable to the magnetic one
not only because it allows access to electron spins at a na-
nometer scale but also because a significantly larger coupling
constant can be achieved. In order to reach high efficiency of

EDSR in the geometry with an electric field Ẽ perpendicular
to the quantum well plane, one needs to use wide asymmetric
wells and a strong magnetic field B strongly tilted to the
quantum well plane. The EDSR should be also stronger in
narrow gap semiconductors where the factor �s /�c is typi-
cally larger.

Let us estimate now the advantages of EDSR with an

in-plane electric field Ẽ. The effective lengths characteristic
for the Rashba and Dresselhaus spin-orbit coupling mecha-
nisms are described by Eqs. �49� and �52�, respectively. By
the order of magnitude, lR

� ��R /��c and lD
� ��D /��c for

B � ẑ. A comparison with the estimates used above for the

geometry with a perpendicular to the plane field Ẽ shows
that both small factors in the expressions for the effective
lengths do not appear in the equations for the in-plane geom-
etry. The small factor �c /�0 has been discussed above and is
related to the deviation from the strict 2D limit. This crite-
rion, as well as the necessity of using a tilted magnetic field
B, are specific for the geometry with a perpendicular to the

plane Ẽ and are required to couple this field to in-plane dy-
namics. With an in-plane electric field the both limitations do
not exist anymore, and this critical difference manifests itself
in Eqs. �49� and �52�.

The second small factor, �s /�0, originated because of the
confinement in the electric field direction; a similar factor
appears for EDSR with impurity centers.6 For an in-plane

electric field, the motion in the direction of Ẽ is unrestricted
and that is why the parameter �s /�0 does not appear in Eqs.
�49� and �52�.

With typical values of �D�0.3�10−10 eV cm and �R
�10−9 eV cm, m�0.05m0, and B�1 T, we get lD

� �0.3
�10−6 cm and lR

� �10−5 cm correspondingly. As a result,
lD
� , lR

�
� lD

� , lR
� as well as lD

� , lR
�

� lEPR, and electrical spin op-
eration by an in-plane electric field should be especially ef-
ficient. Recent experimental data62 are in agreement with this
prediction of our theory.41

The most important quantity characterizing spin operation

efficiency by a resonant electric field Ẽ�t� is the Rabi fre-

quency �R=eẼl /�. With l� lR
� , lD

� �10−5–10−6 cm as esti-
mated above, we find that �R�1010 s−1 in electric fields as

small as only about Ẽ�0.6–6 V/cm.
This extraordinary efficiency of in-plane electric fields

bears a promise of operating spins by a set of small vertical
gates producing considerable in-plane fields between them.
Such a geometry can allow combining the access to electron
spins at a nanometer scale typical of vertical gates with the
high EDSR intensity typical of in-plane electric fields.

In conclusion, our theory predicts efficient EDSR with
free electrons in quantum wells. Usually, its intensity should
be much higher than the intensity of the standard EPR. Elec-
trical spin operation should be extraordinary efficient with an
in-plane electric field. In the perpendicular to the plane elec-
tric field geometry, EDSR requires mixing of the in-plane
and perpendicular to the plane orbital motions which is pro-
vided by a tilted magnetic field. As a result, EDSR in this
geometry is significantly weaker than in the in-plane geom-
etry, and semiconductor compounds with large g factors are
highly advantageous. The dependence of the EDSR intensity
on the magnetic field direction, on both its polar angle and
azimuth, is indicative of the competing mechanisms of spin-
orbit coupling.
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APPENDIX A: USEFUL IDENTITIES

All formulas for intensities of EDSR, as well as for eigen-
frequencies �� and ��, include the auxiliary angle � that
should be found from Eq. �9�. However, it can be usually
eliminated and equations for the intensities of EDSR can be
simplified due to the existence of a system of identities that
will be derived in this Appendix.

It follows directly from Eqs. �10� that

��
2 + ��

2 = �c
2 + �0

2. �A1�

Using Eqs. �9� and �10�, one arrives at the identities

��
2��

2 = �c
2�0

2 cos2 � , �A2�

��
2 sin2 � + ��

2 cos2 � = �0
2 cos2 � , �A3�

��
2 cos2�� + �� + ��

2 sin2�� + �� = �c
2 cos2 � . �A4�

From Eqs. �A2� and �A3� follows the identity

sin2 �

��
2 +

cos2 �

��
2 =

1

�c
2 �A5�

that ensures fulfillment of the commutation relations �k̂x , x̂�
= �k̂y , ŷ�=−i. Subtracting Eqs. �A3� and �A4� from �A1�, one
finds

��
2 cos2 � + ��

2 sin2 � = �c
2 + �0

2 sin2 � , �A6�

��
2 sin2�� + �� + ��

2 cos2�� + �� = �c
2 sin2 � + �0

2. �A7�

Using Eq. �A7�, one immediately finds

cos2�� + ��
��

2 − �s
2 +

sin2�� + ��
��

2 − �s
2 =

�0
2 + �c

2 sin2 � − �s
2

���
2 − �s

2����
2 − �s

2�
�A8�

and applying Eqs. �A2� and �A4�, one arrives at

cos2�� + ����
2

��
2 − �s

2 +
sin2�� + ����

2

��
2 − �s

2 =
�c

2cos2 ���0
2 − �s

2�
���

2 − �s
2����

2 − �s
2�

.

�A9�

Two similar equations can be written for the angle �. Re-
markably, the right hand sides of Eqs. �A3�–�A7� do not
depend on �, and the same is true for the right hand sides of
Eqs. �A8� and �A9� because

���
2 − �s

2����
2 − �s

2� = �0
2�c

2 cos2 � − �s
2��0

2 + �c
2 − �s

2� ,

�A10�

as follows from Eqs. �A1� and �A2�.
From Eqs. �9� and �10� one can also derive an identity

��
2 tan � = ��

2 tan�� + �� , �A11�

from which the following relations follow:

sin�� + ��cos �

��
2 =

sin � cos�� + ��
��

2 =
sin 2�

2�0
2 cos �

=
sin 2�� + ��
2�c

2 cos �
. �A12�

In turn, a set of new identities follows from Eq. �A12�

cos � =
��

2

�c
2

cos�� + ��
cos �

, cos�� + �� =
��

2

�0
2

cos �

cos �
,

sin � =
��

2

�c
2

sin�� + ��
cos �

, sin�� + �� =
��

2

�0
2

sin �

cos �
. �A13�

These identities, together with Eq. �27�, allow proving the
commutation relation �x̂ , ŷ�=0. Also, using Eq. �9�, one eas-
ily finds

tan 2� =
sin 2�

��c/�0�2 − cos 2�
,

tan 2�� + �� =
sin 2�

cos 2� − ��0/�c�2 . �A14�

These equations allow one to derive the identity

��
2 − ��

2 =
�0

2 sin 2�

sin 2�
=

�c
2 sin 2�

sin 2�� + ��
. �A15�

All the above identities have been derived directly from
Eqs. �9� and �10� and are valid for an arbitrary ratio �c /�0
and an arbitrary value of �, 0���
.

Finally, using Eqs. �A14�, one can derive explicit expres-
sions for sin 2� and sin 2��+�� that allow one to find �� and
�� from Eqs. �A1� and �A15�. For 0���
 /2,

sin 2� = −
�0

2

�2 sin 2�sign ��0 − �c� ,

sin 2�� + �� = −
�c

2

�2 sin 2�sign ��0 − �c� , �A16�

with �2��� defined by Eq. �15�. Equation �A14� defines �
with the accuracy to the phase ±
 /2. The choice of the phase
made in Eq. �A16� results in the energy spectrum of Eq. �14�
shown in Fig. 1. With this choice of the phase, Eq. �A15�
takes the form

��
2 − ��

2 = �2���sign��0 − �c� . �A17�

It indicates that the difference ��−��, when considered as a
function of �c /�0, changes sign at �c=�0.

APPENDIX B: SEVERAL SUMS CONTRIBUTING TO
EDSR

For the calculation of Cj;��� we need to find bilinear com-
binations of the coefficients X��, Y��, and Z�� appearing in the
brackets of Eq. �57�. Straightforward calculation of these co-
efficients based on their definition by Eq. �21� results in
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�X��2 − �Y��2 = $�bX−Y, X�Y�
* + Y�X�

* = $�bXY ,

bYX = bXY , �B1�

where $�=−m�� /2�, $�=m�� /2�, and all other combina-
tions can be found from Eq. �B1� by cyclic transpositions of
X, Y, and Z. Here

bX−Y =
1

2
sin 2�� + ��tan � cos 2� ,

bY−Z = − �cos 2�� + �� +
1

2
sin 2�� + ��tan � cos2 �� ,

bZ−X = �cos 2�� + �� +
1

2
sin 2�� + ��tan � sin2 �� ,

bXY =
1

2
sin 2�� + ��tan � sin 2� ,

bYZ = sin 2�� + ��sin � ,

bZX = sin 2�� + ��cos � . �B2�

Sums standing in the numerators of Eq. �61� involve the
expressions

Rj� + Rj�
* = 2�c

�m/2��� cos �Gj
+,

Rj� + Rj�
* = 2�c

�m/2��� sin �Gj
+ �B3�

and differences standing in the same numerators involve the
expressions

Rx� − Rx�
* = − 2i�m��/2�f�Gx

−,

Ry� − Ry�
* = − 2i�m��/2�f�Gy

−,

Rz� − Rz�
* = �− �m�2i�m��/2�f �̄, �B4�

where

G+ = �− sin �,cos �,0�, G− = �cos �,sin �,0� , �B5�

�̄ is defined as �̄=� and �̄=�, and m� is defined as m�

=0,m�=1.
Using Eqs. �B3� and �B4�, it is convenient to rewrite two

groups of coefficients needed for calculating numerators of
Eqs. �61� as

lz����Cj;�,�� + Cj;�,��
* � = − �− 1�m�

��
2 sin 2�� + ��
2�c cos �

$��Mj
+,

�B6�

lz��Cj;��� − Cj;���
* � = i$���1

2
�− 1�m� sin 2�� + ��Mj

−

+ �1 − f�
2�Nj� , �B7�

where M± and N are 3D vectors

Mj
± = Gj

±dj + �G± � D� j ,

N = �bZX,− bZY,− bX−Y� . �B8�

Using these expressions, one can transform Eq. �61� by col-
lecting terms having common factors 2n�+1. Then the fol-
lowing sums emerge

lz���

Cj;�� + Cj;��
*

��
2 − �s

2 + lz�̄��̄

Cj;�̄� + C
j;�̄�

*

�
�̄

2
− �s

2
= Mj

+$��c�s
2 sin �

D���
,

�B9�

lz�

Cj;�� − Cj;��
*

��
2 − �s

2 + lz�̄

Cj;�̄� − C
j;�̄�

*

�
�̄

2
− �s

2

= −
i

2
Mj

−$��c
2 sin 2�

D���
+ iNj

$���c
2 cos2 � − �s

2�
D���

.

�B10�

Plugging these equations into Eq. �62�, we arrive at

�n�,n�,↑�ẑso�n�,n�,↓� = −
�

�
�

�

�2n� + 1�$��M+�c�s
2 sin �

D���

−
i

2
M−�s�c

2 sin 2�

D���

+ iN�s��c
2 cos2 � − �s

2�
D��� � �B11�

with

M± = �Ujx� − iUjy��Mj
±, N = �Ujx� − iUjy��Nj .

Calculating these coefficients by using Eqs. �6� and �B2�, we
find

M+ = sin 2���7/4�sin 2�� + ��sin � + cos 2�� + ��cos ��

− i cos 2� cos 2�� + �� ,

M− = − cos 2��cos � cos 2�� + �� +
3

2
sin 2�� + ��sin ��

+ i sin 2��1

4
sin 2�� + ��tan � − cos 2�� + ��� ,

N = sin 2�� + ���cos 2�	cos � +
1

2
sin � tan �
 + i sin 2�� .

�B12�

From these equations follows the final equation �66�.
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