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We compute the subband structure of several group IV and III-V �001�-, �110�-, and �111�-oriented nano-
wires using sp3 and sp3d5s* tight-binding models. In particular, we provide the band gap energy of the
nanowires as a function of their radius R in the range R=1–20 nm. We then discuss the self-energy corrections
to the tight-binding subband structure, that arise from the dielectric mismatch between the nanowires �with
dielectric constant �in� and their environment �with dielectric constant �out�. These self-energy corrections
substantially open the band gap of the nanowires when �in��out, and decrease slower ��1/R� than quantum
confinement with increasing R. They are thus far from negligible in most experimental setups. We introduce a
semi-analytical model for practical use. This semianalytical model is found in very good agreement with
tight-binding calculations when �in��out.
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I. INTRODUCTION

The vapor-liquid-solid1 �VLS� and related2,3 growth
mechanisms have allowed the synthesis of high-quality, free-
standing nanowires of almost every usual group IV, III-V, or
II-VI semiconductor,4 including Si,5,6 Ge,5 InAs,3 GaAs,2,7

InP,8,9 and GaP,10 etc. The diameter of these nanowires typi-
cally ranges from a few to a few tens of nanometers, while
their length can exceed a few micrometers. Zinc-blende and
diamondlike nanowires usually grow along �001�, �110�, or
�111� crystallographic directions depending on the size and
growth conditions. The VLS approach is very versatile. In-
deed, the composition of the nanowires can be modulated
along the growth axis,11–13 which enables the synthesis of
various nanowire “heterostructures” and superlattices with
embedded quantum dots or tunnel barriers. The nanowires
can also be encapsulated14 in one or more shells of other
material�s� �usually with larger band gaps�, that move sur-
face traps away from the cores and can be used as delta
doping layers. VLS nanowires thus afford plenty of opportu-
nities for new and original experiments probing one-dimen-
sional physics. They have already unveiled a wide range of
interesting optical and transport properties,15 such as strong
luminescence polarization16 or clean Coulomb blockade fea-
tures at low temperature.17,18

VLS nanowires are also very attractive for “bottom-up”
nanoelectronics. They are polyvalent building blocks that can
serve both as devices and connectors. As a matter of fact,
many prototypes of such devices have been realized in just a
few years, including p-n and resonant tunneling diodes,11,19

bipolar20 and field-effect transistors,21–23 detectors,24 etc. The
advent of a nanowire-based electronics, however, calls for a
better control of their sizes and positions, progress being
made step by step along that way.25–27

The quasiparticle �or “one-particle”� subband structure is
a key to the understanding of charge transport in semicon-
ducting nanowires. Most features of the I�V� or conductance
characteristics �such as the current onsets� are directly related
to the band gap and subband energies. The latter depend on
the size, shape, and environment of the nanowires both
through quantum and “dielectric” confinement. Most VLS
nanowires indeed exhibit large dielectric mismatches with
their surroundings, that are responsible for so-called self-
energy corrections to the subband structure.28,29 As we shall
see, these corrections are far from negligible in most experi-
mental situations.

Many calculations have been reported on semiconducting
nanowires. The structural, electronic, and optical properties
of very small nanowires have been computed with ab initio
methods30–34 such as density-functional theory �DFT�.35,36

These studies mostly focused on silicon, starting with porous
Si more than ten years ago. The band gap energies and op-
tical properties of larger nanowires have been calculated with
various semiempirical methods such as k ·p theory,37

pseudopotentials,38,39 and tight-binding,40–42 without, how-
ever, dealing with the self-energy problem. The transport
properties of small nanowires have been addressed much
more recently with ab initio43,93 and semiempirical44 meth-
ods, still neglecting the self-energy corrections. The latter
have been computed last year45 in very small silicon nano-
wires using the ab initio GW approach.46 They had been
discussed previously with semiclassical image charge models
in the context of the exciton47 or donor48,49 binding energies,
but a systematic investigation of their impact on the subband
structure has not been carried out before.

In this paper, we compute the tight-binding �TB� subband
structure of �001�-, �110�-, and �111�-oriented group IV and
III-V cylindrical nanowires. In particular, we compare sp3
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and sp3d5s* TB models in a wide range of diameters
�1–40 nm�, and give analytical fits to the conduction and
valence band edge energies for practical use. We also check
our results for silicon nanowires against the local density
approximation �LDA�. We then discuss the self-energy prob-
lem. We introduce a semianalytical model that yields the
self-energy correction to the band gap energy of a nanowire
with radius R embedded in a medium with dielectric constant
�out. This model, supported by tight-binding calculations,
shows that the self-energy corrections decrease as 1/R,
slower that quantum confinement.

The tight-binding subband structure of the nanowires is
discussed in Sec. II, while the self-energy corrections are
discussed in Sec. III.

II. QUANTUM CONFINEMENT

In this section, we first introduce the tight-binding models
used throughout this work �Sec. II A�, then discuss the sub-
band structure of Si, Ge, InAs, GaAs, InP, and GaP nano-
wires �Sec. II B�; we last compare our TB results with ex-
perimental data and ab initio calculations in Sec. II C.

A. Tight-binding models

The nanowires �NWs� are carved out of the bulk zinc-
blende or diamond crystal keeping all atoms inside a cylinder
of radius R centered on a cation. They are one-dimensional
periodic structures with unit cell length �=a ��001� NWs�,
�=a /�2 ��110� NWs�, or �=a�3 ��111� NWs�, a being the
bulk lattice parameter.50 We define the actual R as the radius
of the cylinder of length � whose volume is the same as the
average volume �=Nsca

3 /8 occupied by the Nsc semicon-
ductor atoms of the unit cell:

R =�Nsca
3

8��
. �1�

The dangling bonds at the surface of the nanowires are satu-
rated with hydrogen atoms. This approach, though missing
surface reconstruction effects, has already proved to be
highly successful in describing intrinsic quantum confine-
ment in semiconductor nanocrystals.51–53

The principle of the semiempirical tight-binding method
is to expand the quasiparticle wave functions onto a basis of
atomic orbitals.29,54 The Hamiltonian matrix elements be-
tween neighboring orbitals are considered as adjustable pa-
rameters usually fitted to reproduce bulk band structures,
then transferred to the nanostructures. A given TB model can
thus be characterized by its atomic basis set �e.g., orthogonal
sp3� and by its range �matrix elements up to first, second, or
third nearest neighbors with two or three center integrals55�.
We have compared �when possible� various TB models and
parametrizations available in the literature to assess the ro-
bustness of our results. We have indeed used a first-nearest
neighbor two center orthogonal sp3d5s* TB model and a sec-
ond or third nearest neighbors three center orthogonal sp3 TB
model. The parameters of the sp3d5s* TB model are taken
from Jancu et al. �JMJ model, Ref. 56 for all materials� and
from Boykin et al. �TBB model, Ref. 57 for Si/Ge and Ref.

58 for InAs/GaAs�, while those of the sp3 TB model are
taken from Niquet et al. �YMN model, Ref. 51 for Si, Ref.
52 for Ge, and Ref. 53 for InAs�. These models reproduce
the overall bulk band structures �and experimental bulk band
gap energies�; the TBB and YMN models, however, achieve
better accuracy on the electron and hole effective masses
than the JMJ model. Hydrogen TB parameters are taken from
Ref. 51 for Si, Ref. 52 for Ge, and Ref. 53 for III-V materi-
als. Spin-orbit coupling is taken into account in all calcula-
tions, unless otherwise stated.

Due to translational symmetry, the quasiparticle energies
can be sorted into subbands labeled by a wave vector k
=ku and a band index n, where u is the unit vector oriented
along the nanowire and k� �−� / � ,� / � �. The TB problem
then reduces �for each k� to the diagonalization of a sparse
matrix of order n�Nsc�Norb, where Norb is the number of
orbitals per atom. Practically, a finite number of conduction
and valence subbands are computed around the gap using an
iterative Jacobi-Davidson algorithm59,60 as described in Ap-
pendix A.

B. Results

For practical use, the conduction and valence band edge
energies �c�R� and �v�R� have been fitted for each material
and nanowire orientation with the following expression:

��R� − ���� =
K

R2 + aR + b
, �2�

where K, a, and b are adjustable parameters, and ���� is the
bulk band edge �here �v���=0 and �c��� is the bulk band
gap energy Eg,b

50,61�. This expression, while having the
�1/R2 behavior at large R expected from k ·p theory,62 al-
lows for a slower confinement at small R. The values of K, a,
and b are reported in Tables I and II. Unless specified, the fit
was made simultaneously on all TB data �JMJ, TBB, and
YMN models when available� in the range R=1–20 nm. It
thus represents an average of the TB results, the scattering
being usually well within reasonable bounds �see discussion
in Sec. II C�. We would like to emphasize that Tables I and II
should also hold51 for quasicircular �e.g., facetted� nanowires
provided R is still chosen to match the cross-sectional area of
the nanowire.

We next discuss specific features �effective masses, etc.�
of the subband structure of Si, Ge, and III-V nanowires.

1. Si nanowires

The subband structure of a �111�-oriented Si nanowire
with radius R=3.75 nm is shown as a typical example in Fig.
1. While the valence band maximum lies at k=0, the con-
duction band minimum falls around k=0.4� /�, except in the
smallest nanowires �R�1 nm� where it shifts to k�0. As a
matter of fact, bulk silicon has six equivalent conduction
band minima located around ±0.8	X in the bulk Brillouin
zone50,63 �i.e., around ±1.6� /a along �001� directions�. The
energy isosurfaces around these minima are ellipsoids elon-
gated along the 	X axes �electrons have a heavy mass ml

*

=0.92 m0 along 	X and a light mass mt
*=0.19m0 perpendicu-
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lar to 	X, m0 being the free electron mass�. These six minima
all project onto k	 ±1.6� /� in �111�-oriented nanowires, or
equivalently onto k	 ±0.4� /� since the subband structure is
periodic in reciprocal space �with period L=2� /��. Note that
intervalley couplings actually split the sixfold degenerate
bulk conduction band minima into three subbands. The split-
tings are, however, fairly small and highly dependent on the
detailed geometry of the nanowire, the three subbands lying
within 	0.1 meV for R=5 nm and up to 	15 meV for R
=1 nm. The conduction and valence band edge energies
�c�R� and �v�R� are plotted as a function of R in Fig. 2 for
three different TB models. The solid line is the fit to the TB
data �Eq. �2� and Table I�. As expected, the band gap opens
with decreasing R due to quantum confinement. The three
TB models are found in reasonable agreement with each
other when R
1.5 nm.

The effective mass �lowest conduction subband� of the
electrons along �111�-oriented Si nanowires is m*	0.4m0,
increasing for R�2 nm �see Fig. 3�. The hole mass �highest
valence subband� is close to the light hole mass in bulk Si,
m*	0.15m0. Again, the sp3 YMN model and sp3d5s* TBB
model, that correctly reproduce the bulk effective masses, are
found in good agreement. The sp3d5s* JMJ model �not
shown�, that does not reproduce the bulk effective masses as
well, is slightly off, but shows exactly the same trends.

In �001�-oriented Si nanowires four of the six bulk con-
duction band minima �those along �100� and �010�� project
onto k=0, while the last two minima �along �001�� again fold
back at k	 ±0.4� /�. The actual conduction band minimum
falls at k=0 because the electrons around the �001� minima
are light in the plane normal to the wire and thus have a
higher energy than the electrons around the �100� and �010�

minima with mixed heavy and light character. Accordingly,
electrons with k�0 are light along the nanowire �m*	mt

*�,
while electrons with k� ±0.4� /� are heavy �m*	ml

*�. The
contribution of each valley to the transport properties of a
doped �001�-oriented Si nanowire depends on their

TABLE I. The parameters K, a, and b �see Eq. �2�� for silicon
and germanium nanowires. � is the splitting between the main con-
duction band valleys in silicon nanowires �see Sec. II B 1�.

Material NW K �eV nm2� a �nm� b �nm2�

Si �001� �v −0.8825 1.245 0.488

�c 0.6589 0.235 0.142

�a 0.4546 0.614 0.457

�110� �v −0.6825 2.062 0.996

�c 0.6470 0.123 0.849

�a 0.2213 −0.016 −0.038

�112� �v −0.7075 2.616 −0.083

�c 0.7273 0.246 0.313

�111� �v −0.6964 3.664 −0.374

�c 0.8010 0.342 0.212

Ge �001� �v −1.8294 2.938 0.159

�c 1.8505 0.930 0.640

�110� �v −1.6159 4.310 0.579

�c 1.3299 0.825 0.873

�111� �v −1.5720 5.007 0.640

�c 1.5161 0.746 0.717

aFitted on TBB and YMN models.

TABLE II. The parameters K, a, and b �see Eq. �2�� for InAs,
GaAs, InP, and GaP nanowires.

Material NW K �eV nm2� a �nm� b �nm2�

InAs �001� �v −1.2243 2.181 0.583

�c 10.6948 6.512 2.406

�110� �v −1.0051 2.548 1.379

�c 10.5845 6.645 2.879

�111� �v −0.9887 2.720 0.898

�c 10.6951 6.512 2.773

GaAs �001� �v −1.0320 2.026 0.401

�c 3.4198 1.786 1.103

�110� �v −0.8035 2.608 1.079

�c 3.3448 1.615 1.915

�111� �v −0.8678 2.731 0.935

�c 3.4098 1.806 1.467

InP �001� �v −0.9179 2.058 0.008

�c 3.0422 1.620 1.144

�110� �v −0.8109 3.327 1.148

�c 3.0365 1.710 1.460

�111� �v −0.8273 4.465 0.223

�c 3.0696 1.798 1.214

GaP �001� �v −0.8314 1.469 0.126

�c 0.3780 −0.397 0.287

�110� �v −0.6794 2.203 1.669

�c 0.3810 −0.203 0.486

�111� �v −0.6942 3.557 0.287

�c 0.5589 0.000 0.285

FIG. 1. Band structure of a �111�-oriented Si nanowire with
radius R=3.75 nm �sp3d5s* TBB model�.
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splitting64 � �plotted in Fig. 4� and on the temperature T. At
low enough T only the k=0 valley is occupied by the elec-
trons whereas the k	 ±0.4� /� valleys fill as soon as kT

�. At a variance with Fig. 3, the holes in �001�-oriented
NWs are quite heavy �m*	m0, increasing up to 	1.5m0 for
R=2 nm�. This enhancement of the hole mass far above bulk
values is due to confinement-induced couplings between the

J= 1
2 and J= 3

2 angular momentum components of the valence
band wave functions and is reminiscent of the “camel back”
structure to be discussed later in other materials. It may in-
crease the sensitivity of the hole to disorder and fluctuations
along the wire �making localization easier�, which could
show up in transport properties. A similar enhancement of
the hole mass was found in small �001�-oriented Si nano-
wires with square shapes.44

Last, in �110�-oriented Si nanowires, two of the six bulk
conduction band minima project onto k=0 �which is the ac-
ual conduction band minimum of the nanowire�, while the
four others fold onto k	 ±0.8� /�. The splitting between the
two valleys is also plotted in Fig. 4. The electrons around
k=0 exhibit a lighter �m*	mt

*� mass along the nanowire
than the electrons around k= ±0.8� /� �m*	0.55m0�, while
the holes are rather light �m*	0.2m0�. We emphasize that
the optical matrix elements between the conduction and va-
lence band edges of �001�- and �110�-oriented Si nanowires
remain small in spite of their �pseudo-� direct band gap.

2. Ge nanowires

The subband structure of a �111�-oriented Ge nanowire
with radius R=3.75 nm is plotted in Fig. 5. Bulk germanium
has three families of conduction band minima lying within a
250 meV energy range.50 There are four equivalent conduc-
tion band minima with energy E=0.74 eV at L points ��111�
directions�, one at 	 with energy E=0.90 eV, and six equiva-
lent ones along 	X directions �like in silicon� with energy
E	1 eV. The energy isosurfaces around the L minima are
again ellipsoids elongated along the �111� axes �ml

*

=1.59m0 , mt
*=0.08m0�. In �111�-oriented Ge nanowires, the

four L minima fold onto k=� /�, although nonequivalently.
Indeed, electrons near the L�111� minimum are confined at a
higher energy because they are light in the plane normal to
the wire �and heavy �m*�ml

*� along the wire axis�. The
other minima give rise to lighter �m*	0.25m0� bands with
lower energy. This is clearly evidenced in Fig. 5. The 	 and
Si-like minima are also visible in this figure. Note that the

FIG. 2. �a� Electron and �b� hole confinement energies in
�111�-oriented Si nanowires, in the sp3d5s* TBB and JMJ models,
and in the sp3 YMN model. �c��� and �v��� are the bulk band
edges. The solid lines are fits to the TB data according to Eq. �2�
and Table I.

FIG. 3. Electron �lowest conduction subband� and hole �highest
valence subband� effective masses in �111�-oriented Si nanowires,
in the sp3d5s* TBB model and in the sp3 YMN model.

FIG. 4. The splitting � between the conduction band minimum
at k=0 and the conduction band minimum at k	 ±0.4� /�
��001�-oriented Si nanowires� or at k	 ±0.8� /� ��110�-oriented Si
nanowires�. The solid and dashed lines are fits to the TB data ac-
cording to Eq. �2� and Table I �TBB and YMN models�.
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actual conduction band minimum shifts to 	 in the smallest
nanowires �R�1 nm�. The conduction band minimum falls
at k=� /� in �001�-oriented and at k=0 in �110�-oriented Ge
nanowires �with a clear bulk L character in both cases except
possibly in the smallest nanowires that can mix contributions
from all bulk minima�. The electron mass along the wire is
around 0.55m0 in �001�-oriented and around mt

* in
�110�-oriented nanowires.

The hole mass in small �111�-oriented Ge nanowires
ranges from 0.07 to 0.1m0, but rapidly increases above R
=5 nm until the onset of a so-called “camel back” structure62

beyond R	15 nm: the valence band maximum indeed shifts
from k=0 to k= ±kcb. This shift as well as the height Ecb of
the camel back �the difference between the valence band
edges at k= ±kcb and k=0� are, however, pretty small: at
most kcb	 ±0.004� /� and Ecb	30 �eV. Camel back
structures also appear above R	10 nm in �001�-oriented Ge
nanowires and in the whole investigated range in
�110�-oriented Ge nanowires. They contribute to an overall
flattening of the highest valence subband around k=0, but
are likely too small to be evidenced experimentally.

3. III-V nanowires

In all �001�-, �110�-, and �111�-oriented III-V nanowires
considered in this work the conduction band minimum falls
at k=0 �or very near k=0 for GaP, where the X point
folds61,65�. The lowest conduction band of bulk InAs, GaAs,
and InP is very dispersive but pretty isotropic around 	; as a
consequence �c�R� increases very rapidly with decreasing R
�see Fig. 6�, the values of Kc, ac, and bc �Table II� being,
however, nearly, the same as the nanowire orientation in
these materials. The effective mass m* of the electrons along
the wire, though very close to the bulk value for large R, also
dramatically increases with confinement because the bulk
conduction band shows significant nonparabolicity at large
energy.41,66 It can be reproduced with a linear law
m*��c�R��=m*�0�
1+���c�R�−�c�����, where m*�0� is the
bulk effective mass and � has been fitted on the TB data in
the range �c�R�−�c����0.5 eV �see Table III�. m* typically
shows nonlinear variations outside this range.

The valence band maximum falls at or very near to k=0.
All III-V nanowires considered in this work �except �001�
and �111�-oriented GaP nanowires� indeed exhibit camel
back structures41 beyond some critical Rcb in the range R
=1−20 nm. kcb first rapidly increases then slowly decreases
with R�Rcb. It is expected to vanish for large enough R
�bulklike wires�. The most proeminent camel back structure
was found in a �110�-oriented InAs nanowire with radius R
=1 nm, where kcb� ±0.023� /� and Ecb=5.9 meV �YMN
model�. Rcb, kcb, andEcb are, however, very dependent on
the TB model and details of the geometry.

C. Discussion: comparison with ab initio calculations
and experiment

We finally compare the different TB models with each
other as well as with experimental data and ab initio calcu-
lations. We mostly focus on silicon, because of its practical
importance.

Figures 2–4 show that the three TB models used for Si are
in good agreement, the scattering being significant only in
the smallest nanowires �R�1.5 nm�. In this strong confine-
ment regime �large d�c /dR and d�v /dR�, the quasiparticle
energies indeed become very sensitive to the details of the
TB model and geometry. Although semiempirical methods
are also expected to break down somewhere in this range, we
point out that the symmetry of the low-lying TB wave func-
tions is usually correct and that the quasiparticle energies
remain close to ab initio results51 �see a later comparison�. At

FIG. 5. Band structure of a �111�-oriented Ge nanowire with
radius R=3.75 nm �sp3d5s* TBB model�.

FIG. 6. Electron confinement energies and masses �inset� in
�111�-oriented InAs nanowires, in the sp3d5s* TBB model, and in
the sp3 YMN model. The solid line is a fit to �c�R�−�c��� accord-
ing to Eq. �2� and Table I. The bulk conduction band effective mass
in InAs is m*=0.023m0 �horizontal dash-dotted line�.

TABLE III. The bulk conduction band effective mass m*�0� �in
units of m0� and the parameter �= �1/m*�0��dm* /d�c �eV−1� for
�001�-, �110�-, and �111�-oriented InAs, GaAs, and InP nanowires.

Material m*�0� ��001� ��110� ��111�

InAs 0.023 4.96 7.38 3.86

GaAs 0.066 2.30 5.41 1.18

InP 0.079 2.43 4.67 1.25
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variance, k ·p and effective mass approximations62 suffer
from increasing overconfinement with decreasing R.51,67 The
agreement between the sp3 and sp3d5s* models supports the
transferability of both parametrizations from bulk materials
to nanostructures. The TB models were found in similar
agreement for the other materials considered in this work
�see, e.g., Fig. 6�, although slightly worse on the valence
band than on the conduction band side. The holes, being
typically heavier than the electrons, are indeed much more
sensitive to the quality of the parametrization. In particular,
the curvature of the valence band extrema should be care-
fully adjusted when fitting TB parameters.51,57,58,68

We now compare our TB results for Si with ab initio
calculations and experimental data. The band gap energies of
small �001�-oriented Si nanowires computed by Delley and
Steigmeier32 in the LDA are plotted in Fig. 7. The total con-
finement energy �Eg�R�=Eg�R�−Eg��� should be correctly
given by the LDA although the latter is known to fail for the
bulk band gap energy Eg����Eg,b. The LDA band gap en-
ergies of �110�-oriented Si nanowires have been computed
with SIESTA �Ref. 69� using norm-conserving
pseudopotentials70 in a nonlocal separable representation.71

Numerical atomic orbitals were used as basis sets.72,73 The
geometry was optimized before the band structure calcula-
tion. The Si-Si bonds are shorter at the surface of the NWs
than in the bulk �up to 4% in the smallest ones�, while the
inner bonds experience a minor enlargement. The relaxed
nanowire structures thus remain quite close to their TB bulk-
like counterparts. The LDA data are compared with the
sp3d5s* TBB model, that is likely the most accurate in small
nanostructures �because its basis set allows greater flexibility
and because it provides the best description of the bulk
bands�. As a matter of fact, the TBB and LDA �Eg’s are
found in very good agreement down to the smallest �001�-
and �110�-oriented nanowires. This further supports the va-
lidity of the TB approach to the electronic properties of sili-
con nanostructures. The large band gap differences between

�001�- and �110�-oriented Si nanowires can be traced back to
the anisotropy of the conduction and valence bands of bulk
Si. Ma et al.74 have measured the band gap energy of a few
�112�- and one �110�-oriented Si nanowires using scanning
tunneling spectroscopy �STS�. Their data are plotted in Fig.
7. We have also computed the electronic structure of
�112�-oriented Si nanowires for comparison. The TBB model
underestimates the opening of the STS band gap, especially
in the smallest nanowires. As mentioned in Ref. 74, the di-
ameter of the nanowires may be overestimated by the scan-
ning tunneling microscope �STM�. We emphasize, however,
that the band gap energy of the nanowires may be substan-
tially affected by the dielectric environment of the STS ex-
periment, as discussed in the next section.

III. SELF-ENERGY CORRECTIONS

VLS nanowires usually exhibit sharp dielectric interfaces
with their surroundings �e.g., vacuum or metallic electrodes�.
In most practical arrangements, these built-in dielectric mis-
matches are responsible for significant self-energy correc-
tions to the TB band structure of the nanowire.29 In this
section, we discuss the underlying physics �Sec. III A� as
well as the trends and magnitude of this effect on a simple,
semianalytical effective mass model �Sec. III B�. We then
show that this simple model accurately reproduces the results
of more detailed TB calculations when �in��out �Sec. III C�.
We finally compare our results with other calculations and
experiments in Sec. III D.

A. Theory

When an additional electron is injected into a solid, it
repells nearby valence electrons, thus dragging a so-called
Coulomb hole around.75 The work needed to form this
�short-range� Coulomb hole makes a significant self-energy
contribution to the band gap energy of semiconductors. We
assume that the TB parameters account for this effect in bulk
materials �because they reproduce the experimental band
gap� as well as nanostructures. In bulk materials, the charge
q�1/�in−1 cast out from the Coulomb hole is repelled to
“infinity.” In nanostructures, however, this charge builds up
around the surfaces or dielectric interfaces of the system. The
interaction between the additional electron and these so-
called “image” charges is responsible for additional self-
energy corrections to the TB band structure. Of course, the
above arguments also hold when removing one electron
�adding a hole� to the system. We stress, however, that the
self-energy correction to the TB band structure differs from
the self-energy correction to the DFT band structure, that
also accounts for the formation of the Coulomb hole in bulk
materials.

Self-energy effects are usually addressed within a many-
body framework,75 using, for example, a Green’s function
approach such as the GW method.46,76 This method treats the
short-range �SR� and long-range �image charges� parts of the
Coulomb hole on the same footing and takes retardation
effects into account �the Coulomb hole does not follow the
additional particle instantaneously�. Unfortunately, ab

FIG. 7. Comparison between the TB band gap energies �sp3d5s*

TBB model� and �i� the local density approximation �LDA� for
�001�-oriented �Ref. 32� and �110�-oriented Si nanowires; �ii� the
scanning tunneling spectroscopy �STS� data of Ref. 74 for �110�-
and �112�-oriented Si nanowires. Spin-orbit coupling was not taken
into account in the LDA and TB calculations, which only affects the
band gap energies by a few meV.
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initio77–79 GW codes cannot handle more than a few tens of
atoms at the present time due to computational limitations.
Zhao et al.,45 for example, have computed the GW self-
energy corrections in very small �R�0.8 nm� free-standing
�110�-oriented Si nanowires. It has, however, been shown
using semiempirical GW codes28,80 that a simpler, semiclas-
sical treatment of the image charge effects is accurate enough
for low-lying quasiparticle states in nanocrystals81–84 and
thin films.85

In this semiclassical model—that can be derived from
suitable approximations to the GW method—each material is
characterized by its macroscopic dielectric constant86 �. An
additional electron at point r produces a potential V�r ;r�� at
point r� that is the solution of Poisson’s equation:

�r����r���r�V�r;r��� = 4��r − r�� . �3�

V�r ;r��=Vb�r ;r��+Vs�r ;r�� can be split in two parts, where
Vb�r ;r��=−1/ ���r� r−r�  � is the potential created by the
additional electron plus the SR part of the Coulomb hole, and
Vs�r ;r�� is the potential created by the image charges on the
dielectric interfaces. This image charge distribution thus acts
back on the electron with a potential ��r�=− 1

2Vs�r ;r� �the
one-half factor following from the adiabatic building of the
charge distribution46�. The first-order correction to the TB
conduction band energies �cnk reads

Ecnk = �cnk + ��cnk��cnk� , �4�

�cnk being the corresponding wave functions. It can be
shown that the potential acting on a hole is formally the
opposite.87 The first-order correction to the TB valence band
energies �vnk is likewise:

Evnk = �vnk − ��vnk��vnk� . �5�

The trends in self-energy corrections most easily show up
on a single dielectric interface. We therefore consider a nano-
wire of radius R with dielectric constant �in embedded in a
medium with uniform dielectric constant �out. The image
charge potential ��r� then reads47–49,88

��r� = �1 −
�out

�in
��

n�0
�
−�

+�

dk

2�
�2 − n,0�

�
Kn�kR�Kn��kR�In

2�kr�
Dn��in,�out, kR�

if r � R �6a�

=� �in

�out
− 1��

n�0
�
−�

+�

dk

2�
�2 − n,0�

�
In�kR�In��kR�Kn

2�kr�
Dn��in,�out, kR�

if r � R , �6b�

where

Dn��in,�out, kR� = �outKn��kR�In�kR� − �inKn�kR�In��kR� .

�7�

In�x� and Kn�x�, are the modified Bessel functions of the first
and second kind, respectively. ��r� is plotted in Fig. 8 for a
Si nanowire with radius R=3.75 nm ��in=11.7, �out=1, or
50�. It is positive inside the nanowire when �in��out because
the image charges repelled by an inner electron are negative,
while it is negative outside the nanowire because an outer
electron will polarize the nanowire and attract positive
charges on its side. ��r� diverges when r→R. As shown
later, this �spurious� divergence does not have much impact
on the energy of the low-lying quasiparticles that have neg-
ligible amplitudes near the surface. The effects of the image
charge potential will be twofold: �i� it will open the intrinsic
band gap; �ii� it may bind a series of image surface states
outside the nanowire. A proper account of the latter effect
would, however, require a more elaborate GW calculation.89

In the opposite case �out��in, ��r� is negative inside the
wire and positive outside, digging a well on the inner side of
the surface. It closes the band gap and pushes low-lying qua-
siparticles states outward. We will come back to this point
later.

B. Semianalytical effective mass model

We now introduce a semianalytical model for the self-
energy corrections ��c��R�= + ��c � �c� and ��v��R�
=−��v � �v�, where �v and �c are, respectively, the highest
valence band and lowest conduction band wave functions.
This semianalytical model, intended for practical applica-
tions, will be checked against TB calculations in the next
paragraph.

We can hopefully get a good estimate83,84 of ��c��R� and
��v��R� using an effective mass ansatz for �c and �v in Eqs.
�4� and �5�. Assuming hard wall boundary conditions at r
=R, the envelope functions read in the single band, isotropic
effective mass approximation:62

FIG. 8. The semiclassical self-energy potential ��r� in a Si
nanowire with radius R=3.75 nm ��in=11.7�, for �out=1 and �out

=50.
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��r� =
1

�2�KR
J0��0

r

R
� , �8�

where J0�x� is the zeroth-order Bessel function of the first
kind, with first zero �0=0.240�4�, and K=�0

1xJ0
2��0x�dx

=0.134�7�. Hence,

����R� = ����� =
1

KR2�
0

R

r��r�J0
2��0

r

R
�dr . �9�

The change of variables r=Rx and k=y /R takes out any
dependence on R from the integrals in Eqs. �6a� and �9�. This
yields

����R� =
1

�inR

�in − �out

�in + �out
F� �in

�out
� , �10�

where F�x� is a positive function whose expression follows
from the former equations. We have numerically calculated
F�x� in the range 10−2–102 using 128 Bessel functions and
integrating over k up to kmax=512/R, the estimated accuracy
on F being around 1 meV nm. We expect ����R� to depend
on �out only in the limit �in /�out→�, i.e., F�x���x when
x→�. For practical applications, we thus fit F�x� with the
following Padé approximant:

F�x� =
0.0949x3 + 17.395x2 + 175.739x + 200.674

x2 + 50.841x + 219.091
�eV nm� .

�11�

����R��� /R has a clear 1 /R behavior: self-energy correc-
tions to the quasiparticle band gap energy decrease slower
with R than quantum confinement, a conclusion already
drawn in nanocrystals and films.28,83 The prefactor � is plot-
ted as a function of �out in Fig. 9 for a Si nanowire ��in

=11.7�. The self-energy corrections decrease very rapidly
with increasing �out, being much larger in the limit �in
��out than in the limit �in��out. They are actually the most
important contribution to the opening of the band gap in
free-standing ��out=1� Si nanowires with radius R
1 nm.

For example, Eq. �10� yields ����R�=97 meV for R
=3.75 nm, while Eq. �2� and Table I yield �c�R�−�c���
=51 meV and �v�R�−�v���=25 meV.

� is also plotted as a function of �in in Fig. 9, for a
nanowire in vacuum. It slightly increases down to �in	5
then abruptly falls to zero. The self-energy corrections are
indeed driven by two competing mechanisms. On one hand,
the total image charge grows up with increasing �in, which
rises ����R�. On the other hand, the image charge distribu-
tion also spreads farther and farther along the nanowire,
which decreases ����R�. The latter mechanism oversteps the
former as soon as �in is large enough compared to �out.

Finally, we would like to recall that the one-particle band
gap energy is relevant for charge transport but not for optical
spectroscopy experiments. In the latter case, the enhance-
ment of the exciton binding energy with decreasing R can-
cels the self-energy corrections,47,83 the exciton being a neu-
tral excitation �no net charging of the nanowire�.

C. Tight-binding calculations

The results of the above effective mass model have been
checked against TB calculations, either using Eqs. �4� and
�5�, or consistently including the potential ±��r� in the
Hamiltonian before calculating electron �+� or hole �−�
states. The latter choice �“full” calculation� yields nonor-
thogonal electron and hole wave functions �because we use
different potentials for the two kinds of quasiparticles�,
which would indeed be the outcome46,76 of any more elabo-
rate quasiparticle theory such as GW. The actual overlap be-
tween the lowest conduction band and highest valence band
wave functions �at k=0� in �111�-oriented Si nanowires was
found lower than 10−3. The TB treatment of the divergence
of the image charge potential ��r� is detailed in Appendix B

We now discuss the cases �out=1 and �out=50 in
�111�-oriented Si nanowires.

1. Case �out=1

The conduction and valence band edge energies Ec�R� and
Ev�R� as well as the self-energy corrections ��c��R� and
��v��R� are plotted in Fig. 10 �TBB model�. The results from
the full calculation �including ±��r� in the Hamiltonian� are
compared with first-order perturbation theory �Eqs. �4� and
�5� using TB wave functions and energies� and with the
semianalytical model �Eqs. �2�, �10�, and �11�, and Table I�.
The three sets of curves are in very good agreement with
each other. ����R� can indeed be split in two contributions,
the first one being a rigid shift of value ��r=0� �the baseline
of ��r�, see Fig. 8�, the second one, ����R�, being the re-
mainder. The image charge potential ��r� is, however, quite
flat in the nanowire, only increasing near the surface where
the low-lying quasiparticle wave functions have negligible
amplitudes. ����R�, the unique wave-function-dependent
contribution, therefore hardly represents 	10% of the total
self-energy correction. Moreover, the full calculation only
leads to a moderate contraction of the low-lying quasiparticle
wave functions ���v r2 �v�1/2 decreases by up to 15% in the

FIG. 9. The prefactor � of the self-energy correction ����R�
=� /R �Eq. �10�� as a function of �out for �in=11.7, and as a function
of �in for �out=1. The vertical line is the dielectric constant of bulk
Si, �in=11.7.
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largest nanowires�. Equations �10� and �11� can thus be
safely used in the case �in��out.

The image charge potential shifts the conduction and va-
lence bands in a nearly rigid way, as shown in Fig. 11, where
the self-energy correction is plotted as a function of the bare
subband energy �nk= ��nk HTB �nk�, HTB being the TB
Hamiltonian without image charge potential. In particular,
the conduction and valence band effective masses are little
affected by ��r�. This was to be expected from the above
arguments. The self-energy correction nonetheless tends to
increase with the subband index n, as the wave functions
spread farther and farther from the nanowire axis. The scat-
tering is stronger on the valence than on the conduction band
side, the hole wave functions rapidly showing rich and com-
plex features.

2. Case �out=50

The value �out=50 has been chosen as a representative
case of the limit �out��in. The comparison between the TB
results and the semianalytical model is not as favorable as in
the former case, especially on the valence band side �see Fig.
12�. Indeed, the self-energy potential ��r�, plotted in Fig. 8,

is nearly zero inside the nanowire but rapidly decreases close
to the surface. We therefore expect ����R����r=0�, the
overall self-energy correction being however much smaller
than in the limit �in��out. The TB valence band wave func-
tion slightly differs from the single band effective mass ap-
proximation, which explains the increasing discrepancy be-
tween first-order TB and the semianalytical model for
��v��R�. As a matter of fact, such �10 meV discrepancies
also exist when �in��out, but are negligible on the scale of
Fig. 10�b�. The image charge potential digs a well close to
the surface of the nanowire that tends to attract the electrons
and holes. The latter are much more sensitive to ��r�:
��v r2 �v�1/2indeed increases by up to 30% in the largest
nanowires, while the full ��v��R� nearly doubles with respect
to first-order perturbation theory. This is somewhat compen-
sated by an increase of the kinetic energy of the hole, the
differences between the full and first-order Ev�R� being
smaller than the differences between the full and first-order
��v��R�. The self-energy correction overcompensates quan-
tum confinement �Ev�R��0� above R=6 nm. The image
charge potential does not, however, bind the holes in the
range R=1–10 nm, but the highest valence band wave func-
tion might be bound in other materials, orientations, or di-
ameter ranges. We stress that these results for �out��in,
though certainly showing the correct trends, are of limited
quantitative accuracy. Indeed, a quantitative description of
the self-energy effects close to the surface would require a
far more elaborate, complete GW calculation free of singu-
larities. This is, unfortunately, far beyond present computa-
tional capabilities above R	1 nm.

D. Comparison with ab initio calculations
and experiment

We now compare our total self-energy correction �g�R�
= ��c��R�− ��v��R� with the ab initio GW results of Zhao et

FIG. 10. The conduction �a� and valence �b� band edge energies
Ec�R� and Ev�R�, as well as the self-energy corrections ��c��R� and
��v��R� in �111�-oriented Si nanowires ��out=1, sp3d5s* TBB
model�. The results from a “full’ calculation �including ±��r� in the
Hamiltonian� and from first-order perturbation theory �pert� are
shown. The solid and dashed lines are the results from the fits of
Sec. II B �Eq. �2� and Table I�, and from the semianalytical model
�Eqs. �10� and �11��.

FIG. 11. The self-energy correction �nk= ± ��nk � �nk� as a
function of the bare quasiparticle energy �nk= ��nk HTB �nk� for a
�111�-oriented Si nanowire with radius R=3.75 nm ��out=1, full
calculation, TBB model�. The 48 lowest conduction subbands and
the 48 highest valence subbands at 57 k points in �0,� / � � are
represented. The vertical lines are the bulk conduction and valence
band edges, while the horizontal lines are the self-energy correc-
tions computed from Eqs. �10� and �11�.
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al.45 on �110�-oriented Si nanowires. The formation of the
Coulomb hole in bulk materials is also accounted for by the
ab initio GW self-energy correction, that is thus nonzero
��g���=0.5 eV� in that limit. It is however included in the
TB parameters �that yield the experimental bulk band gap�,
so that the TB self-energy correction �due to the image
charges� is zero in the bulk. We shall therefore compare the
respective ��g�R�=�g�R�−�g���. Zhao et al. give90

��g�5.2 Å�=1.12 eV and ��g�8.3 Å�=0.79 eV, while the
full TB calculation �on �110� NWs� yields ��g�5.3 Å�
=1.48 eV and ��g�8.5 Å�=0.91 eV. The agreement is satis-
factory, given the very small size of the nanowires. The ap-
plicability of our model, based on classical electrostatics
with the bulk dielectric constant, is questionable in the na-
nometer range. By the way, we stress that the interaction
between neighboring wires must be carefully cut off in su-
percell calculations. Figure 9 indeed suggests that the self-
energy corrections rapidly decrease as soon as the outer me-
dium can screen Coulomb interactions. Image charge effects
are in this respect much longer ranged than quantum confine-
ment.

We would finally like to comment again on the STS data74

of Fig. 7. In this experiment, the nanowires are laid down on

a �semi� metallic highly ordered pyrolitic graphite �HOPG�
substrate and the current is collected by a nearby metallic
STM tip. We therefore expect the STS setup to act as a rather
high �out medium, and thus small self-energy corrections.
This seems hardly compatible with Fig. 7, that suggests in-
stead �out=1–2 in the smallest nanowires. As a matter of
fact, the difference between the STS and TB data decreases
much faster than 1/R. Of course, a STS setup is a highly
inhomogeneous environment that may not be reproduced so
easily with a single “effective” dielectric constant. We would
have expected however the self-energy corrections to de-
crease slower than 1/R as screening becomes less efficient
with increasing tip-substrate distance. There are, though, un-
certainties on the experimental diameters and band gap en-
ergies, as well as on the physics of the tip-nanowire interac-
tion. In particular, the image charge potential might dig a
well under the STM tip �or under a metallic ring surrounding
the nanowire, for example�, that could trap a few electrons or
holes, increasing confinement energy.

IV. CONCLUSION

We have computed the subband structure and quasiparti-
cle band gap energy of several group IV and III-V �001�-,
�110�, and �111�-oriented nanowires using various sp3 and
sp3d5s* tight-binding models. These models are in very good
agreement one with each other, showing the robustness of
our results. The results obtained for Si nanowires were also
successfully checked against LDA calculations. We have
provided analytical fits to the conduction and valence band
edge energies for practical use. We have also shown that the
self-energy corrections, which arise from the dielectric mis-
match between the nanowires and their environment, are
usually far from negligible when �in��out and decrease like
1/R, slower than the quantum confinement �R being the ra-
dius of the nanowire�. Many important features of the trans-
port through nanowires �such as current onsets� depend on
both these quantum confinement and self-energy effects.
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APPENDIX A: APPLICATION OF THE JACOBI-
DAVIDSON ALGORITHM TO TIGHT-BINDING

PROBLEMS

The eigenstates of TB Hamiltonian HTB were computed
using a Jacobi-Davidson algorithm �JDA� with harmonic
Ritz values as described in Refs. 59 and 60. This algorithm
proved to be much more efficient than the folded spectrum

FIG. 12. The conduction �a� and valence �b� band edge energies
Ec�R� and Ev�R�, as well as the self-energy corrections ��c��R� and
��v��R� �insets� in �111�-oriented Si nanowires ��out=50, sp3d5s*

TBB model�. The results from a “full’ calculation �including ±��r�
in the Hamiltonian� and from first-order perturbation theory �pert�
are shown. The solid and dashed lines are the results from the fits of
Sec. II B �Eq. �2� and Table I�, and from the semianalytical model
�Eqs. �10� and �11��.
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method91 �FSM� used in previous studies,51–53 because pre-
conditioning of the JDA is much easier than preconditioning
of the FSM �see below� for TB problems. Time-reversal
and/or spatial symmetries are used to speed up the search for
the eigenstates. Indeed, symmetry operations are applied
once an eigenvalue has converged to find all degenerate
eigenvectors.

Each Jacobi-Davidson iteration involves an approximate
solution of a linear system of the form59

�I − ������HTB − �I��I − �����u� = − r� , �A1�

where �� , ��� is the best possible approximation to an eigen-
pair of HTB and r�=HTB ��−� �� is the residual. This linear
system is solved with a few generalized minimal residual
�GMRES� iterations.92 The accuracy of the solution u� for a
given number of GMRES iterations can be improved with a
preconditioner,92 i.e., an approximate inverse of HTB−�I.
Here we used a so-called “bond orbital model54” as a pre-
conditioner. It is based on the idea that conduction band
wave functions are mostly antibonding combinations of
atomic orbitals while valence band wavefunctions are mostly
bonding combinations. This bond orbital model is built as
follows for sp3 TB models.

�1� For each atom, compute the sp3 hybrids pointing to-
ward the four nearest neighbors.

�2� For each pair of first nearest neighbors, compute the
bonding and antibonding combinations of the two sp3 hy-
brids aligned with the bond. Let B be the basis of these
bonding and antibonding combinations of sp3 hybrids, that
are centered on bonds rather than atoms.

�3� Give each bonding combination an energy E=E0−�,
and each antibonding combination an energy E=E0+�. The

resulting bond orbital model Hamiltonian H̃TB−�I is diago-
nal in B and thus easily invertible in this basis.

�4� Transform �H̃TB−�I�−1 back to the original sp3 basis,
which yields an effective first nearest neighbor model for the
preconditioner.

The sp3 hybrids are replaced by the s orbital for hydrogen
atoms. Typical values for E0 and � are E0=0 eV and �
	5 eV, irrespective of the material. In practice, we fix � in
the midgap range and compute the preconditioner once for
all.

The bond orbital model is built in the same way for the
sp3 orbitals of sp3d5s* TB models. The d and s* orbitals are

preconditioned “on-site,” just by setting ��H̃TB−�I�−1�ii

=1/ �Eds* −�� for these orbitals, where Eds* 	15 eV. This
preconditioner, though crude, precisely discriminates be-
tween the bonding and antibonding combinations of atomic
orbitals as needed for the computation of valence or conduc-
tion band states, allowing fast convergence of the JDA.

APPENDIX B: TIGHT-BINDING TREATMENT
OF THE DIVERGENCE OF �„r…

It is customary85 to handle the divergence of the semiclas-
sical image charge potential in atomistic calculations with a
shift R of the dielectric interface so that all atoms fall
within R+R. This, however, significantly affects the self-
energy profile far inside the structure. Here we adopt another
strategy: we first assume that the image charge potential at r
is created by a charge distribution �the electron plus the
short-range part of the Coulomb hole� with a finite �Gauss-
ian� extension along z and �. We thus now define ��r� as �r,
�, and z being the cylindrical coordinates�:

��r� =
1

4����z
� d�� dz Vs�r,�,z;r,0,0�e−�2/�2��

2�e−z2/�2�z
2�

�B1�

which amounts to multiplying the integrand in Eqs. �6� by
e−��n2

�e−�zk
2
. We use �z=R��=1 Å, a reasonnable estimate

for the Coulomb hole size.79 This effectively replaces the
divergence at r=R by a discontinuity, but leaves ��r� un-
changed a few �z from the interface. Second, we extrapolate
Eq. �6a� for r�R, which is straightforward once the diver-
gence has been removed. We do so because the TB basis sets
are not designed to tackle the image surface states that may
bind outside the nanowire, whose proper description would
anyway require a complete GW calculation.

The tight-binding results are almost insensitive to �z �in
the range 0.25–1 Å� when �in��out. The valence band self-
energy corrections are, however, much more sensitive to �z
in the limit �in��out, the hole wave functions slightly
spreading outwards as discussed in Sec. III C. A detailed
description of the image charge effects near the surface
would again require a complete GW calculation, far beyond
present computational capabilities.
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