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We study electronic transport through metallic multi-island Coulomb-blockade systems. Based on a dia-
grammatic real-time approach, we develop a computer algorithm that generates and calculates all transport
contributions up to second order in the tunnel-coupling strengths for arbitrary multi-island systems. This
comprises sequential and cotunneling, as well as terms corresponding to a renormalization of charging energies
and tunneling conductances. Multi-island cotunneling processes with energy transfer between different islands
are taken into account. To illustrate our approach we analyze the current through an island in Coulomb
blockade, that is electrostatically coupled to a second island through which a large current is flowing. In this
regime both cotunneling processes involving one island only as well as multi-island processes are important.
The latter can be understood as photon-assisted sequential tunneling in the blockaded island, where the photons
are provided by potential fluctuations due to sequential tunneling in the second island. We compare results of
our approach to a P�E� theory for photon-assisted tunneling in the weak coupling limit.

DOI: 10.1103/PhysRevB.73.165316 PACS number�s�: 73.23.Hk, 73.40.Gk, 72.70.�m, 85.35.Gv

I. INTRODUCTION

Charging effects strongly influence the tunneling of elec-
trons through small metallic, normal-state islands, leading to
the well-known Coulomb blockade of transport at low
temperatures.1–3 Early theoretical and experimental studies
explored Coulomb-blockade effects in a single gated
island—a so-called single electron transistor �SET�—in great
detail.4

Soon afterwards a number of theoretical5–8 and experi-
mental works also considered multi-island systems, where
several islands are coupled capacitatively or by tunneling
junctions �see Fig. 1�. One approach9–12 is concerned with
using one part of the multi-island system as measurement
device for the residue. Serial arrays of islands13–21 have been
put forward for metrological purposes: for primary
thermometry16 and, operated as electron pumps, as a stan-
dard for both current and capacitance.17–20 For each cycle of
periodically changing the gate voltages one electron is trans-
fered through the system. The main operation of these de-
vices is described by first-order perturbation theory in the
junction conductances, known as orthodox theory for single-
electron tunneling.22 Contributions from second- or higher-
order processes, so-called cotunneling,23,24 are limiting the
accuracy of the latter devices.17,25 In other experiments
higher-order tunneling contributions are of fundamental
physical interest. For instance, logarithmical temperature de-
pendence of the conductance associated with multichannel
Kondo correlations, which govern the low-temperature trans-
port properties of a single-electron transistor,26–28 could be
explained by a second-order perturbation expansion at the
resonance peak.29 For large transparency of the tunnel junc-
tions, first- and second-order perturbation theory is no longer
applicable, and alternative approaches suitable to describe
transport in the strong tunneling regime such as semiclassical
approaches,30,31 real-time renormalization-group tech-
niques,8,32 path-integral Monte Carlo simulations,33 or non-

perturbative resummations within a real-time diagrammatic
formulation34 were put forward.

In this paper we describe a real-time diagrammatic ap-
proach to transport through multi-island systems that allows
for a systematic perturbation expansion in the tunnel-

FIG. 1. An example of a multi-island geometry. The system
consists of M =5 islands with I=4 island-island and J=4 island-lead
junctions. Any junction, e.g., i=1, in between a pair �m1=1, m1�
=2� of islands is characterized by a transparency �0

1 �see Eq. �11�
below for definition� and a capacitance Cm=1,m�=2. Only some stray
capacitances are shown in the sketch. The state of the system is
given by the excess charges on the islands: ���= �−3,1 ,2 ,−3 ,2�.
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coupling strengths of the tunnel contacts. In particular, we
develop a computer algorithm that generates and calculates
all possible contributions to second-order transport for arbi-
trary multi-island systems. The theory is a generalization of a
diagrammatic real-time approach that was invented for
single-island devices.34 In contrast to the latter, where a fully
analytical treatment of first- plus second-order transport is
feasible,29 the large number of second-order diagrams for
multi-island systems motivates the development and use of a
computer algorithm. The same idea has been used in ad-
vanced computer codes for SET networks based on orthodox
theory.36,37

Second-order transport includes cotunneling processes in
the Coulomb-blockade regime, where sequential tunneling is
suppressed. In the standard description of these cotunneling
processes,23,24 energy denominators appear that diverge
when approaching the onset of sequential tunneling. These
divergencies can be removed by replacing the energy de-
nominator with some constant25 or by partial resummation of
higher-order contributions.35 Besides cotunneling processes,
there are other second-order contributions to transport that
become relevant in the regime in which sequential tunneling
is not suppressed. They account for the fact that quantum
fluctuations due to tunneling give rise to a renormalization of
both the charging energies and the tunnel coupling strengths.
This results in transport contributions that have the func-
tional form of sequential tunneling but with renormalized
system parameters. An example is the tell-tale characteristics
of a multi-channel Kondo-effect at low temperature in a me-
tallic single-electron transistor.27–29 Similar renormalization
effects are also found in a diagrammatic real-time description
of second-order transport through single-level quantum
dots.38 The virtue of the real-time diagrammatic approach
employed in this paper lies in the fact that the above-
mentioned divergencies of energy denominators are auto-
matically regularized, and that the renormalization effects are
taken into account. It, therefore, allows for a complete and
consistent evaluation of second-order transport.

Second-order transport in multi-island systems is qualita-
tively different from that in single-island devices. In multi-
island systems, cotunneling processes in which two different
islands change their charge occupation may occur. The en-
ergy conservation of the total process may be fulfilled by
exciting one island on cost of the other one. This introduces
a coupling between the two islands that may be of impor-
tance in devices in which one island is used as a measure-
ment tool for the charge state of the other one, as we will
discuss in more detail below. Our theory includes cotunnel-
ing involving either one or more than one island.

The outline of the paper is as follows. First, we present
the extension of the real-time diagrammatic theory34 to
multi-island systems. Then, in Sec. III, we present the algo-
rithmic approach to generate and evaluate all second-order
contributions to transport. This includes a discussion of the
applicability range of our perturbation expansion. Further de-
tails concerning calculation of diagrams and convergence
properties of the perturbative expansion are included in Ap-
pendixes A and B. Afterwards, we illustrate our theory by
applying it to one of the simplest multi-island setup, namely
that of two single-electron transistors put in parallel, Sec. IV.

For this example, we discuss the physics of energy exchange
between the two transistors, interpret it within a simplified
picture using a P�E�-description of photon-assisted tunnel-
ing, and demonstrate the virtue and the limits of this picture
by comparing it with our full second-order calculation.

II. REAL-TIME DIAGRAMMATICS FOR METALLIC
MULTI-ISLAND SYSTEMS

A. Metallic multi-island geometries

The system we consider in this paper consists of a number
M of small metallic islands as well as L leads, which are
connected to some islands by J junctions �see Fig. 1�. Addi-
tionally there are I junctions between the metallic islands.
Accordingly with any junction i=1,2 , . . . , I we will associate
the pair of islands �mi ,mi�� it is connecting, where the order
is arbitrary but fixed, thus defining a “direction” for the junc-
tion. Likewise for any of the junction between leads and
islands,39 indexed by j= I+1, I+2, . . . , I+J, we define a pair
�lj ,mj�. Furthermore we have to take into account the capaci-
tances Clm between islands and leads, Cmm� in between two
islands, as well as capacitances Cgm to additional external
gates g.

For typical samples of metallic islands, the level spectrum
is dense and the total charge on any island is large. Therefore
not only the leads but also the islands can be considered as
large equilibrium reservoirs, described by Fermi distribution
functions. These equilibrium distribution functions are not
influenced by tunneling processes comprising only a very
small fraction of the overall number of electrons. Electron-
hole excitations left behind after tunneling are quickly
equilibrated—on a short time scale compared to typical
times between tunneling events.

The state of our system is then described by the excess
charges �= �n1 , . . . ,nM� �total charge minus background
charge� sitting on the M islands.

The system can be modeled by the Hamiltonian

H = HL + HM + V + HT = H0 + HT. �1�

The noninteracting electrons in the leads and islands are
described by

HL = 	
l=1

L

	
��

�̃��
l al��

† al��, HM = 	
m=1

M

	
��

���
m cm��

† cm��, �2�

where wave vectors � and � numerate electron states within
a given transverse channel �. �Note that the transverse chan-
nel index � includes the spin of the electrons. For ease of
notation we omit subindices �l� or �m� throughout.�

Coulomb interaction of electrons is captured by V=V��̂�,
the electrostatic energy of a given charge state ���
= �n1 ,n2 , . . . ,nM�. It depends in a complex way on gate and
bias voltages and the resulting charges on the capacitances
Clm, Cmm�, and Cgm, respectively. A straightforward scheme
to calculate this dependence, governed by classical electro-
statics, is given in Ref. 40. There a capacitance matrix is
introduced to first calculate voltages on the islands and sub-
sequently the electrostatic energy. For an example of the gate
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and bias voltage dependence of the electrostatic energy, see
the discussion of a two-island setup in Sec. IV A.

Finally charge transfer through the junctions is depicted
by the tunneling Hamiltonian

HT = 	
j

	
���

�T��
j� alj��

† cmj��e−i	̂mj + c.c.�

+ 	
i

	
����

�T���
i� cmi��

† cmi����e−i�	̂mi�
−	̂mi

� + c.c.� , �3�

where T��
j� and T���

i� are tunneling matrix elements for junc-

tions j and i, respectively, and exp�±i	̂mj/i
� is a charge shift

operator, acting on the charge state ��� described above.41

Involving a phase operator 	̂m as a canonical conjugate to

the charge operator N̂m of the island m, i.e., �	̂m , N̂m�= i,

these operators exp�±i	̂m� change the excess particle number
on the island m as nm→nm±1 for each tunneling process
accordingly.

B. Diagrammatic technique

In this section we generalize the diagrammatic technique
developed in Ref. 34 for a single SET to study multi-island
systems as described by Eqs. �1�–�3� above. A short over-
view over the derivation is given, while the reader is referred
to Refs. 29, 34, and 42 for more details. In Sec. II B 5 we
explicitly discuss differences between single and multi-island
cases.

1. The current

One of the central objects of our theoretical description is
the probability P�, to find the multi-island system in a certain
state ���= �n1 ,n2 , . . . ,nM� in charge space. Experimentally ac-
cessible quantities such as the average charge of a certain
island follow directly from this probability. The other quan-
tity, we will mainly be focused on, is the current flowing
through junction j into reservoir lj, given by the change in
the number of particles,

Il�t� = e
d

dt

N̂lj

�t�� = e	
���

�T��
j� 
�alj��

† cmj��e−i	̂mj��t� + c.c.�� .

�4�

Note that the current operator has a similar structure as the
tunneling Hamiltonian HT.

2. Time evolution of operators

The nonequilibrium time evolution of the charge degrees
of freedom is described by the expectation value of the �di-
agonal� density matrix

P��t� = 
����
����t��

= Tr�
0T+ei�t0
t dt�HT�t��I���
��T−e−i�t0

t dt�HT�t��I�

= Tr�
0	
s=0

�

�− i�s

K

dt1�
 K

t1��t2��. . .�ts�

dt2� ¯ 

K

dts�


 TK�HT�t1��IHT�t2��I ¯ HT�ts��I���
���� . �5�

Here we replace time-ordering T+ and anti-time-ordering op-
erators T− by introducing integration �Kdt� along the
Keldysh contour with “times” t� running forward from t0 to t
and backward from t to t0 �see Fig. 2�. The ordering of times
t1�� t2�� . . . � ts� is with respect to this Keldysh contour with
the Keldysh time-ordering operator TK arranging the opera-
tors in the tunneling Hamiltonian in proper order. HT�t�I de-
notes the tunneling part of the Hamiltonian �Eq. �1�� in in-
teraction representation with respect to H0.

Due to the separation of fermionic and charge degrees of
freedom the Hamiltonian H0, including interaction through
the charging energy V���, is bilinear only in electron opera-
tors. Thus we can apply Wick’s theorem and perform the
trace over these degrees of freedom by contracting tunneling
vertices in pairs.

In fact, there are two independent contraction lines for
each vertex, as each of the two electron operators alj��

† /alj��

and cmj��
† /cmj�� constituting a tunneling vertex is connected

to another matching operator alj�� /alj��
† and cmj�� /cmj��

† , not
necessarily both of these being part of the same tunneling
vertex. However in the limit of large transverse channel
number “simple loop” configurations dominate and we can
represent contractions by one �directed43� double tunneling
line between pairs of vertices. Readers may refer to Figs. 2
and 10 of Ref. 34 for an illustration.

A realization of a resulting diagram is shown in Fig. 2,
where certain physical processes can be identified with parts
of the diagram. The left-most part shows explicitly how the
charge state is changed by a tunneling process across junc-
tion j. Processes with several tunneling lines at a time t cor-
respond to higher-order processes such as cotunneling.

3. Generalized master equation

From these diagrams for the time evolution of the density
matrix a formally exact master equation can be derived,

FIG. 2. Diagram describing the time evolution of the islands’
density matrix with sequential tunneling, cotunneling �two tunnel-
ing lines at a time�, and higher order processes �from left to right�.
The diagram is reducible, i.e., it can be cut at a certain time without
cutting a tunneling contraction line. Summing irreducible
parts �shaded� yields the self-energy. In the left-most part a tunnel-
ing process through junction i in between a pair of islands �mi ,mi��
changes the state of the island on the upper branch
from ��0�= �n1 ,n2 , . . . ,nmi

, . . . ,nmi�
, . . . ,nM� to ��1�= �n1 ,n2 , . . . ,nmi

−1, . . . ,nmi�
+1, . . . ,nM�.
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d

dt
P��t� = 	

����



t0

t

dt��P���t�����,��t�,t� − P��t����,���t�,t�� ,

�6�

where the central object needed as input is the full quantum
mechanical transition rate ���,��t� , t� from a state �� at time
t� to state � at time t. This rate is the sum over all irreducible
�see Fig. 2� diagrams and corresponds to the self-energy of a
Dyson equation for the full propagator of the system. After
Laplace transforming, the stationary distribution P� of
charge states is found by

0 = 	
��

P�����,�, with ���,� = i

−�

0

dt����,��t�,0� . �7�

In a similar manner as for the density matrix, a diagram-
matic representation for the expectation value of the current
is found. The current operator becomes manifest in any such
diagram as an additional external vertex �cf. Eqs. �3� and �4��
at the �right-most� time t. As above partial self-energies can
be defined

���,��t�,t� = 	
j

����,�
j+ �t�,t� + ���,�

j− �t�,t�� . �8�

Here ���,�
j+ includes all those diagrams contributing to ���,�

with the right-most vertex on the upper propagator and right-
most contraction line describing tunneling out of lead lj
through junction j as well as diagrams with right-most vertex
on the lower propagator and the right-most process describ-
ing tunneling into lead lj; correspondingly summing the re-
maining self-energy diagrams with right-most tunneling
through junction j defines ���,�

j− .
The stationary current then follows as

Ilj
= − ie	

�,��

P�����,�
j+ = ie	

�,��

P�����,�
j− . �9�

4. Diagrammatic rules

Identification of terms of the sums in Eq. �5� with dia-
grams leads to a set of rules �for details see Ref. 34� for
calculating the value of a certain realization of a diagram.
Here we will give these rules in the form most convenient for
calculating the Laplace transform of the self-energy, which
allows calculation of stationary probabilities and current via
Eqs. �7� and �9�:

�1� Draw all topologically different diagrams with tunnel-
ing lines and choose junction and direction for each line.
Assign energies V��� to propagators, �r to tunneling lines.

�2� Each segment from ts� t� ts+1 gives a factor ��Es

+ i��−1, where �Es is difference of left-going minus right-
going energies �including the energies �r of tunneling lines�.

�3� Each tunneling line gives a rate function � j/i±��r�—as
defined below—for the direction of the tunneling line across
junction j / i going backward/forward with respect to the
Keldysh contour.

�4� There is a prefactor �−1� for each internal vertex on
the backward propagator.

�5� Integrate over the energies �r of tunneling lines.
The golden-rule rate � j± ��i± correspondingly� stems from

implicit integration over the energy of one of the double
tunneling lines

� j±��� =
 dE�0
j f lj

±�E + ��fmj

� �E� = ± �0
j

� − �lj

e±���−�lj
� − 1

,

�10�

where f l/m
+ is the Fermi distribution function of lead l or

island m and fm
− =1− fm

+ . Hereby assuming constant tunneling
matrix elements Tj�=T��

j� as well as a constant temperature
kBT=1/� across the sample and neglecting energy depen-
dencies of the density of states Nl/m��E�, each junction j is
characterized by a single parameter,

�0
j = 	

�

�Tj��2Nmj��0�Nlj��0� =
h

4�2e2

1

Rj
=

RK

4�2Rj
, �11�

related to the tunneling resistance Rj of the junction.

5. Diagrams for single and multiple islands

The formalism of real-time diagrammatics as presented in
the previous section is applicable to the study of arbitrary
multi-island system, as defined by the Hamiltonian Eqs.
�1�–�3�. Hitherto derivation and application was mainly con-
cerned with the case of a single island �see, e.g., Ref. 42 and
references therein� and one study of two islands in series.8

Therefore this section is devoted to a brief summation of
differences between the single- and multi-island cases.

Virtually the entire formalism of real-time diagrammatics
translates from the single- to multi-island case by switching
over from one variable of interest, the charge on the island n,
to the M-tuple �=n1 ,n2 , . . . ,nM of charges on all the M is-
lands. This extension of state space has nontrivial effects
only for the practical application of the method, but not for
general scheme and derivation. Complications for the multi-
island as compared to the single-island case arise due to the
nontrivial electrostatic charging energies, numerous tunnel-
ing processes mediating between any two charge states, and
most importantly the exponentially increasing number of
charge states as the number of islands grows.

III. ALGORITHMIC DIAGRAMMATICS

As for a general multi-island system a closed analytic
solution seems unattainable, we set up and use in the follow-
ing an automatized, computer-based numerical approach.
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A. Algorithmic scheme

From our discussion above we learned about the essential
steps in our problem: Solving the electrostatics delivers the
energy terms, needed for calculating rates of certain pro-
cesses, which allow us to find stationary solutions of the rate
equations. In this section we present the automatization of
this process, where the �by far� most intricate part is the
actual calculation of rates. This includes the automatic gen-
eration and calculation of real-time diagrams.

The first step in our scheme is the restriction to a finite
charge state space. This subspace will include all states
within a few kBT around the classical ground state and addi-
tionally all states reachable by simple tunneling events from
these classically occupied states. Note that this choice can be
self-consistently checked from the resulting occupation prob-
abilities. For all these states the electrostatic energies V���,
which also depend on gate and bias voltages, are calculated
according to the method presented in Ref. 40.

B. Transition rates

We gain the rates entering Eqs. �7� and �9� up to second
order in tunneling by generating and calculating all self-
energies diagrams with one or two contraction lines. The
scheme of generating all diagrams of a certain order is pre-
sented in the following for second-order diagrams, first order
being trivial, whereas higher-order diagrams, although easily
generated, are considerably harder to calculate and will not
be considered below.

Generating diagrams: Starting with a certain state �� of
our chosen subspace of charge states for both upper and
lower branches of the Keldysh contour �see Ref. 34 for a
discussion of the diagonality of ��, the following steps were
implemented.

A first �i.e., left-most� vertex v1 is placed on either the
upper or lower branch, a junction j1 / i1 as well as a direction
for the tunneling event is chosen. This determines the charge
state44 on both branches in between vertices v1 and v2 and
consequently the energy terms determining the “free” propa-
gation, governed by H0 and the tunneling line energy �1. For
the second vertex v2 the same choices can be independently
made, as it is not contracted with the first vertex. �Such a
connection would result in a diagram, reducible to two first-
order blocks, thus not being part of the irreducible second-
order self-energy.� The third vertex, however, is connected to
either one of the vertices v1 or v2, inheriting whereby junc-
tion and direction of the tunneling event, whereas position on
upper or lower branch is free to choose. This is also the only
freedom of choice left for the last vertex, which is combined
with the remaining tunneling line. Just as at the first vertex,
charge states have to be changed according to the tunneling
processes at the vertices all along the propagator up to the
right-most final state �, which is the same on upper and
lower propagators.

Estimating the number of diagrams allows some gauge of
the complexity of the problem. For each charge state �for low
temperatures three per island, resulting in a total of 3M� there
are 24
 �2�J+ I��2
2 second-order diagrams. Here the first

factor stands for the upper/lower branch for each vertex, the
second results from vertices v1 and v2 for choosing junction
and direction of tunneling, while the last factor stems from
combining vertices into pairs.

For each of these diagrams an analytical integral expres-
sion is immediately given by the diagrammatic rules, dis-
cussed above. Evaluation of these expressions to a numerical
value is discussed in Appendix A.

C. Stationary state solutions

The value of any first- or second- order diagram is then
added to the appropriate matrix element of the self-energy
matrix �

��,�
�1/2�, where indices �� ,� are initial and final charge

state of the diagram.
All diagrams required for calculating currents are already

created within this scheme by identifying the right-most tun-
neling vertex with an external current operator. Accordingly
adding �with the proper sign� the values of diagrams, where
the last vertex involves junction j, yields �

��,�
j±�1/2�.

�
��,�
�1/2� constitute the first terms of an expansion of the self-

energy in powers of �0,

���,� = 	
k=1

�

���,�
�k� . �12�

Expanding the probabilities P�=	k=0
� P�

�k� correspondingly,
we find from the stationary rate equation in first and second
order,

0 = 	
��

P��
�0�

���,�
�1� and 0 = 	

��

P��
�0�

���,�
�2� + 	

��

P��
�1�

���,�
�1� ,

�13�

which finally gives solutions for P
��
�0� and P

��
�1�. For first- and

second-order current,45 we likewise find

Ij
�1� = − ie	

�,��

P��
�0�

���,�
j+�1�, �14�

Ij
�2� = − ie	

�,��

�P��
�0�

���,�
j+�2� + P��

�1�
���,�

j+�1�� . �15�

Thus we derived a scheme to calculate experimental acces-
sible quantities for an arbitrary multi-island geometry,
namely the average current in any lead.

D. Limits of the approach

There are both practical and fundamental limits of the
approach presented above. As the number of charge states,
and consequently the number of diagrams to calculate grows
rapidly with the number of islands, a straightforward simu-
lation of some interesting existing experimental appli-
cations17,46 using long arrays of islands �7–100 islands� is
practically infeasible. Similarly, including higher than
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second-order contributions would involve more complex in-
tegral expressions that complicates the numerics consider-
ably.

The fundamental limit deals with the question of conver-
gence of the perturbative expansion. As we derive in Appen-
dix B, the inequality max�kBT , ��−� j��� ������ has to be
fulfilled for tunneling across any junction j. Here ��−� j� is
the distance to resonance for a tunneling process across junc-
tion j with chemical potential difference � j and ���� is the
self-energy, characterizing the spectral density of the level
into which tunneling occurs at energy �. This incorporates
renormalization of level position as well as a finite lifetime
width, as reflected in real and imaginary part of the self-
energy. We elaborate on this statement in Appendix B, where
we analyze the example of a single SET by comparison to a
nonperturbative approach.

IV. AN EXAMPLE: TWO PARALLEL
SINGLE-ELECTRON TRANSISTORS

To give an example we will now apply our method to
calculate transport through two single-electron transistors
�SETs�, where the two islands are capacitively coupled to
each other, see Fig. 3. This system was studied experimen-
tally, e.g., in Refs. 10 and 47. The capacitive interaction im-
plies that a change of the charge state of one SET will
change the effective gate voltage of the other, which will
lead among other things to a broadening of the charge state
transitions as described in Ref. 10. This is an effect visible
already in first order of the tunneling conductances. The
second-order contributions include cotunneling in each SET
separately, but also second-order processes in which both
SETs are involved. For the latter, the energy gained in a
tunneling process in one SET can be used to excite the other
SET to a charge state not accessible for first-order transi-
tions. This results effectively in an energy exchange between
the two islands, a feature that is qualitatively new as

compared to the single-island case or first-order transport in
multi-island systems. We concentrate our analysis on a re-
gime, where it is this energy exchange, that enables transport
in an otherwise blockaded region. One may try to simulate
this energy transfer in a simplified picture of photon-assisted
first-order tunneling in the second SET coupled to an energy-
providing photon bath that represents electrostatic fluctua-
tions by tunneling processes in the first SET. This simplified
approach and the effect of the energy-transfer processes on
the transport characteristics will be described in more detail
below. The advantage of this approach is its feasibility and
compact analytical results. The disadvantage is that it relies
on several approximations, and its applicability range is un-
clear. This question can be answered, though, by our full-
fledged second-order transport calculation. By comparing the
results of both approaches we are able to define the range of
parameters beyond which the simplified picture loses its re-
liability.

A. Setup

The system consists of two metallic islands �called noise
generator and detector as explained below�, each connected
to a separate source and drain lead, see Fig. 3. Each junction
is generally described by a capacitance and a tunnel resis-
tance, as discussed in Sec. II. For simplicity we here assume
that for each island the connection to source and drain is
symmetric, and also that the source-drain voltage is applied
symmetrically. Note, that we change our notation compared
to the general setup in Sec. II A in order to make the asso-
ciation with the noise generating and detecting part more
transparent. We denote the generator/detector junction ca-
pacitances CG /CD, the resistances RG /RD, and the applied
source-drain voltages VG

sd /VD
sd. Furthermore the working

point of the generator/detector SET is controlled by gate
voltages �VG

g /VD
g � applied across the gate capacitances

�CG
g /CD

g �. The two islands are coupled through the coupling
capacitance Cc.

Following Refs. 40 and 10 we find the electrostatic energy
of our system. This is most straightforwardly described in-
troducing the sum capacitances of the two islands

CG/D
� = 2CG/D + CG/D

g + Cc,

the rescaled charging energies

EG =
e2

2�CG
� − Cc

2/CD
��

, ED =
e2

2�CD
� − Cc

2/CG
��

,

the interaction energy

Eint =
e2Cc

CG
�CD

� − Cc
2 ,

and also the dimensionless gate charges nx
G/D=CG/D

g VG/D
g /e.

Then the electrostatic part of the Hamiltonian reads

FIG. 3. Two capacitively coupled SETs. The upper one is the
noise generator, and the lower the quantum noise detector.
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V�nG,nD� = EG�nG − nx
G�2 + ED�nD − nx

D�2

+ Eint�nG − nx
G��nD − nx

D� . �16�

B. The noise detector SET

To illustrate the effect of photon-assisted tunneling clearly
we consider our setup biased so that sequential tunneling is
blocked in one of the SETs �the noise detector�. This is done
by gating nx

D�
1
2 such that the Coulomb energy difference

�=ED�1−2nx
D� between the ground state nD=0 and first ex-

cited state nD=1 is larger than temperature and applied bias
�� �eVD

sd /2 ,kBT�. Neglecting the coupling to the other SET,
the direct current through the detector is given by cotunnel-
ing

Icot
D = e

eVD
sd

h

1

24�2�RK

RD
�2 �eVD

sd�2 + �2�kBT�2

�2 , �17�

where we disregarded cotunneling through the state nD=−1.
We will find that the current induced by photon-assisted tun-
neling can be made orders of magnitude larger than Icot

D .

C. The noise generator SET

The other SET �the noise generator� is biased such that a
substantial current is produced by sequential tunneling, but
for simplicity we keep the bias low enough so that only two
charge states are involved. To be specific nx

G� 1
2 , and

eVG
sd /2�2EG. The current through the noise generator SET

is

Iseq
G = e

eVG
sd

4h

RK

RG
�1 − e−eVG

sd/2kBT�−1. �18�

Each electron tunneling in the forward direction will gain the
energy eVG

sd /2 from the applied bias. Generally the electron
will dissipate its excess energy on the island or in the reser-
voirs, but in our setup there is also the possibility to give the
energy to a tunnel event in the detector SET.

D. The effect of interaction

The low-frequency effect of the interaction between the
SETs can be described as an effective gate charge determined
by the charge state of the other SET

nx,eff
G �nD� = nx

G −
Cc

CD
� �nD − nx

D� ,

and

nx,eff
D �nG� = nx

D −
Cc

CG
� �nG − nx

G� ,

as discussed in, e.g., Refs. 10 and 12. We want to minimize
this effect, in order to clearly show photon-assisted tunnel-
ing. That means choosing the detector bias low enough so

that sequential tunneling is exponentially suppressed for both
effective gate charges nx,eff

D �0� and nx,eff
D �1�.

We will now estimate analytically the detector current due
to photon-assisted sequential tunneling, driven by photons
emitted from the generator with an energy higher than the
Coulomb gap of the detector. We can then compare these
analytical estimates with the numerical results from our al-
gorithmic diagrammatics. We use P�E� theory,48 considering
the noise generator SET as the environment of the noise
detector SET.

The function

P��� =
1

h



−�

�

dt exp�J�t� + i
�

�
t� , �19�

expresses the probability of exchanging the energy � with a
certain environment in a single-tunnel event. Here the func-
tion

J�t� = 
�	̂�t� − 	̂�0��	̂�0�� =
Eint

2

�2 

−�

�

d�
SN

G���
�2 �e−i�t − 1� ,

�20�

is given by the correlator of the phase fluctuations on the
detector island induced by the electron number fluctuations
on the generator island. To simplify the analysis we approxi-
mate the fluctuations to be Gaussian. Then their asymmetric
noise spectral density is given by

SN
G��� = 


−�

�

dte−i�t
�N̂G�t��N̂G�0�� . �21�

We want to calculate the photon-assisted rate for an electron
to tunnel onto the detector island

�01
D± =

1

h

RK

RD



−�

� 

−�

�

d�d��f����1 − f��� − �±��P�� − ���

=
1

h

RK

RD



−�

�

d�
�P�− � − �±�

1 − e−�/kBT , �22�

where �±=�±eVD
sd /2, and �± is the effective energy gap for

an electron tunneling onto the island from the right/left lead.
Thus we need P��� for ��−�± indicating the probability to
absorb an energy larger than �± from the environment �see
Fig. 4�. In this regime, noting that �±�Eint and using the
short time expansion eJ�t�=1+J�t� we can approximate49

P��� =
Eint

2

h

SN
G���
�2 , � � − Eint. �23�

In the relevant frequency regime and at zero temperature the
generator SET noise spectrum is50–52
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SN
G��� =

1

�

����
4��0�2 + �2 , �24�

where

���� =
1

2�

RK

RG
� eVG

sd

2
+ ��, ��� �

eVG
sd

2
. �25�

Furthermore SN
G���=0 for ��−eVG

sd /2, which is related to
the fact that one cannot extract more energy from a single-
tunnel event than what is given by the bias voltage.

We thus find the photon-assisted rates for electrons to
tunnel onto the detector island across the right/left junction
�cf. Fig. 4�,

�01
D± =

1

2�h

RK

RD



0

eVG
sd/2−�±

d�
Eint

2

�� + �±�2

���− � − �±�
4��0�2 + �� + �±�2 .

�26�

Here the lower limit of the integral comes from putting tem-
perature to zero in Eq. �22� and the upper limit from the fact
that P���=0 for ��−eVG

sd /2. Making the generator bias sub-
stantially larger than the detector gap �eVG

sd�2�±�, we find
the approximate photon-assisted rates

�01
D± =

eVG
sd

48�2h

RK

RD

RK

RG

Eint
2

�±
2 f�2��0�/�±� , �27�

where

f�x� =
3

x3�� − 2 arctan
1

x
+ x ln�1 + x2� − 2x� . �28�

We note that these rates are proportional to the bias voltage
of the noise generator. If the detector gap is not too small we
have ��0���± which implies x�1 and f�x� approaches the
limit f�0�=1. For simplicity we assume this limit from here
on. The relaxation rates of the detector are53

�10
D± =

RK

RD

�±

h
, �29�

and accordingly the probability to find the detector in its
excited state is

P1
D =

�01
D+ + �01

D−

�10
D+ + �10

D− =
RK

RG

eVG
sdEint

2

48�2��+ + �−�� 1

�+
2 +

1

�−
2�

�
RK

RG

eVG
sdEint

2

48�2�3 , �30�

and the photon-assisted tunneling �PAT� detector current �as-
suming eVD

sd��±�

Ipa
D = e�P1

D�10
D+ − P0

D�01
D+� � e

RK

RD

RK

RG

eVG
sdeVD

sdEint
2

32�2h�3 . �31�

Comparing this with the standard cotunneling current in the
detector, given in Eq. �17�,

Ipa
D

Icot
D =

3

4

RD

RG

eVG
sd

�
� Eint

eVD
sd�2

, �32�

we find that the photon-assisted detector current can be made
substantially larger than the usual cotunneling current by us-
ing high resistance tunnel junctions in the detector and a
weak detector bias.

E. Results of diagrammatic technique

With the diagrammatic technique developed above, we
have a method at our disposal for analyzing the complete
two-island system on an equal footing. We do not perform a
separation into detector and noisy environment as with the
P�E� theory. In particular, we can study the mutual influence
of the two SETs also for the strong coupling case.

In the following, we will nonetheless focus on the weak
coupling case; here we can clearly show the effects of PAT
and sensibly compare to the results of P�E� theory �Eq. �31��.
Low-frequency effects, as described by the effective gate
charges, and back action are all intrinsically included in the
calculation, but parameters are chosen to minimize these.

Figure 5 �solid lines� shows current in the detector SET
upon changing the bias on the generator SET for four differ-

FIG. 4. Sketch of functions relevant to calculation of the
photon-assisted tunneling rate �Eq. �22��. Without energy exchange
with the environment �P��� is � peaked, dotted line� the photon-
assisted rate is given by the rate function �− �broken line� at the
effective energy gap �±. Coupling to the noise generator SET
changes P��� �solid line� and the rate is given by the integration in
Eq. �26�. The inset shows the asymmetric charge noise of an SET as
calculated in Ref. 52.
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ent sets of sample parameters and gating. The detector is
gated close to degeneracy point, i.e., nx,eff

G �nD=0�=0.5, as the
detector is set preferentially unoccupied in the Coulomb
blockade region. The detector is to remain in this blockade
regime, independent of the generator’s charge state. To
achieve considerable, experimentally detectable, current
through the detector, we must not be “too deep” in Coulomb
blockade. Hence, we move from a region of well-defined
blockade in curve A of Fig. 5 to a “mixed” regime in curve D
�Eint��±� by changing gating �and coupling�. The exact pa-
rameters are given in the captions of Fig. 5.

For small driving of the generator, we find the standard
cotunneling current in the detector SET. The cotunneling cur-
rent shown in Fig. 5 �dotted horizontal lines for curves A–C�
is calculated for a single SET with effective gating nx,eff

D �nG�,
weighted with the probabilities for the two generator states
P�nG=0�� 1

2 � P�nG=1�.
For strong driving the condition for PAT above is fulfilled

�i.e., eVG
sd�2�±� and we find the detector current increasing

proportional to the driving voltage of the generator �cf. Eq.
�27��. For the curves A and B we find the slope as predicted
by P�E� theory �Eq. �31�, dashed lines in A–C�. For curves
C and D we do not meet all assumptions made in the deri-
vation of the PAT rates. Consequently PAT and low fre-
quency interaction effects intermingle in a complex manner
and the result deviates from Eq. �31�. For D the coupling
chosen is so strong that back-action effects are also relevant,
i.e., a meaningful definition of effective energy gaps and,
therefore, comparison to PAT and standard cotunneling re-
sults is not possible anymore.

As the photon-assisted rate was calculated assuming
strong generator driving only, the crossover between stan-
dard cotunneling and PAT is not properly described. The re-
sults of our full theory �solid lines in Fig. 5� show, however,
the expected behavior—an onset of PAT �i.e., the x intercept
of the dashed lines in Fig. 5 curves A and B�, where eVG

sd

��± and a corresponding crossover, when the PAT rate
reaches the standard cotunneling rate.

In conclusion our theory for the generator/detector setup
shows standard cotunneling for low generator bias and

photon-assisted tunneling for high generator bias, where the
crossover depends on the effective energy gap of the detec-
tor. For weak generator-detector coupling our results agree
perfectly with a P�E� calculation of photon-assisted sequen-
tial tunneling, treating the generator as an energy providing
environment of the detector. While the relative effect is
strong—PAT current is of the same order as the standard
cotunneling current—the overall currents are quite small.
Stronger coupling yields higher currents, but now current is
not given by photon-assisted sequential tunneling alone and
our simplified P�E� calculation is insufficient.

In the example of a detector-generator setup above we
choose parameters to a regime where we can isolate one
particular type of cotunneling process �involving energy ex-
change between islands� as dominant constituent of current.
Then we could compare to a P�E� calculation of photon-
assisted sequential tunneling, simple enough to achieve ana-
lytical and physical transparent results. To reach such simple
analytical results we made use of a number of assumptions
and approximations: Within the P�E� calculation we did not
consider standard cotunneling through the detector island
�nor through the generator island�. In calculating the noise
spectrum of the generator determining P�E� we neglect its
coupling to the detector, which is permissible for appropri-
ately chosen parameters. The Gaussian approximation was
used connecting the autocorrelation of phase fluctuations on
the detector island to the asymmetric charge noise of the
generator, while higher moments were neglected. The influ-
ence of higher moments �and consequently their detection�
has been studied in a number of other systems recently.54–59

To achieve analytically tractable results we exercised a short
time expansion, which is justified in the weak coupling re-
gime. Finally, the zero temperature and large bias limit was
assumed.

The latter two approximations are in no way crucial and
for convenience and simplicity of results only. Reaching
such transparent results for comparison to the perturbative
approach is the main purpose of the P�E� analysis we per-
formed here. Relinquishing this notion of achieving simple
analytical results, a P�E� analysis may also be further refined
to loosen some of the restrictions imposed above: Consider
cotunneling through the detector island, which depends on
the state of the generator island �by the effective gating�,
which is occupied with either zero or one electron with some
probability. This results in a shift of the Coulomb gap of the
detector island dependent on the generator state. A P�E�-type
theory of cotunneling in the detector can be set up to incor-
porate that effect of the environment. This will then just cor-
respond to the “standard cotunneling” results in Fig. 5, which
takes this very effect into account. In principle a P�E� analy-
sis can also be employed without making use of the short
time expansion to extend towards strong coupling. However,
such an approach is limited by the increasing importance of
back-action effects in the strong coupling regime. Indeed, by
construction back-action effects are not included in a P�E�
theory. Its basic principle is to describe the environment by a
single function �namely P�E��, which in consequence cannot
depend on the system’s state dynamics. Back-action effects
are, however, fully accounted for within the perturbative ap-

FIG. 5. Results of the diagrammatic technique for the generator/
detector setup �solid lines� compared to standard cotunneling
�dotted lines� and photon assisted current with slope as predicted
from P�E� theory �dashed lines, x intercepts fitted�. All curves at
T=25 mK, eVD

sd=0.5kB K, and nx,eff
G �nD=0�=0.5 with �0

j =0.01 for
each junction; EG=10kB K, ED=10kB K for A–C and 5kB K for D,
Eint=0.5kB K for A–C and 1kB K for D. nx

D as follows: A, 0.3; B,
0.4; C, 0.45; D, 0.4.
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proach, where there is no separation into system and envi-
ronment parts as in P�E�.

It should be noted that we implemented a perturbative
approach up to second order in the coupling. In the scenario
above, the main contribution to current stems from sequen-
tial tunneling in the detector �proportional to the detector
coupling� assisted by fluctuations due to sequential tunneling
through the generator �proportional to the generator cou-
pling�. By this way of counting powers of the coupling, it is
obvious, that a second-order analysis cannot capture the in-
fluence on detector current of higher-order quantum fluctua-
tions in the generator.

We have demonstrated that cotunneling contributions in-
volving tunneling in different islands, where energy is ex-
changed between electrostatically coupled SETs, can signifi-
cantly contribute to transport. A normal state SET is
therefore inherently sensitive to finite frequency noise of
charge, to which it couples electrostatically. A number of
other systems have recently been suggested and used as on-
chip measurement devices for finite frequency current and/or
voltage noise: a single60 or double quantum dot,49 a super-
conducting qubit,61 or a tunnel junction, both in the normal
and superconducting state.54–59,62 A normal state SET is in-
herently sensitive to integrated noise of a broad energy win-
dow, due to the peculiarities of the sequential tunneling rates
�see Eqs. �22� and �26��. In contrast, other systems men-
tioned above are particularly designed to make use of sharp
resonancelike features in the detector to have high sensitivity
for noise detection of a certain frequency.

V. SUMMARY AND CONCLUSIONS

In this paper we extended the real-time diagrammatics of
Ref. 34 to model transport through metallic multi-island sys-
tems. We discussed our approach to automatically generate
and compute diagrams in executing a systematic perturbation
expansion up to second order in the tunneling conductance.
This corresponds to sequential and cotunneling terms. Con-
vergence properties of the perturbative expansion were ana-
lyzed.

In a setup of two coupled SETs, we demonstrated the
importance of cotunneling involving both islands, where en-
ergy can be exchanged in between the two tunneling pro-
cesses. This is linked to the notion of photon-assisted tunnel-
ing. We performed a P�E� analysis, treating one SET as an
environment for the other one and found excellent agreement
between both approaches in the relevant weak coupling limit.

In this regime one SET works as a detector of the finite
frequency charge noise of the other SET.
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APPENDIX A: CALCULATING DIAGRAMS

In this appendix we explain how integral expressions, cor-
responding to the diagrams created, are efficiently calculated.
First of all, the number of expressions we have to evaluate
can be reduced by identifying several distinct types, only
differing in some parameters. For these small numbers of
terms numerical and analytical methods of automated calcu-
lation are discussed.

1. Reducing denominators

The general structure of integral expressions for a dia-
gram follows easily from the diagrammatic rules discussed
above. A self-energy diagram of order R features R integrals
over contraction line energies �r with corresponding rate
functions � j±��r� but also �2R−1� denominator factors ��E
+ i��−1 for each segment in between two vertices. The work-
horse for evaluating these expressions is Cauchy’s formula,

1

x + i�
= P

1

x
− i���x� , �A1�

which obviously can only be used when integrating over the
variable x. Consequently we have to reduce the number of
denominator terms from �2R−1� to R. Note here, that
Cauchy’s formula can still be applied to higher-order poles,

1

�x + i��2 = −
d

dx

1

x + i�
= −

d

dx
�P

1

x
− i���x�� . �A2�

While this reduction is possible for arbitrary order, we will
illustrate it for second-order diagrams only. As illustrated in
Fig. 6, there are two topologically distinct diagrams, depend-
ing on whether the first vertex is connected to third or fourth
vertex. Note, that the position of vertices on the upper or
lower branch is irrelevant for the general structure of the
analytical expressions, which are indicated in Fig. 6. El-
ementary algebraic manipulation of the denominator
factors—merely the treatment of infinitesimal � requires
some care—yields four expressions with the number of de-
nominator factors reduced as required.

From the first expression in Fig. 6�a� we get

1

�1 − �1 + i�

1

�1 + �2 − �2 + i�

1

�1 − �3 + i�

= ��1 = �3:
d

d�1

1

�1 − �1 + i�

1

�1 + �2 − �2 + i�

�1 � �3:
1

�1 − �3

1

�1 + �2 − �2 + i�
� 1

�1 − �1 + i�
−

1

�1 − �3 + i�
� � .

Correspondingly, Fig. 6�b� yields
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1

�1 − �1 + i�

1

�1 + �2 − �2 + i�

1

�2 − �3 + i�

= ��1 + �3 = �2:
d

d�2

1

�1 + �2 − �2 + i�
� 1

�1 − �1 + i�
+

1

�2 − �3 + i�
�

�1 + �3 � �2: � 1

�1 + �2 − �1 − �3 + i�
−

1

�1 + �2 − �2 + i�
� 1

�1 + �3 − �2
� 1

�1 − �1 + i�
+

1

�2 − �3 + i�
� �

for the second topologically distinct type.

2. Mirror rule

Further simplifications arise from an inherent symmetry
property of the diagrammatic rules. From the construction
principles for diagrams it is easily seen that, starting from
any diagram, we will obtain another possible diagram by the
following operation.

Reflect the diagram along a horizontal line, whereby ex-
changing the forward and backward branches of the contour,
and change the direction of all tunneling lines. The charge
state for any part of the contour then remains unchanged.
Both diagrams contribute to the same matrix entry of the
self-energy, as only the diagonal part of � has to be consid-
ered. Application of the diagrammatic rules shows that
merely the energies in the denominator terms change sign,

1

�E + i�
→

1

− �E + i�
= − � 1

�E + i�
�*

, �A3�

resulting in cancellation of the real parts of the two mirrored
diagrams. Consequently we only calculate the imaginary part
of each diagram. This allows us to utilize the �-function part
of Cauchy’s formula for evaluating one of the two integra-
tions. Our problem reduces then to the calculation of a single
�principal value� integral, where the resulting integrand can
be written as a product of one or two rate functions—there

might be a derivative acting on one of them—multiplied with
the principal value term P 1

� .

3. Evaluating the integrals

Above �see Eq. �10�� we calculated analytical expressions
for the rate functions for the case of normal reservoirs with a
constant density of states �DOS� and equal temperatures for
both sides of the tunneling barrier. It is interesting, though,
that important general features of the rate functions will per-
sist, if these conditions are relaxed, e.g., for nonequal tem-
peratures, relevant for considering thermopower or self-
heating effects, or for tunneling rates of quasiparticles in
superconducting devices, where the gapped BCS density of
states enters. Common to all these cases, however, is the
existence of a certain onset energy, where the asymptotic
behavior is linear on one side and vanishing on the other side
of this threshold; the asymptotic convergence is hereby gov-
erned by some Boltzmann factor.

Evidently, a high-energy cutoff is needed for convergence
of integrals, where the two rate functions grow in the same
direction. This cutoff is provided for in a natural way by the
bandwidth of the reservoirs, as a more careful analysis of the
rate function for a DOS limited to some finite bandwidth
reveals. The cutoff will at most enter logarithmically into any
final result—indeed, for the single SET, it is known to drop
out completely from the measurable quantities current and
average charge. Hence, there is no need for a microscopi-
cally detailed derivation of a specific cutoff function and we
can choose for convenience of calculation a Breit-Wigner
factor centered around the onset.

An analytical solution of the integrals is then possible for
the rate functions as given in Eq. �10�. Contour integration
leads to sums over Matsubara frequencies, which in turn re-
sults in analytical expressions involving Digamma functions,
where the onset energies enter as parameters �cf. Ref. 29�.

Since further algebraic manipulation of these complex
terms is not feasible for multi-island geometries, it can be
more convenient to adopt a numerical approach, already for
calculating the integrals—the additional benefit being that
this approach is also capable of effortlessly dealing with the
alternative rate functions discussed above. Numerical evalu-
ation is helped by the general features shared by all these rate
functions. They allow for precise numerical integration for a
small region �of a few kBT� around the onset, while the as-
ymptotics can be trivially integrated analytically.

FIG. 6. Two topologically distinct types of diagrams are found.
This yields four different integral terms, to be evaluated.
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APPENDIX B: CONVERGENCE OF A PERTURBATIVE
EXPANSION

In this appendix we address the question of the applica-
bility range of our perturbation expansion. To motivate a
criterion for general multi-island systems let us first consider
the case of a single SET. In this case, we have a nonpertur-
bative result for the current within the so-called resonant
tunneling approximation �RTA�34 at hand,

Isd =
2�e

�

 d��L����R���������2�fL

+��� − fR
+���� ,

�B1�

where �r=�r
++�r

− and the propagator ����= ��−�
−�����−1 dressed with first-order transitions as exemplified
in the self-energy

Re ����

= − 2	
r

�0
r�� − �r��ln��EC

2�
� − Re �� i��� − �r�

2�
�� ,

�B2�

Im ���� = − �	
r

�r��� , �B3�

where the cutoff energy EC is of the order of the charging
energy. We see that the dominant contribution to the current
comes from energies around the charging energy �. Higher-
order quantum fluctuations embodied by ���� both shift
�real part� and broaden �imaginary part� the region of con-
tributing energies.

For definiteness we consider now the scenario �L−�R
=eV�0, where we are interested in the onset of sequential
tunneling around �L �, while a finite bias eV�kBT is ap-
plied asymmetrically across the SET. The main contribution
to the current in this regime is then given by electrons slowly
tunneling onto the island from the left lead �the rate for this
bottleneck process being �L

+���, while they quickly tunnel
off to the right lead ��R

−�����L
+����. Consequently the cur-

rent �Eq. �B1�� simplifies to

Isd = −
2e

�
Im 
 d�

�L
+���

� − � − ����
, �B4�

where the imaginary part of the self-energy, the lifetime
width of the resonant level, is dominated by the �decay� rate
for tunneling out to the right lead.

To understand the effect of a systematic perturbation ex-
pansion of the current operator, as performed in the main part
of the paper, we expand now this expression for the current
�Eq. �B4�� in orders of the tunneling conductance �0. Expan-
sion of the denominator yields

1

� − � − ����
=

1

� − � + i�
+

����
�� − � + i��2

+
1

2

����2

�� − � + i��3 + ¯ , �B5�

where the denominator terms are regularized by infinitesimal

imaginary parts. This should be construed in terms of the
Cauchy identity for generalized functions and derivatives
thereof �Eqs. �A1� and �A2��.

The term of this expansion of order �0
n contains the de-

nominator ��−�+ i��−�n+1�, which results in a nth derivative
of a � function. Within the integral expression for the current
�Eq. �B4�� we will use partial integration, so that the deriva-
tives act on �L

+�������n. The expansion in terms of �0 there-
fore correspond to a Taylor expansion around the bare reso-
nance �. In Fig. 7 we visualize the integration of Eq. �B4�
for different parameter regimes. We integrate the rate func-
tion �L

+���, which has a kink at �=�L with a characteristic
width of kBT, multiplied with Im ����, which is peaked
close to �, shifted by �Re ����� and has a width given by
�Im �����.

As just shown, the perturbation expansion consists of ex-
panding the peak of Im ���� in terms of derivatives of �
functions, consequently capturing properies of �L

+��� �and its
derivatives� at � only.

As is intuitively clear from Figs. 7�a�–7�d�, this will work,
if the peak Im ���� is sharp, as compared to the structure in
�L

+��� in the relevant regime. This means that either ������
has to be smaller than kBT for considering the system on
resonance �=�L �Fig. 7�a�� or that the expansion takes place
so far away from resonance with the left lead, that the peak
Im ���� is not incorporating the kinked region of �L

+���;
i.e., ��−�L�� ������ �see Figs. 7�c� and 7�d��. Then the rate
function is expanded in the asymptotic region, where it is
exponentially suppressed �Fig. 7�c�� or rising approximately
linearly �Fig. 7�d��. Consequently higher-order derivatives
from higher-order terms of the expansion in �0 do not con-
tribute and second-order perturbation theory suffices.

We can formalize these intuitive arguments by consider-
ing the Taylor expansion of the bottleneck rate, resulting
from the derivatives of the � function in the perturbative
expansion �Eq. �B5��,

FIG. 7. Sketch of �L
+��� �broken line� and Im ���� �solid line�

in the integrand of Eq. �B4�. Perturbative expansion works, if the
rate �L

+ is approximately linear in the region given by the peak in
Im ����, corresponding to �������kBT on resonance �a� or to ��
−�L�� ������ in �c� and �d�. The expansion fails �b� for Im ����
incorporating the kink in �L

+.
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�0
L�

exp���� − 1
= �0

L� 1

�
+

�

2
+

��2

6 · 2!
−

�3�4

30 · 4!
+ ¯ � .

Note the increasing powers of the inverse temperature �,
endangering convergence for low temperatures. The largest
term now to appear in the nth term of the �0 expansion is a
term with magnitude

��
n−1�L

+�������n−1 ! �0
L�n−2������n−1,

where all derivatives have acted on �L
+���.63 Correspond-

ingly we get a series in the parameter �������, which has to
be small for convergence, confirming our argument above.

In summary, we found a criterion for the applicability
range of second-order perturbation theory. The ideas devel-
oped by considering a single SET can be easily generalized
to an arbitrary multi-island geometry. For each island, all
tunneling rates should be approximately linear in the region
of the contributing energies. This leads to the condition

max�kBT, �� − � j�� � ������ , �B6�

where ���� is the self-energy characterizing shift and width
of the resonance due to quantum fluctuations. For kBT
����� the tunneling rate is approximately linear on the rel-
evant scale of integration, while for ��−� j������ the kink
in the rate function is outside the integration region, and
consequently the rate is either linear or exponentially small.

An example of the failure of perturbative expansion is an
SET at finite bias and low temperature. Likewise in a setup
of two islands in series21 the resonance is shifted by a self-
energy scaling as Re �!�0EC, not vanishing for aligned lev-
els of the two islands. This can result in a failure of pertur-
bative expansion at low temperatures.8

No problems are encountered for the scenario laid out in
Sec. IV. Here the generator SET is completely dominated by
sequential tunneling, while the detector, biased on the order
of temperature, correspondingly yields a small ������
��0kBT, fulfilling Eq. �B6�.
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