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We calculate the rs expansion of the ground-state energy per particle of a two-dimensional electron gas with
spin-orbit interaction induced by the Rashba coupling. At high areal electron density, we obtain the energy for
noninteracting electrons, their exchange energy, and the lowest-order approximation for the correlation energy.
A closed-form expression is obtained for the energy of noninteracting electrons. However, we must calculate
the exchange and correlation energy numerically. As the density is increased and rs decreases, the ground-state
energy changes rapidly at some value rs=rs

* and the Fermi energy EF changes from negative to positive. When
EF�0, only the lower spin subband is occupied. An interesting effect occurs in the presence of electron-
electron interaction as EF increases through E=0 and the upper spin subband suddenly gets a finite population
rather than increasing gradually.
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I. INTRODUCTION

In recent years, both theoreticians and experimentalists
have been investigating the effect of spin-orbit interaction
�SOI� due to the linear Rashba and Dresselhaus splitting on
the physical properties of quantum systems.1–16 These in-
clude both spectral and transport properties of low-
dimensional semiconductor structures such as the two-
dimensional electron system �2DES�, quantum dots, and
carbon nanotubes.17–32 The SOI can be reliably controlled in
experiments on these systems and made relatively strong. It
has been demonstrated that the SOI may give rise to inter-
esting behavior in both the noninteracting and interacting
properties of low-dimensional semiconductor structures. The
mechanism for the Rashba and Dresselhaus SOI is a unique
feature of the spatial asymmetry.1,2 For the Dresselhaus ef-
fect, the crystal symmetry is broken at the heterointerface,
resulting in a significant modification of the mechanism of
SOI by the crystal field. Although the Dresselhaus spin split-
ting may compete with the Rashba splitting, there seems to
be more control over the latter which could be made to domi-
nate in systems such as InGaAs/ InAlAs heterostructures,
InAs/GaSb and AlSb/ InAs/AlSb quantum wells, and Si
metal-oxide-semiconductor field-effect transistors. Further-
more, because the Rashba SOI seems more promising for
potential device applications, we will disregard the Dressel-
haus mechanism in this paper.

All the potential profiles that can be produced by various
flexible means of band engineering have electrostatic origin
and give rise to a local electric field. For some confining
potentials, the average electric field within the quantum well
is different from zero and electrons in the quantum well ex-
perience a finite electric field directed along the normal to
the plane of the 2DES. This electric field may be strong
enough to give a SO coupling as large as �150 meV Å in
experimentally achievable heterostructures.15 We use a large
value for the SO coupling to demonstrate the effect it can
have on the ground-state energy. Strong SO coupling may

also be examined for the dependence of the spin susceptibil-
ity on electron density.33,34

The paper by Dharma-wardana35 does not include SOI in
the calculations. Consequently, Ref. 35 does not yield the
effects we report here. The triangular quantum well is an
obvious and typical example of an asymmetric potential. The
presence of this interface electric field suggests that for such
systems, there should be an additional �compared with the
bulk three-dimensional crystal� mechanism of SOI associ-
ated with this interface field. As a matter of fact, the average
electric field couples to the in-plane momentum p to give
rise to SOI. This mechanism was introduced by Bychkov and
Rashba1 in 1984 and is usually referred to as the Rashba or
quantum well coupling.

There is SOI in the 2DES in the GaAs/AlGaAs sample
used in the experiments of Zhu et al.22 and Tan et al.34 Nei-
ther Ref. 33 nor Ref. 35 includes the effect due to SOI in
their calculations. However, it seems possible to explain the
experimental data with the theory of De Palo et al.33 and of
Dhrama-wardana.35 One possible explanation for this could
be that the spin-orbit coupling parameter for the sample used
in the experiments is small. As a matter of fact, we do not see
the effect displayed in the results of our calculations pre-
sented below for small Rashba parameter ��R�1.0 meV Å�.
Therefore, additional experiments on heterojunction-
insulated gate field-effect transistor samples having large
SOI such as InAs/ InGaAs should be conducted over a wide
range of electron densities to explore the predictions we are
making in this paper.

II. THE MODEL HAMILTONIAN

The spin-orbit Hamiltonian can be obtained from the
Dirac equation in an external electromagnetic field, de-
scribed by a vector potential A and a scalar potential �, by
taking the nonrelativistic limit up to terms quadratic in v /c
inclusive. This limit can be obtained in two different ways:
either by direct expansion of the Dirac equation in powers of
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v /c or by using the asymptotically exact Foldy-Wouthuysen
formula. It may be shown that the spin-orbit Hamiltonian
arising from the electrostatic confinement is given by

HSO =
�

4m*2c2 ��V�r� � p� · �J �1�

where V�r�=−e��r� and �J= ��x ,�y ,�z� is the vector of Pauli
spin matrices. This Hamiltonian includes mechanisms arising
from both the electric dipole moment and Thomas preces-
sion. In general, Eq. �1� consists of three terms arising from
the spatial confinement. The z component leads to the
Rashba term for the quantum well. If, in addition, there is
lateral confinement, then this may lead to additional terms in
the calculation. Taking into account the electric field within

the quantum well as an average Ē whose direction is perpen-
dicular to the interface of the heterojunction, the spin-orbit
Hamiltonian �1� can be rewritten for the Rashba coupling as

HSO =
�R

�
��J � p�z, �2�

where the z component of the momentum does not contribute
to �2� since in the stationary state there is no transfer of
electrons across the interface. The constant �R contains all
the universal constants from �1� and it is proportional to the
interface electric field. Therefore, the contribution to the total
electron Hamiltonian from the Rashba SOI is controlled by
the value of �R. For different systems, �R takes on values in
the range 10��R�150 meV Å.15 In our numerical calcula-
tions, we use the upper limit of this range for �R for illus-
trative purposes.

Before proceeding to the presentation of our calculations,
we note that the form of the Hamiltonian in Eq. �1� may be
applied to the Dresselhaus term. In a bulk 3D semiconductor,
V�r� arises from the periodic crystal potential. All multicom-
ponent III-V semiconductors lack inversion symmetry.
Dresselhaus2 has shown that this leads to a SO-induced split-
ting of the conduction band into two subbands and that the
magnitude of this splitting is proportional to the cube of the
wave number k. For a heterostructure, the crystal symmetry
is broken at the interface where 2D electrons or holes are
confined in a quantum well. Consequently, the host 3D crys-
tal cannot be considered as ideal. In fact, symmetry of the
underlying crystal is lowered by the reduction of the dimen-
sionality and gives rise to an additional term in the energy
which is linear in the in-plane wave vector k�� for the
Dresselhaus splitting. The linear term is dominant for a suf-
ficiently narrow quantum well.36–39 Thus, the form given in
Eq. �1� is not restricted to a particular model of the potential
V�r�.

III. THE GROUND-STATE ENERGY IN THE PRESENCE
OF SOI

The total Hamiltonian for free electrons in the 2DES is a
sum of the kinetic energy and HSO. Since it is independent of
coordinates, the wave function may be sought in the form of

plane waves �for simplicity, we denote the in-plane wave
vector simply as k� 	k�r�=
keik·r /�A. Here, r and k are the
in-plane spatial coordinate and wave vectors, A is a normal-
ization area, the spinor 
k satisfies the equation Hk
k=�k
k,
and the Hamiltonian has the following explicit representation
in spin space:

Hk = � �2k2/2m* i�Rk exp�− i��k��
− i�Rk exp�i��k�� �2k2/2m* 	 . �3�

Here, ��k� is the polar angle of the wave vector k. Diago-
nalizing the matrix in Eq.�3�, we obtain the energy eigenval-
ues �k±=�2k2 /2m*±�Rk and eigenspinors


k
± =

1
�2

� 1

±exp�i��k��
	 . �4�

The dependence of the spinor �4� on the angle ��k� means
that the two states, denoted by + and −, are polarized along
the directions +�k� ẑ� and −�k� ẑ�, respectively, where ẑ is
a unit vector in the z direction. This polarization lifts the spin
degeneracy within the xy plane of the free-electron Hamil-
tonian and the system has a + and a − branch. These results
show that the effect of the Rashba SOI manifests itself
through a mutual shift of the spin branches, resulting in an
energy gap between the + and − spin branches. The presence
of this Rashba spin splitting has been verified experimentally
through Raman scattering and measurements of
Shubnikov–de Haas oscillations.40,41

In this paper, we demonstrate that as the electron density
is reduced, there is a threshold density when rs=rs

* where the
ground-state energy varies rapidly. This occurs when one of
the spin bands �+ branch� is depleted of electrons. This result
will be demonstrated for both an interacting and a noninter-
acting 2DES.

For a total areal electron density n2D, there will be n+ +
spins and n− − spins per unit area with n2D=n−+n+. At
T=0 K, these are determined by the following equation, with
=±:

n

n2D
−

1

2
+ AR
� n

n2D
	1/2

+ �1 −
n

n2D
	1/2� = 0, �5�

where AR=kR /kF with kR=m*�R /�2�2 and kF= �2�n2D�1/2.
For AR�1/2, both bands are occupied. When AR�1/2,
n+=0 and all spins are in the − spin branch.

In the ground state, the high-density expansion for the
total energy of the system is given by

EGS = E�0� + E�1� + E�2� + ¯ �6�

where the first term is the energy for noninteracting electrons
and is given by

E�0�

N
=

1

N
�
k,

�k�+�k − k�

= � e2

a0
*�s

	 1

rs
�

=±1

 1

rs

+ �2

3
	 �R/a0

*

�1 Ry��� rs

rs
	3

. �7�

Here, �s=4��0�b where �b is the dielectric constant of the
background medium, 1 Ry=e2 /2a0

*�s, �+�x� is the Heaviside
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unit step function, k= �4�n�1/2, �r0
2 =A /N=1/n in terms

of the areal density per particle for + or − spins, and
rs=r0 /a0

* is the scaled interparticle spacing in terms of an
effective Bohr radius a0

*=�2�s /m*e2. Also, rs=r0 /a0
*, where

rs
−2=rs+

−2+rs−
−2. Clearly, E�0� could be negative if

rs−�
2
3�R / �1 Ry�. Also, when �R=0, Eq. �7� reduces to the

well-known result for a noninteracting 2D electron gas, i.e.,
E�0� /N=1/rs

2 Ry, since in this case we have rs=�2rs, for
=±.42 Thus, for finite �R, E�0� /N does not scale only with rs
but depends separately on the density parameters rs+ and rs−
for each subband.

The second term in Eq. �6� is the first-order correction to
E�0�. The evaluation of E�1� involves calculation of the expec-
tation value of the electron-electron Hamiltonian for the non-
interacting system in the ground state.42 This is given by

E�1�

N
= − � e2

a0
*�s

	� a0
*

4n2D
	 1

A2�
k,q

� �
1,2=±1

2�

q
�+�k2

− k�

� �+�k1
− �k + q���1 + 12

k + q cos �

�k + q� 	 , �8�

where the prime on the summation means that q=0 is for-
bidden, in order to ensure global charge neutrality of the
system. The k integration is done over the area of intersec-
tion of two circles of radii k1

and k2
separated by a distance

q, and is finite only if �k1
−k2

� �q�k1
+k2

. This always
negative contribution to the total energy of the electron liq-
uid is the exchange energy arising from the antisymmetry of
the wave function. When �R=0, the exchange energy can
easily be evaluated and we have the well-known result
E�1� /N=−8�2/3�rsRy−1.2/rs Ry.42 The calculation is a
bit more involved so as to obtain an analytical result when
�R�0 due to the presence of the form factor arising from the
amplitude of the wave function in Eq. �4�. A numerical cal-
culation of E�0� and E�1� is presented below. However, to

understand these results, in Fig. 1 we plot the electron den-
sity for each subband as a function of rs. In the high-density
limit �rs→0�, both subbands are equally occupied. As the
density is reduced and rs increases, the spins are distributed
in the + and − subbands unequally. As a matter of fact, the +
subband is completely depopulated at some density rs

*. This
depopulation of the subbands at rs

* is manifested in both E�0�

and E�1�, as we show in Fig. 2�a�. Consequently, we see that
when EF�0, only the lower spin subband is occupied for
noninteracting electrons. We also note that in the presence of
electron-electron interactions, there is still a notable effect
occurring as EF increases through E=0 and the upper + spin
subband suddenly gets a finite population rather than increas-
ing gradually. The value for rs

* in Fig. 1 is 7.38. For GaAs,
with background dielectric constant 13.0 and electron effec-
tive mass m*=0.067me, where me is the free-electron mass,
the 2D electron density for this rs

* is n2D5.84�109 cm−2.
The reason for the abrupt change in the Fermi energy at rs

* is
due to the fact that as the electron density decreases continu-
ously, the − spin subband below E=0 has to accommodate
the spins which were in the + spin subband just below rs

*.
However, as shown in Ref. 43, the DOS for − spins increases
rapidly below E=0.

The third term E�2� in Eq. �6� is the leading-order contri-
bution to the correlation energy of the 2D electron gas.44–46

FIG. 1. Plots of n+ ,n− as well as EF as functions of rs for a
Rashba parameter �R=150 meV Å. We chose �b=13.0 and
m*=0.065me where me is the free-electron mass, as appropriate
parameters for GaAs. The value of rs when the subband occupation
changes suddenly is denoted by rs

*.

FIG. 2. �a� Plot of E�0� /N and E�1� /N as functions of rs at inter-
mediate densities for the same values of �R, �b, and m* as in Fig. 1.
�b� Plot of the total energy per particle �E�0�+E�1�+E�2�� /N using
the results in �a� as a function of rs. For comparison, we plot this
total energy when �R=0. The unit of energy is the effective Ryd-
berg e2 /2a*�s.
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Calculation shows that in the random-phase approximation
�RPA� we have

E�2� =
�

2 �
q
�

0

� d�

�
�ln�1 + ��q,i��� − ��q,i��� . �9�

In this notation, ��q ,�� is the polarization function defined
by

��q,�� =
�e2

2A�sq
�
k

�
,�=±1

f0��k,� − f0��k−q,��

�� + �k − q,� − Ek, + i0+

��1 + �
�k� − �q�cos �

�k − q� 	 , �10�

and � is the angle between the wave vectors k and q. Also,
when �R=0, Eq. �9� reduces to the well-known RPA result
for a 2D electron gas, i.e., E�2� /N=−�0.38±0.04�
−0.1726rsln rs+O�rs� Ry �see Chapters 1 and 5 of Ref. 42
for a list of references�.

IV. NUMERICAL RESULTS AND DISCUSSION

We now present and discuss our numerical results. In Fig.
1, we plot n−, n+, and EF as functions of rs for a Rashba
parameter �R=150 meV Å. In the limit rs→0, the + and −
spin bands are almost equally populated. As the density is
decreased, there are more electrons in the − spin band com-
pared to the + spin band. As a matter of fact, the single-
particle or thermodynamic density of states �DOS� for each
subband �= ± � is given by �

�0��E�=− 1
�A�kG

�0��k ,E�
= 1

A�k��E−Ek,�, where G
�0��k ,E� is the single-particle

Green’s function. These have been calculated and the results
are given by43

�+
�0��E� = �+�E�� m*

2��2	�1 −� E�

E + E�

	 , �11�

�−
�0��E� = � m*

2��2	
�+�E��1 +� E�

E + E�

	
+ 2�+�− E��+�E + E��� E�

E + E�
� , �12�

where E�=kR�R /�2 is a measure of the spin gap in the
DOS. Equations �11� and �12� show that the total DOS
�2D

�0� =�+
�0��E�+�−

�0��E� is m* /��2 for E�0. This is equal to
the DOS for a spin-degenerate 2D electron system. However,
the DOS for −E��E�0 is increased as E is reduced from
zero and even becomes infinite at the bottom of the − spin
band where E=−E�. For each subband, the DOS is not in-
dependent of energy and �−

�0��E���+
�0��E� for all energies sat-

isfying −E��E��. As the Fermi energy passes through the
bottom of the + spin band ��k+�, this corresponds to rs=rs

* in
Fig. 1 when the + spin band is depleted of electrons.

In Fig. 2�a�, we plot E�0� /N and E�1� /N separately as
functions of rs for the same Rashba parameter used in
Fig. 1. In Fig. 2�b�, we plot the total energy per particle
�E�0�+E�1�+E�2�� /N also as a function of rs. In Fig. 2�b�, we
compare the results for finite Rashba parameter with the val-
ues obtained when there is no SOI. The total energy per
particle in Fig. 2�b� is not changed by the SOI in the high-
density limit. However, as rs increases, we find that the effect
of SOI becomes important as rs→rs

*. At this density, the
spontaneous spin depopulation of the + spin subband leads to
the rapid change in both E�0� and E�1� as rs→rs

*. The results
of our calculations to obtain the correlation energy per par-
ticle, i.e., E�2� /N, in the RPA show that in the high-density
limit, finite �R has a negligible effect on the correlation en-
ergy. This was obtained for the range of densities corre-
sponding to 0�rs�20, as shown in Fig. 2�b�. Over the
years, several authors have calculated the correlation energy
for a 2D electron gas, showing that the RPA is not that reli-
able as the electron density is reduced. A more accurate cal-
culation including SOI should be carried out to complement
the results in this paper.

V. CONCLUDING REMARKS

In this paper, we calculated the ground-state energy
E�0� /N per particle for noninteracting electrons and the ex-
change energy per particle E�1� /N for a 2DES in the presence
of SOI. These results clearly show that spontaneous spin
depopulation of one of the energy bands leads to a rapid
change in the total energy of the system. We also calculated
the correction to this total energy due to correlation effects in
the RPA, i.e., E�2� /N. In the high-density limit where the
RPA is a good approximation, the effect due to �R on E�2� /N
is negligible. Our results indicate a phase change of the 2D
electron liquid from a paramagnetic-to a ferromagneticlike
behavior as the density is decreased. These two phases are
stable at intermediate densities and are not beyond the reach
of experiment. Therefore, they should be explored. The ef-
fects of impurities at intermediate densities are not expected
to destroy this behavior of the 2DES. Only at low densities,
where a Wigner crystal is formed, should a system of elec-
trons bound to randomly distributed impurities completely
modify our results. Accurate calculations employing the
variational Monte Carlo and diffusion Monte Carlo methods
have been used previously to obtain the ground-state energy
of a 2DES in the absence of SOI.47,48 The effect due to SOI
using these methods will be carried out in a future publica-
tion.

Kogan and Rosenstein49 calculated the effect of electron-
electron interaction on the “constant” single-particle DOS of
a degenerate 2DES. They obtained a dip in the DOS at the
Fermi energy due to the dynamical shielding of the electron-
electron interaction. We shall examine the way in which
�−

�0��E� and �+
�0��E� are modified in the RPA as well as with

disorder.50 It is straightforward to show that the corrections
to the results in Eqs. �11� and �12� are given by
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���E� = −
1

�
Im� d2q

�2��2�G�q,E� , �13�

where �G�q ,E�=G�q ,E�−G
�0��q ,E� is the difference be-

tween the interacting and single-particle Green’s functions.
This involves an evaluation of the self-energy which can
be obtained using diagrammatic methods.49 The effect
due to SOI on the tunneling DOS of an interacting 2DES

will be calculated and will be the subject of a future inves-
tigation.
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