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We consider a large, free-standing array of coupled, planar oscillators each several hundred nanometers on
a side fabricated from a single layer of dielectric. In particular, we predict the low-temperature heat capacity
and Brillouin-scattered cross section based upon a numerical calculation of the density of states (DOS) for this
nanostructured array. The DOS, which is interesting in its own right, is found to have an average value nearly
independent of frequency and a number of gaps of varying depths. The predictions suggest that it should be
possible to use low-temperature measurements of the Brillouin cross section and/or the specific heat to observe
the quantum statistics obeyed by various rigid-body modes of the array, some of which involve the center-of-
mass motion of a large number of atoms. As such, these measurements would result in a considerable extension
of the domain in which quantum mechanics has been tested.
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I. INTRODUCTION

Over the past decade, significant effort has been focused
on the observation of quantum effects in large systems, both
to test quantum mechanics in this regime and to directly
observe quantum decoherence phenomena arising from cou-
pling to the environment. Mechanical oscillators have often
been considered in this context because displacement states
of the oscillator can serve as “Schrodinger cat” states in the
investigation of these phenomena. The measurement con-
cepts reported to date in this area!™ have primarily involved
investigating the quantum properties of a single oscillator,
though short linear chains of coupled oscillators have been
considered recently in the context of minimum thermal
conductance® and entanglement.” Concepts involving a me-
chanical oscillator coupled to the optical modes of a cavity
have been considered by Bose et al.,® while the investigation
of a mechanical oscillator coupled to the electrons in a
Cooper pair box,’ the electronic analogy, is under way. Re-
cent experimental results have pushed close to the limits of
the uncertainty principle.'?

A different approach, and the central focus of this paper,
is to explore the extent to which one can probe the quantum
behavior of mechanical oscillators by observing the bulk
properties of a large, free-standing array of coupled nano-
oscillators; i.e., by investigating a phononic crystal with
structure at nanometer length scales. Our principal results are
theoretical predictions for two such quantities, the specific
heat and the Brillouin spectra, both of which have in the past
provided experimental evidence for the quantum behavior of
solids at low temperatures.

Bulk statistical measurements at low temperatures provide
more limited tests of quantum mechanics than do direct mea-
surements of quantum interference.®!0 Nevertheless, the
measurements considered here enable one to verify that the
relevant modes, modes involving macroscopic whole-body
motion of individual nano-oscillators in the geometry we
consider, obey quantum statistics and therefore have quan-
tized energy levels. This information is contained in the tem-
perature dependence of the specific heat and Brillouin-
scattered power at low temperatures.
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The system we consider is a free-standing, periodic, pla-
nar structure as shown in Fig. 1. The system is assumed to be
monolithic, fabricated from a single layer of silicon or dia-
mond for example. The particular dimensions have been cho-
sen so that modes associated with rigid-body motion of an
individual oscillator will be in a quantum regime, fiw~k,T,
at a reasonable temperature 7~ 20 mK.

The classical solution for the eigenfunctions and the spec-
trum is central to the quantum behavior of the system, the
density of states directly determining the specific heat!! and,
in conjunction with the polarization of the modes, also de-
termining the Brillouin-scattered power levels. Since our
principal aim is to investigate the quantum behavior of the
system, we focus on the low-temperature behavior of these
quantities, and thus on the low-frequency states. We there-
fore proceed directly to a determination of the classical nor-
mal modes of the system in Sec. II.

In Sec. III, the specific heat for the system is obtained
using the computed density of states (DOS). It is shown that
the specific heat varies in a nominally linear fashion with
temperature because of the two-dimensional character of the
system at fairly low temperatures 7<5 K for the structure
we have considered. The nanostructure of the system is
shown to give rise to a peak in ¢,/ T at very low temperatures
T~ 10 mK, with the onset of the peak beginning at about
100 mK.

FIG. 1. Geometry of a free-standing nano-oscillator structure.
The values used for calculations are /=200 nm, a=360 nm, A
=20 nm, thickness 6=20 nm, and material parameters of Si.
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In Sec. IV, the cross section for Brillouin scattering from
the system is predicted. The Brillouin-scattering cross sec-
tion is shown to dominated by the ripple of the film, as
opposed to volume scattering, and the magnitude of the scat-
tering is given in terms of the spectra and eigenfunctions of
the system. Finally, we give estimates for the order of mag-
nitude of these effects at low temperatures, and the potential
for these measurements to be employed in the search for
quantum effects in nano-oscillator systems. We have found
that observing the predicted quantum effects requires very
sensitive measurements, but attaining this precision is cer-
tainly not far beyond our current capability.

II. THE CLASSICAL SPECTRUM

The phonon modes of the nanoarray are modeled using
continuum three-dimensional (3D) elasticity theory, an ap-
proach known to give a good approximation to the vibra-
tional spectra of bulk solids for frequencies well below the
edge of the Brillouin zone.'> The Lagrangian is therefore
given by!3

1 -
= _f dV{pv® — oyju;} (1)

with u;(x) the displacement field, v,(x)=1u,(x) the velocity
field, u;;(x)=(1/2)(du;/ ox;+ du;/ dx;) the strain tensor, o ;(x)
the stress tensor, and p the density. The integration is re-
stricted to the volume of the sample and stress-free boundary
conditions (0;;=0) are imposed on the free surfaces of the
system. We assume, for simplicity, that the material is isotro-
pic. This assumption, while not valid for single-crystal films,
will have a weak effect on the quantities we consider here,
the specific heat and the Brillouin-scattered power levels.

A. Modes of an isotropic plate

The solutions of the boundary value problem for the free-
standing array are superpositions of the wave solutions of a
uniform thin film, and it is useful to recall the nature of these
solutions before examining the numerical results. The sym-
metry of the system with respect to reflections in z, together
with translation invariance in the xy plane, imply that the
waveguide solutions of the plate are of the form
ux, ,z:k,)=gik, ,z)exp(ik, -x,), where the function
gi(k ,z) is even or odd in z. The cutoff frequency for the first
higher-order waveguide mode is given by'#

w.=TCl 6, (2)

where ¢, is the velocity of shear waves in the bulk medium
and ¢ 'is the sample thickness. The wave types can be further
classified by their polarization as symmetric dilatational or
compressional modes, symmetric shear horizontal modes,
and antisymmetric flexural modes. Auld'* gives an excellent
and thorough discussion of the properties of the waveguide
modes.

The highest frequency we have considered for the system
shown in Fig. 1 (=20 nm, ¢,=5 X 10° m/s) is f=35 GHz,
well below the lowest cutoff frequency f.~ 125 GHz, and
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therefore the relevant modes of the system are the solutions
below cutoff. In this frequency range, one mode of each
wave type survives for a given transverse wave number k |,
and the z dependence of the modes becomes trivial; i.e., in-
dependent of z for the symmetric case and simply propor-
tional to z for the antisymmetric case. The polarization of the
modes, the direction of the particle velocity, also becomes
trivial: the polarization of the antisymmetric mode is normal
to the film, out of plane; the polarization of the shear hori-
zontal mode is transverse to the direction of propagation and
in the plane of the film; and the polarization of the longitu-
dinal mode is in the direction of the wave propagation, also
an in-plane mode. The dispersion relations also simplify be-
low the cutoff frequency; the symmetric modes are similar to
their counterparts in a bulk medium, while the antisymmet-
ric, flexural mode departs substantially from any 3D analog
and exhibits strong dispersion, behaving approximately as
w*k* as w— 0, a dramatic slowing. This dependence under-
lies the unusual low-frequency scaling behavior of the den-
sity of states and the corresponding low-temperature behav-
ior of the specific heat.

In the frequency range w<mc,/(36), Mindlin’s thick
plate theory'> provides a good approximation to the flexural
wave dispersion relation, while leading-order thin plate
theory, due originally to Kirchhoff,'¢ yields reasonable re-
sults in this frequency range and becomes accurate for w
< c,/(1068). The dispersion relation for the antisymmetric
flexural wave in the thin plate theory approximation is'’

w = (DIm)"*k? (3)

with D=E&*/(1-1?) the flexural rigidity (here E and v are
the Young’s modulus and Poisson ratio, respectively) and
m=pd the mass per area of the plate. The dispersion relation
for the shear mode is simply w=ck, while the dispersion
relation for the compressional wave is w=c,k with c,
=E/p(1-1?), similar to the bulk medium result. The ratio of
the flexural and compressional wave speeds is easily esti-
mated from Eq. (3) to be cf{w)/c,=wd/c,<1; hence the
wave speed of the antisymmetric flexural wave is always far
less than the wave speed of the symmetric modes. We will
use these expressions to obtain simple formulas for the DOS
and specific heat of a uniform, isotropic plate to better un-
derstand our numerical results.

B. Modes of the nano-oscillator array

We follow the analysis approach employed by Lazaren-
kova and Balandin.'> The normal modes are calculated
by seeking solutions of the Bloch form u;(x,,z)
=exp(ik, -x,)Ui(x,,z) to the equations of 3D elasticity
theory. Here x| =(x,y) and k, =(k,.k,)=(2n7/L,,2mm/L,)
are in the plane of the system, and U,(x ,z) is taken to be
periodic in the xy coordinates. The quantities n and m are
integers, L, and L, are the dimensions of the crystal, and the
boundary conditions at (x,y)=(xL,/2,+L,/2) are taken to
be periodic, an approximation which will not be significant
for a large system. This results in a Hermitian boundary
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value problem in the unit cell which yields the resonance
frequencies for a particular wave number, with one eigenfre-
quency for each subband of the spectrum.

The system is still symmetric with respect to reflections in
the z direction, and therefore the even and odd solutions are
uncoupled by the imposition of the boundary conditions. The
resulting solutions can thus still be classified as quasiflexural,
quasishear, or quasilongitudinal. Further, in the frequency
range of interest, as pointed out in the previous section,
Mindlin plate theory provides accurate solutions. This fact
can be employed to achieve considerable computational sav-
ings, since plate theory is a 2D rather than a fully 3D model.
Within this approach, the symmetric and antisymmetric so-
lutions are obtained separately.

The computation was done using the commercial numeri-
cal package FEMLAB, which enables solutions in the context
of both 2D and 3D models. Solutions were first obtained for
several representative wave numbers using 3D elasticity
theory. A sufficiently fine grid was used in the calculation to
ensure that the errors in the resonance frequencies at the
high-frequency end of the calculation were always smaller
than 5%, with much smaller errors at lower frequencies. This
solution of course contains both symmetric and antisymmet-
ric modes. Separate 2D models were then used to obtain the
solutions; the same accuracy was achieved with more than an
order of magnitude savings in the computation time required.
The boundary value problem was then solved at (N/2)
X(N/2)=1600 distinct wave numbers in the first Brillouin
zone, a computation requiring about 24 h on a desktop com-
puter. Here N? is the total number of unit cells in the array
and gives the size of the system; provided N is large enough
so that discretization effects in wave number space are un-
important, the results depend on N in a trivial manner.

Figure 2 shows the calculated dispersion surfaces, the
Bloch subbands, of the nano-structured array for frequencies
below 5 GHz. The smoothness of the dispersion surfaces
shows that the sampling in k space is sufficient and also
demonstrates the numerical stability of the calculations. Fig-
ure 2(a) shows the dispersion surfaces for the antisymmetric
(with respect to z), out-of-plane modes, while Fig. 2(b)
shows the dispersion surfaces for the symmetric, in-plane
modes. We present these results separately because the two
sets of modes are quite different and later, we shall need the
out-of-plane density of states to predict the Brillouin scatter-
ing from the system.

Comparing Figs. 2(a) and 2(b), the overall slowness of the
out-of-plane modes (small values of dw/dk) relative to the
in-plane modes, and their resulting dominance in the density
of states, is apparent. This property of the spectrum is due to
the slowness of flexural waves relative to shear and compres-
sional waves in a uniform medium as discussed in the pre-
vious section. The exceptions to this behavior are the narrow
subbands in the in-plane spectrum near 1 and 4.5 GHz. The
effective stiffness of these modes is predominantly associ-
ated with flexure of the square “legs” (20 X 20 nm?) between
each “paddle,” and thus the strain field in these modes is also
predominantly flexural despite involving displacements in
the plane of the array system.

The states in the low-frequency subbands extending up to
about 1 GHz involve whole-body motion of significant por-
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FIG. 2. Numerically calculated dispersion surfaces of the nano-
structure in w-k space: (a) out-of-plane and (b) in-plane modes.

tions of the nano-oscillator elements, the paddles. The first
quasigap in the spectrum, a gap in the out-of-plane spectrum,
is associated with weakly coupled local 1-1 modes of the
paddles (the nearly horizontal surface at =~2.25 GHz), and
occurs in the range from 1 to 2 GHz. These modes may be
considered to be analogous to the optical modes of a crystal,
but they arise from the nanostructure of the system rather
than internal vibration in the unit cell. The low-frequency
modes are the most interesting with regard to testing the
limits of quantum mechanics'® and environmentally induced
decoherence,'>?” because the associated energy eigenstates
exhibit coherent center-of-mass motion of large numbers of
atoms; in the geometry considered a single nano-oscillator
contains ~4 X 107 Si atoms. Coherent motion of a 1000
X 1000 array would involve 10'3 atoms, a nearly macro-
scopic phenomenon.

C. Density of states

The DOS is obtained in a straightforward fashion from
the dispersion surfaces by integrating over an appropriate
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FIG. 3. Numerically calculated phonon DOS of the

nanostructure:—total; - --out-of-plane. The inset shows the DOS
over the band 0-35 GHz:—total;--average.

bandwidth. We found a bandwidth B=25 MHz resolved the
various resonance peaks in the DOS, and yet was still large
enough that the discretization in the states caused by the
finite system size did not produce significant “numerical
noise” in the results—typical level spacings due to the finite
structure size were at most 4 MHz. Singularities near the
band edges can of course not be fully resolved in this man-
ner.

The numerically computed density of states is shown in
Fig. 3. The quasigap in the spectrum in the range from
1 to 2 GHz can be clearly seen, while a true gap appears in
the spectrum at approximately 6 GHz. The 1-1 collective
mode, singled out in the figure, is the dominant low-
frequency resonance of the nanoarray. The in-plane contribu-
tion to the DOS is shown in the figure by the dotted line. The
dominance of the flexural modes in the DOS is apparent,
with the in-plane contribution being small except near the
flexural resonances. The one exception to this behavior is the
peak near 3 GHz which is due to the band edge of the shear
modes.

A notable feature of the results is that the average DOS
(the dashed line in the inset) is more or less constant in this
frequency range. We point out this behavior because the fre-
quency dependence of the DOS directly determines the tem-
perature dependence of the specific heat (and other physical
quantities). This frequency independence results from the
dispersive properties of the flexural modes which dominate
the spectrum. Indeed, using the results from Sec. I A, the
DOS of a flexural wave system of size L¢ in d dimensions
may be shown to be

(wL2¢p)d =22
N(w) = —p——L— = =—(m/D)"? 4
(@) 7PT(d2)w 477( ) “
and is independent of frequency in two dimensions,?! in ac-
cord with the average DOS shown in Fig. 3. This approach
underestimates the DOS of the nanostructure considered by a
factor of about 2, primarily because of the in-plane flexural
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FIG. 4. The ratio ¢,/T from Eq. (5) using the numerically com-
puted DOS; ¢, is shown in the inset.

modes which cannot be taken into account in this fashion.
The dispersion of the neglected modes is, however, the same
as that of the flexural plate modes, and thus the frequency
dependence of the DOS is correctly predicted using this
simple formula.

III. SPECIFIC HEAT

With the classical modes in hand, the system may be
quantized in the usual way,?” resulting in each normal mode
w, (k) being represented by a simple harmonic oscillator
degree of freedom with the energy eigenstates (n
+1/2)hw, (k). The specific heat at low temperatures may
then be obtained exactly as in the case of phonons in a uni-
form solid"" with the DOS in that case being replaced by the
numerically computed DOS for the phononic crystal we have
considered,

u k @
b d(l) n(w) (ex(w) _ 1)2

“TarTv ©)
where x(w)=fw/k,T. The results for ¢,/T and ¢, are shown
in the temperature range below 250 mK in Fig. 4. In this
range the specific heat is reasonably linear, with a low-
temperature enhancement in the nominally linear behavior
resulting from the nanostructure.

Measurements of the temperature dependence of the spe-
cific heat in accord with these predictions would provide
evidence that the relevant modes, modes with ZAw=<3.5k,T,
are behaving as simple quantum oscillators obeying Bose
statistics. Modes in the lowest-frequency band, and the asso-
ciated peak in the DOS at the band edge, give rise to the
peak in the ¢,/T plot at about 10 mK, and provide a clear
signature of the quantum behavior of these states—recall that
these modes are locally whole-body modes of the nano-
oscillators.

The near linear behavior of the specific heat results from
the roughly constant DOS at low frequencies and differs
from the 72 dependence?®® typically assumed for 2D phonon
systems. This overall temperature dependence is thus due to
the two-dimensional nature of the system as opposed to the
nanostructure. In d dimensions, using Eq. (4) for the DOS of
a uniform flexural system in the basic expression for the
specific heat, Eq. (5), one may show that,
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Ld<ml/2ka)d/2d d
Cv = kb

i) 551 Jaann @
at low temperatures. Here, { is the Riemann zeta function. In
1D, the heat capacity varies as 7'/2, while in 2D the predicted
temperature dependence is 7, as we have found above. This
behavior should set in at temperatures such that the higher-
order waveguide modes are frozen out, 3.5k, T<fimc,/ 6,
where we have used Eq. (2) for the lowest cutoff frequency
of the film. For 20 nm Si, this yields 7= 6 K, a modest tem-
perature. This behavior has not yet been observed but could
certainly be investigated by making measurements on uni-
form free-standing films.

Finally, assuming a constant DOS 7 in accord with the
numerical results in two dimensions, one finds ¢,
=k, (3.3k,T/Ti)n. Therefore, in addition to extending the do-
main in which quantum mechanics has been tested, such spe-
cific heat measurements directly measure the DOS of thin-
film-based nanostructures, provided the DOS is dominated
by the flexural degrees of freedom considered here.

IV. BRILLOUIN SCATTERING

The quantum statistics of a nano-oscillator array can also
be probed in a low-temperature Brillouin-scattering experi-
ment. We follow the usual approach**~2 and approximate
the scattered field due to thermal fluctuations of a nanostruc-
tured array by estimating the classical electromagnetic scat-
tering from a coherently vibrating structure, and then replac-
ing the required power spectra of the displacement fields in
the classical expressions by quantum expectation values.

A. Classical theory

The scattered vector potential due to an incident electric
field E=E, exp(ik;-X—wot) upon the nanostructure is given
in the far field to leading order by?*’

_ iwoei(kR—wot)

AlRD = 47c’R

f Xij(f’,I)onei(ki_k)"f,d3xl;
V(1)

)

i.e., a superposition of dipole fields in the usual fashion. The
volume V(r) is the scattering volume at time ¢ and k

=I§w0/ c is the outgoing wave number. To obtain this result,
we have assumed the incident field to give rise to a polariza-
tion P;=é€yx;;E; with x;; the susceptibility of the system and
E; the total electric field inside the the dielectric. Further, we
have replaced the total electric field by the incident field in
the integration over the nanostructure, a Born approximation
which is reasonable because of the small thickness of the
structure. We have also ignored retardation effects because
the vibrational frequencies are so small relative to optical
frequencies. This approach is similar to that employed by
many investigators,?>?%2% except that we consider the vector
potential as opposed to the electric field, and further, we
allow the scattering volume to be explicitly time dependent.
Our approach is, however, equivalent to that employed in the
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quoted references and is pursued here only for mathematical
convenience.

Brillouin scattering results from volume fluctuations in
the susceptibility®® and, under some circumstances, surface
ripple,*'~33 with the relative contribution of surface ripple
scattering being determined by the opaqueness of the sample.
The volume scattering mechanism is suppressed by a factor
of order (k8)* for flexural waves in thin films, the dominant
excitations in the case at hand, because of the antisymmetry
of the induced polarization across the film. In this case, pro-
vided the reflection coefficient is not vanishingly small, the
dominant contribution to Brillouin scattering at low frequen-
cies (f<20 GHz for the geometry considered) arises from
ripple scattering, a purely kinematic phenomena. We con-
sider only this mechanism below, and take the susceptability
Xi; to be constant.

Only out-of-plane displacements u_(x , ,7) need be consid-
ered to leading order to compute the ripple scattering, be-
cause in-plane motion causes optical scattering only via
weak diffractive effects associated with small changes in the
spacing of the array. Thus we have from Eq. (7)

N _ l(.l) E .ei(kR_th)
AR, 1) =~ ——20Xi=0) &,
s

47¢*R

(X | 0)+612
X j dz' exp(—iq, -x' —igz’) (8)
uz()?i,t)—b‘/Z

where g=k—k; is the change in the incident wave number.
Changing variables in Eq. (8), z'=z+u,(x, ,), to remove the
time dependence of the scattering volume, and assuming the
phase shift k.u.(x, ,f)<<1, we find that the scattered electric
field is given to leading order in 6 and u, by

i(kR—aw1)
4R
X[ao(q,) —iguq,.0)]. 9)

Here u.(q,,t) is the Fourier transform of the out-of-plane
displacement field restricted to the illuminated portion of the
scattering surface S and

E(R.H) =~ K25[R X R X (x- Eo)]

ap(q,) = f d*x exp(-iq-x,) (10)
S

is a static aperture integral.

The differential cross section, the average power scattered
into solid angle d€) and frequency interval dw divided by the
incident power flux, is then obtained by taking the time av-

erage of the Poynting vector S=EX H,

do |r(6))|ko sin g cos 0i>2( X
dQdw ( 2 2m8(Aw)|ay(q )]
q2
+6Z|UZ(QL,A(1))|2>, (11)

where © — o is the time window for the Fourier transform.
We have at this point taken the susceptibility y;; to be iso-
tropic, x;;=xJ;, to achieve a simpler result, and have taken
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the frequency shifts to be small, wy/w,=1. The factor of
sin? ¢ gives the dependence on the polarization of the inci-
dent field, sin 1//:1% X Ei, r(6;)=—ikSx/(2 cos 6;) is the reflec-
tion coefficient of the film for incident polarization perpen-
dicular to the scattering plane, and Aw is the change of the
incident frequency. The first term in Eq. (11) gives the
Rayleigh-scattering peak while the second term gives the
contribution due to scattering from surface ripple.

Checks on Eq. (11) are provided by assuming the nanoar-
ray to be a uniform film. We assume here that the incident
field is polarized perpendicular to the scattering plane
(sin y=1). To check the overall normalization, let us first
consider the total cross section for Rayleigh scattering,

dz(TR
=| dQd . 12
7R f “d0 do (12)
Provided the surface is large, we have |ay(g)|?

~[(2m)28*(q)? =A(2m)*5*(g). Changing from angular vari-
ables to wave number via

K% sin 0 cos 0d0dep= dk,dk, (13)

we quickly find the total cross section for Rayleigh scattering
to be og=|r(6,)|?A cos 6; in agreement with elementary re-
sults.

As a further check, in the case of illumination by a two-
dimensional beam of light of width 2L incident upon the film
at angle 6 in the xz plane, we may quickly find from Eq. (9)
the scattered electric field in the specular direction,

|E| =

|r(6;)cos aikoano(0)| r(6; )koL|Eo|
2R TR

— (0)11/2’

(14)

and the scattered intensity IQ=|EQ|2 from an assumed sinu-
soidal velocity field &, cos(Qx—wt),

Io=1o|r(6)1*(q.65/2)°, (15)

in agreement with standard results from optics.>* To obtain
these results, we have replaced ag(g) with the two-
dimensional equivalent ay(g)=2L/cos 6;, where the surface
integral is restricted to the illuminated area of the film. Fi-
nally, Eq. (11) is in agreement with that obtained by Albu-
querque et al.® for an optically thick isotropic film [see Eq.
(50) in that paper], though our reasoning differs from that
employed in the reference.

B. Cross section of the nanoarray

u.(¢,Aw)|? in Eq. (11) as a ther-
mal average and replace u.(g,Aw) by the associated second-
quantized field*?

2
M(XJ_,t) 2 f (dk (

27)?

172
) [ank eXP(— iwnkt)
2mw Wk

X Mnk(-x) + ar;k eXP(+ iwnkt)u;:k(x)] (16)

where the a,(a,,) are the usual creation (annihilation) op-
erators for mode nk, the u,;(x) are the eigenfunctions, and
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we have suppressed the index z on the u,, for convenience
(recall that m=pd is the mass per area). The sum and integral
are over the states of the periodic nanostructure, summed
over the band index n and integrated over the first Brillioun
zone in the Bloch wave number k. We have approximated the
discrete sum of Bloch wave numbers by an integral. Recall,
the u,;(x) are determined in terms of the numerically com-
puted U, (x) in the unit cell as u,;(x)=exp(ikx)U,(x). The
normalization is

JdS unk(x)u:rkr(x) nn' (277)252(k k') (17)

and the commutation relations are similarly

[}y = 8, QY2 E (k= K). (18)

In the usual fashion,?? we find for the thermal average

Aw)|2>T: 92 f

- wnk)nAw(T)|unk(('I)|2 + 2775(Aw + 0‘)nk)
X[”Aw(T) + 1]|unk(_ C])|2}, (19)

where nwa(T) is the Bose distribution, and the two terms
correspond to phonon absorption and emission processes.
Equation (19) is a two-dimensional version of the general
result for a scalar quantum field.??

Provided the illuminated surface S is large, containing
many elements in both the x and y directions, the Fourier
transform of the Bloch wave function u,, takes on the simple
form

d2k< #

27\ 2mas ){2 7 Aw

un(q,)=Q2mla)’ (g, —k )Uulg, —k,),  (20)

where
Sk =[al2m 2 exp(=ik-ma) = X 8k~ Q)
21

is a lattice delta function and

Unk(Q) = f dzx CXP(— lq : fL)unk(xL) (22)

is the Fourier transform of the mode shape of a single ele-
ment of the array. Here, N is the number of elements illumi-
nated by the incident light beam, assumed to be large, and Q;;
are reciprocal lattice vectors.

The normalization requirement Eq. (17) implies
L eenl Uni(x)|*=a?, the area of a unit cell of the array, so that if
the area of an individual element is /2, we have U, ~ (a/l). It
is therefore convenient to define a dimensionless source
strength

Jnilq) = (1a)"' U (q) (23)

where for a uniform wave function we have j,(¢)=1.
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Using Eq. (20), the sum over normal modes indicated in
Eq. (19) thus collapses. Substituting into the expression Eq.
(11), we find the result for the Brillouin scattering cross sec-
tion,

o N . .
(dQ dw) = ZTE [r(0)sin o kog I*Ax ., (O
B n

X [8Aw = w,,)n,(T)
+ 8(Aw + w,,)(n,(T) + 1)] (24)

where the sum is over the subband index n, w= |Aw ,and Oz
is the unique reciprocal lattice vector satisfying wave vector
conservation; i.e., g=k+ Q.

The cross section for Brillouin scattering is proportional
to the mean square displacement of the ground state of a
single oscillator, Ax*=#/(2ml’w), the geometrical factors,
the total number of oscillators N participating in the scatter-
ing, and the Bose factors. The scaling behavior of the cross
section results from the coherent scattering associated with
the N oscillators, each moving with average displacement
Axy=h/12NmPw)'2.

One must integrate over an appropriate measurement
bandwidth and aperture to obtain a prediction of an observ-
able quantity. We consider here a particularly simple situa-
tion: (1) the measurement bandwidth Sw is far greater than
the individual linewidths and at the same time far smaller
than the bandwidths of the spectrum; and (2) the aperture is
large enough to contain all frequencies in the measurement
band. In this scenario, the integrations over frequency and
solid angle may be estimated in terms of the DOS of the
system. For a power P; incident upon the array, with associ-
ated flux ®;=P,/(Na*cos6,), we find the Brillouin scattered
power into the anti-Stokes peak for example,

Pg(dw) = P[r(6,)sin ququ(l/a)zjq(Q,ﬁ)]z

an(T)<M)M (25)

cosf, N

where 6, is the polar angle of the outgoing wave number, N,
is the total number of elements in the array, and N,(w, dw) is
the number of states with out-of-plane polarization in the
measurement band.

We have assumed in obtaining Eq. (25) that a single sub-
band contributes to the cross section, and that the source
strength j, may be assumed constant, assumptions which
may be violated depending on the measurement bandwidth
and resulting solid angle. If these conditions are violated, Eq.
(24) may need to be directly integrated and/or multiple sub-
bands may need to be included.

The Brillouin scattering clearly reveals significant infor-
mation about the DOS, and more generally the dispersion
relations, of the system and is commonly used in this fash-
ion. The scattered power is however also proportional to the
mean number 7, (T) (anti-Stokes) or nw((T)+1 (Stokes) of
phonons present at temperature 7. Therefére, a measurement
of the temperature dependence of the Stokes (anti-Stokes)
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peak would provide direct evidence that the mode ¢ is obey-
ing quantum statistics. Another measurement that has been
carried out is the ratio of the Stokes to anti-Stokes peak,”*
which has the advantage of not requiring a temperature scan.
Clearly, in either case, measurements are required in the tem-
perature range k, T~ fiw, to investigate the quantum statistics
of mode g¢.

One final aspect we wish to point out is the effect of
fabrication error in the structure. Topological disorder in-
duced by such error reduces the coherence of the Bloch
modes and thus the levels of the Stokes and anti-Stokes
peaks. Near band edges, however, the Bloch modes of the
array are localized by irregularity in the system,’® and the
higher resulting vibration levels partially compensate for the
loss of coherence. The mean square displacement level asso-
ciated with quantum level motion increases as &2 as the
localization length £ decreases. Assuming the g=2|k|sin 6/2
selection rule breaks down as a result of the localization, as
in the case of amorphous materials,?’ all q’s contribute to the
scattering at each angle, and the strength of the scattering is
proportional to the area of mode coherence I ([ is the coher-
ence length). The cross section for Brillouin scattering will,
therefore, be proportional to (I/€)*n(w), where n(w) is the
density of states. For strong localization of a resonance near
a band edge, [/ ¢ is of order 1, and n(w) is of order N, leading
to a scattered power of the same order of magnitude as given
in Eq. (25). This phenomenon should be observable near the
band edges associated with the gaps at 1.5 and 6 GHz for the
geometry considered here.

V. DISCUSSION

Here, we consider briefly the order of magnitude of the
quantities we have predicted in order to assess whether such
measurements are possible in principle. Consider a 1000
X 1000 array with the geometry as shown in Fig. 1. Using
the numerical results from Fig. 2, we find the heat capacity
of the sample to be ~1.6X 107! J/K at 100 mK. This is
certainly small but orders of magnitude larger than in a
nanocalorimeter,>?? and thus it would seem plausible that the
smallness of the heat capacity does not in itself pose a fun-
damental difficulty.

In the context of Brillouin scattering, we assume the
source strength j,=1, a reasonable approximation for a
locally rigid-body mode, and assume the polarization-
dependent factor sin? ¢=1. We first note from Egs. (11) and
(24) that provided one is roughly 5° away from the Rayleigh
peak (the specular direction) along a diagonal, the level of a
Brillouin peak is larger than the Rayleigh wing. To estimate
the power level we take the optical wavelength of normally
incident light to be 500 nm, N, (w, Sw)/N=1/4 (1/4 of the
number of modes in a subband), P;=100 uW (a heat load
well within the cooling capacity of many current systems), a
1 GHz frequency shift, #=/8, and n, (T)=1; we then find
a Brillouin-scattered power of about 10 photons/s into the
Stokes peak. And thus in this case as well, there does not
seem to be a fundamental theoretical difficulty in carrying

165314-7



PHOTIADIS, BUCARO, AND LIU

out the measurement.

Performing such experiments at low temperatures would
enable us to observe the quantum statistics obeyed by states
involving center-of-mass motion of large numbers of atoms
and thus verify that the energy levels of these states are
quantized. We have not examined the possibility of employ-
ing such a system to explore coherent quantum phenomena,

PHYSICAL REVIEW B 73, 165314 (2006)

but because the observation of small occupation number
states is not out of reach, such an attempt seems promising.
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