
Transport in chaotic quantum dots: Effects of spatial symmetries which interchange the leads

Victor A. Gopar,1,2 Stefan Rotter,3 and Henning Schomerus1,4

1Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany
2Instituto de Biocomputación y Física de Sistemas Complejos, Universidad de Zaragoza, Corona de Aragón 42,

50009 Zaragoza, Spain
3Institute for Theoretical Physics, Vienna University of Technology, 1040 Vienna, Austria

4Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
�Received 15 December 2005; revised manuscript received 2 February 2006; published 10 April 2006�

We investigate the effect of spatial symmetries on phase coherent electronic transport through chaotic
quantum dots. For systems which have a spatial symmetry that interchanges the source and drain leads, we find
in the framework of random matrix theory that the density of the transmission eigenvalues is independent of
the number of channels N in the leads. As a consequence, the weak localization correction to the conductance
vanishes in these systems, and the shot noise suppression factor F is independent of N. We confirm this
prediction by means of numerical calculations for stadium billiards with various lead geometries. These
calculations also uncover transport signatures of partially preserved symmetries.
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I. INTRODUCTION

Over the past years transport experiments on phase coher-
ent mesoscopic systems have attained unprecedented levels
of sophistication.1–3 It is now possible to precisely design
and control the geometries of quantum dots while reducing
the effects of impurity scattering to a level where the trans-
port can be considered as purely ballistic �with scattering
only off the confining boundaries�.1–5 For geometries which
give rise to chaotic classical motion, universal system prop-
erties are expected.2,3 Prototypical chaotic cavities �such as
the stadium and the Sinai billiard� do, however, feature geo-
metrical symmetries that leave signatures on the transport
properties,6–9 which we investigate in the present communi-
cation. In particular, we consider systems with a lead-
transposing reflection symmetry which interchanges the
source and drain leads that couple the dot to the electronic
reservoirs �see, e.g., Figs. 1�a� and 1�b��, and contrast them
with systems that do not possess such a symmetry �see, e.g.,
Figs. 1�c� and 1�d��.

Our investigation is based on random-matrix theory
�RMT� for the scattering matrix.10,11 In fact, the present
RMT problem is long standing, dating back to almost
10 years ago when first theoretical and numerical results
were presented in Refs. 6 and 7, respectively. These earlier
works identified the correct invariant measure of the scatter-
ing matrix and they studied several statistical properties of
the conductance. Here we give the complete solution of this
problem by deriving the joint probability density of transmis-
sion eigenvalues, which determine all stationary transport
properties, for an arbitrary number of open channels sup-
ported by the leads attached to the quantum dot. The density
of the transmission eigenvalues turns out to take a particu-
larly simple form. A striking signature of the solution is the
absence of any nontrivial dependence of the ensemble-
averaged conductance and shot noise on the number of open
transport channels. This prediction is confirmed numerically
for stadium billiards with different geometries. Our theory
also explains the deviations from standard random-matrix

theory observed in earlier numerical investigations.12

The random-matrix theory of transport10,11 is based on
Landauer’s scattering approach, which describes the trans-
port properties by the scattering matrix

S = �r t�

t r�
� , �1�

composed of amplitudes for transmission �t , t�� and reflection
�r ,r�� between the channels in the entrance and exit lead,

FIG. 1. Distribution of transmission eigenvalues ���� �normal-
ized to the sample size�, for N=1, in stadium geometries with lead-
transposing left-right symmetry ��a�, �b�� and without global sym-
metry ��c�, �d��. The numerical data �histogram� are compared with
the corresponding RMT predictions �solid lines�. Due to the hori-
zontal alignment of the entrance lead in �c� a fraction of back-
reflected paths have an up-down reflected partner trajectory of equal
length �see, e.g., pair of dashed lines�. Although for a class of tra-
jectories the corresponding partner is cut short by the exit lead �see,
e.g., pair of solid lines� transport is strongly influenced by this
partial symmetry. Cavity area �a� A= �4+�� /2, �b�, �c�, �d� A=4
+�, lead widths �a� d=0.125, �b�, �c�, �d� d=0.25, and entrance lead
tilt angle in �d� �=11.8°.
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respectively. We assume that both leads support the same
number of open channels N. We investigate the transport
properties in terms of the eigenvalues �n of t†t which deter-

mine the conductance GN= Ḡ�n=1
N �n �where Ḡ=2e2 /h is the

conductance quantum� and the shot noise power13 PN

= �2eḠV��n=1
N �n�1−�n� �where V is the applied voltage�. For

uncorrelated electrons the shot noise power is given by the

Poisson value P̄N=2eI, where I is the time averaged current.
Fermi statistics, however, induces electronic correlations and
deviations from the Poisson value which are customarily
quantified by the Fano factor

FN =
�PN	

�P̄N	
=

��n=1

N
�n�1 − �n�	

��n=1

N
�n	

, �2�

where �¼	 stands for ensemble or energy average.

II. JOINT PROBABILITY DISTRIBUTION
OF TRANSMISSION EIGENVALUES

Throughout this paper we assume the absence of magnetic
fields and spin-orbit scattering, hence, we consider time-
reversal symmetric systems without Kramers degeneracy.

A. Chaotic quantum dots without spatial symmetries

As a benchmark for our results we use the well-
established random-matrix theory for such systems in ab-
sence of any spatial symmetries10,11 �see the geometries in
the bottom row of Fig. 1�. The scattering matrix is then a
member of Dyson’s circular orthogonal ensemble �COE�,14

and the joint probability distribution of the transmission ei-
genvalues �n is given by

W�
��� = �
n�m


�m − �n
�
i

�i
−1/2. �3�

For a large number of channels N→�, the density of trans-
mission eigenvalues �N���= ��n

N���−�n�	 approaches the bi-
modal distribution15,16

�N��� � ����� = N�����1 − �� �−1. �4�

This gives an ensemble-averaged conductance �GN	=G�

+O�N0�, where G�=NḠ /2, and a Fano factor FN=F�

+O�N−1�, where F�=1/4.
The bimodal distribution Eq. �4� is only valid asymptoti-

cally for large N. The leading finite-N correction for the con-
ductance is the well-known weak-localization correction

�GN	−G�=−Ḡ /4+O�N−1�.10 Similar corrections exist also
for other transport properties such as the Fano factor. Gener-
ally, they can be related to deviations of �N��� from �����,
and are most pronounced for a small number of channels.

For a single channel �N=1�, the density of transmission
eigenvalues is given by15,16

�1��� =
1

2��
; �5�

hence the conductance and shot noise power is given by

�G1	 / Ḡ=1/3, �P1	 / �2eḠV�=2/15, respectively. The Fano
factor is then F1=2/5.

For two channels, from Eq. �3�, we find

�2��� = 4� − 3�� +
1
��

. �6�

Thus �G2	 / Ḡ=4/5, �P2	 / �2eḠV�=9/35, and F2=9/28.
These results show that for a small number of channels the
corrections to the large-N asymptotics are clearly noticeable.

B. Chaotic quantum dots with spatial symmetries

We now turn to systems with a spatial reflection symme-
try which interchanges the leads, such as the geometries of
Figs. 1�a� and 1�b�.

For a left-right symmetric structure, Fig. 1�a�, the scatter-
ing matrix has the structure

S = �r t

t r
� , �7�

where r and t are symmetric N	N matrices. Matrices of this
structure can be cast into a block diagonal form by using the
rotation matrix6

R =
1
�2

� 1 1

− 1 1
� , �8�

i.e.,

S̃ = RSRT = �s1 0

0 s2
� , �9�

where s1=r+ t and s2=r− t are symmetric unitary matrices.
In terms of these matrices, the transmission matrix is given
by t= 1

2 �s1−s2� and the reflection matrix is given by r= 1
2 �s1

+s2�.
The transmission eigenvalues are obtained from the ma-

trix

tt† =
1

4
�2 − s1s2

† − �s1s2
†�†� , �10�

which involves the unitary matrix Q=s1s2
†. Note that Q and

Q† can be diagonalized simultaneously. Hence, the eigenval-
ues exp�i
n� of Q determine the transmission eigenvalues by
�n=sin2�
n /2�.

In random-matrix theory the matrices s1 and s2 are as-
sumed to be independent members of the COE. We then can
show that the joint probability distribution of the eigenvalues
exp�i
n� is also given by the COE.17,18 The matrix Q can be
symmetrized by the unitary transformation Q�=s2

−1/2Qs2
1/2

=s2
−1/2s1s2

−1/2, which leaves the eigenvalues invariant. More-
over, the COE is invariant under the automorphism Q�
→UTQ�U, where U is an arbitrary unitary matrix which we
identify with U=s2

−1/2. Hence the eigenvalues of Q inherit the
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COE statistics of s1, and the joint distribution function of
transmission eigenvalues takes the form

W�
��� = �
k
���k�1 − �k��−1/2 �

�k=±1
�

	 �
n�m


�m
��m�1 − �n� − �n

��n�1 − �m�
 . �11�

The probability density �N��� can be obtained directly
from the uniform distribution of eigenphases 
n in the COE.
This yields �N���=����� �given in Eq. �4�� exactly, for any
value of N. Hence the ensemble-averaged conductance is

given by �GN	=G�=NḠ /2, i.e., the weak-localization cor-
rection is absent. Moreover, the Fano factor is given by FN
=F�=1/4. The absence of any N-dependent corrections is in
striking contrast to the previously discussed case of asym-
metric systems.

C. Chaotic quantum dots with fourfold symmetries

The results above also apply to systems with a 180° rota-
tional symmetry mapping the leads onto each other. They
can also be extended to incorporate further spatial symme-
tries which may be present in addition to the lead-
transposing symmetry. For systems with two leads, the only
remaining case is the fourfold symmetry as indicated in Fig.
1�b�. In this case, the S matrix can be written as

S = �Se 0

0 So
� , �12�

where Se and So are the scattering matrices associated with
the even and odd channels, respectively. Each matrix Se�o�
has the structure of Eq. �7�; thus each of them can be ana-
lyzed by the same procedure as in the previous lead-
transposing symmetry case and the statistical transport prop-
erties are given by the superposition of the even and odd
subsystems. For a cavity with a fourfold symmetry we there-

fore have �GN	= ḠN /2 and a constant Fano factor FN=1/4.

III. NUMERICAL SIMULATIONS

We now compare our theoretical results to numerical
simulations of stadium billiards which feature the four dif-
ferent setups depicted in Fig. 1. The numerical data are ob-
tained by solving the Schrödinger equation using a modular
recursive Green’s function method which allows for an effi-
cient calculation of the scattering matrix even for a large
number of open channels.19

The most drastic effects of the lead-transposing reflection
symmetry are expected for the case of a single channel in the
leads �N=1�. Figure 1 compares the numerical probability
distribution �1��� with the analytical predictions for the sys-
tems with and without a lead-transposing reflection symme-
try �see upper and lower panel, respectively�. Note that for
each of the two pairs of geometries the numerical results �i�
show a clear signature of the absence/presence of the sym-
metry and �ii� we can see a good agreement with the analyti-
cal predictions.

Several earlier studies have demonstrated that dynamical
signatures of geometries can also be identified in terms of the
Fano factor.12,20–28 Figure 2�a� shows the Fano factor for the
symmetric geometries as a function of the number of chan-
nels. For the two systems with lead-transposing reflection
symmetry our numerical simulations show an overall con-
stant behavior of the Fano factor with the number of chan-
nels, around F=1/4, in agreement with our modified
random-matrix theory. The modes of the left-right symmetric
cavity in Fig. 1�a� are identical to the modes with even index
of the cavity in Fig. 1�b�. Therefore, the presence of the odd
channels in our fourfold symmetric cavity does not change
the statistical properties of the transmission eigenvalues as
predicted above. The flat behavior of the Fano factor in the
symmetric cavities is nicely contrasted by the results for the
two geometries without symmetry, Fig. 2�b�: As predicted by
the conventional random-matrix theory �absence of spatial
symmetries� the Fano factor decreases as N increases and
approaches its universal value 1/4 for large N.30

Note, however, that in Fig. 2�b� the Fano factor of the
geometry with the horizontally attached lead �Fig. 1�c�� con-
sistently lies above the RMT prediction for small channel
numbers. This feature can be attributed to the fact that in this
geometry a significant fraction of back-reflected classical
tractories come in pairs of two equally long paths which are
related to each other by an up-down mirror reflection. This
feature does, however, not apply to those trajectories the mir-
ror images of which are cut short by the exit lead �see the
two trajectory pairs in the inset of Fig. 1�c��. Since this “par-
tial” symmetry enhances the constructive interference of re-

FIG. 2. Energy-averaged Fano factor in different mode intervals.
Upper panel: Numerical data for systems with a lead-transposing
symmetry �see Figs. 1�a� and 1�b�� compared with the correspond-
ing mode-independent random-matrix prediction �F=1/4, solid
line�. Lower panel: Analogous plot for systems without global sym-
metry �see Figs. 1�c� and 1�d��. The deviations to the RMT result
�solid line, numerically obtained from Eq. �3� for N�2� for the
geometry depicted in Fig. 1�c� can be explained in terms of the
partial symmetry of short trajectories in the structure.
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flected paths but spares all transmitted trajectories, the weak
localization contribution to the conductance and the shot
noise power are increased. By tilting the entrance lead
slightly �as in Fig. 1�d�� this effect should be destroyed, re-
sulting in transport statistics which follow the RMT predic-
tion. Checking with our numerical data in Fig. 2 we note that
this assessment is indeed nicely corroborated. Given this
excellent agreement, one might wonder why recently pro-
posed corrections to RMT due to “noiseless scattering
channels”24–26,29 do not apply in the present cases. Due to the
small ratio of lead width d to cavity area A in our geometries
�see caption Fig. 1� the criterion for the emergence of such
fully transmitted or reflected channels, N
 �kF

�A�1/2,24 is,
however, not fulfilled in the energy regimes studied above
�for the highest energy considered here: N=7 and �kF

�A�1/2

�15�.

IV. SUMMARY

We have studied analytically and numerically the effects
of spatial symmetries on electronic transport properties of

ballistic lateral quantum dots, modeled by a quantum chaotic
cavity. Especially, we considered geometries with a symme-
try which maps the two leads onto each other. For such sys-
tems, random-matrix theory can be solved exactly for an
arbitrary number of channels N in each lead. We predict that
finite-N corrections are absent for all transport quantities,
such as the conductance and the shot noise. This is confirmed
by our numerical simulations. We further explored the effects
of partial symmetries on transport which, as we showed, can
yield significant corrections to the random-matrix predic-
tions.
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