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Spin-blockade effects in spherical quantum dots
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By performing density-functional effective-mass-theory calculations on spherical quantum dots, we show
the phenomena of spin blockade effects. It is observed that the spin-blockade depends on the shape of the
confinement potential, size of the dot, and depth of the potential.
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With novel techniques of fabrication, it is possible to cre-
ate quantum structures which can confine hundreds of
electrons.! These systems are known to show some very in-
teresting behavior such as Coulomb-blockade and shell-
filling effects.”” In the recent past, a new effect called spin
blockade has also been observed in these systems.®~!* The
effect was predicted theoretically for confined two-
dimensional (2D) electron gas in a dot'"!> by Weinmann et
al. Using a model Hamiltonian approach, they solved the
master equation and calculated the dc current using the Lan-
dauer formula. As proposed by Weinmann et al.'> there are
two kinds of spin-blockade mechanisms. The so-called spin
blockade of the first kind, which is related to spin-polarized
N-electron states and leads to negative differential conduc-
tance. The addition of the electron changes the total spin of
the system by 1/2—i.e., AS=1/2 in this case. This effect
was later described by Franceschetti and Zunger as a viola-
tion of the Aufbau principle.” They studied the ground-state
configuration of an N-electron system in strongly confined
InAs, InP, and Si quantum dots (QD’s) of diameter ~30 A.
In their study they used pseudopotential single-particle ener-
gies and wave functions as input to the many-body expan-
sion of the total energy.

The spin blockade of the second kind is a more general
effect and is observed when the total spin of two successive
ground states with N and N+1 electrons differs by more than
1/2 (AS>1/2).%"> This leads to a suppression of the con-
ductance in linear and nonlinear transport through a QD. In a
recent work, Destefani et al.!° studied spin-blockade effects
in a spherical QD. They observed the spin blockade of the
first kind in their 3D system and called it an “L blockade” or
orbital blockade, which leads to negative differential conduc-
tance in linear and nonlinear transport. In addition they also
found the spin blockade of the second kind.

Weinmann et al. have claimed that both spin effects can
be suppressed by a sufficiently high magnetic field. This is
supported by experimental work on a single dot!'* and on
double dots.'* On the other hand, Imamura ez al.'” in a model
calculation based on an exact diagonalization method have
predicted that by applying a high magnetic field, the total
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ground state spin of N and N+1 electron QD’s can be al-
tered. Thus, the total spin of the two successive ground states
is found to alter by more than 1/2 at some specific values of
the applied magnetic field. This results in a spin blockade.
Also, their results suggest that for magnetic fields higher or
lower than these values, a spin blockade is not found. The
above predictions are supported by some experimental
studies.'®!7 In another work Lee et al.® studied the effect of
hydrogenic impurities on the capacitive energy of a QD.
They performed their calculation within the effective mass
theory (EMT) and solved the resulting many-electron
Schrodinger equation using the local-spin-density approxi-
mation (LSDA). By moving the impurity off center they
demonstrated the spin-blockade effect for the impurity posi-
tion intermediate between the center and surface.

In contrast to earlier EMT-LSDA work,® we demonstrate
spin-blockade effects without an impurity in the QD. In our
calculations we take into account the effect of the shape of
the confinement potential, which has not been considered in
previous calculations, and show that for certain shapes, spin-
blockade effects occur. We refer to the spin blockade of the
first kind as a strong spin blockade (SSB) and to the spin
blockade of the second kind as a weak spin blockade (WSB).
We find that spin blockades depend on the shape of the con-
finement potential, size of the QD, and depth of the potential
and that these effects modify the shell structure of the QD.

We choose our model QD to be spherical. The system
under consideration has been synthesized by many workers
using a colloidal chemistry method.* We use the EMT-LSDA
methodology in our calculations to solve the Kohn-Sham
equation. The Gunnarsson-Lundqvist parametrized form of
the exchange correlation potential has been used.'®

We model the external potential as®!°
(Vy/ROF* =V, r<R,
Veulr) = (1)
0, r>R,

where V), is the depth of the potential and can be given by the
conduction band offset (valence band offset) between the QD
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and the surrounding layer for the electron (hole). R is the
radius of the QD. Changing the value of k results in a change
of the shape of the potential. In particular k=2 is the har-
monic confinement case and k— is the square well case.
We have used effective atomic units, in which i=m,=e=1,
and the unit of energy is 27.2 m"/€> eV and that of length
(size) is 0.53e/m" A, where m” is the effective mass of the
electron inside the QD in units of m,, the free electron mass,
and € is the relative dielectric constant of the material. The
calculations were done fully self-consistently using appropri-
ately modified Herman-Skillman code.?°

There is no general consensus about the shape of the ex-
ternal confinement potential in which N interacting electrons
move in a dot. In EMT calculations of the excitonic and
optical properties of the QD, the confinement potential is
modeled by a square well, in which the barrier posed by the
surrounding matrix may be finite or infinite.?! On the other
hand, Coulomb-blockade calculations have been carried out
using a harmonic confinement potential.>>?* There is no rig-
orous justification for either. Lee et al.** have reported cal-
culations with anharmonic confinements too. Some studies?
have indicated that the potential shape is different from these
two and plays an important role in determining the above-
mentioned properties. We note that the electron-hole Cou-
lomb interaction in EMT with a square well has been known
to scale as 1/R. However, an LDA calculation?® with as
many as 800 atoms indicates that the scaling is sublinear
(1/R"7). This implies that the many-body physics of the QD
would be described better in EMT if the well were neither
strictly square nor purely harmonic.

The form of potential we have chosen [Eq. (1)] gives the
possibility of tuning the shape of the confinement. For ex-
ample, if we take the external confinement potential to be
parabolic, it means that the N interacting electrons see the
background positive charge as uniformly distributed over a
sphere of radius R. Similarly, if the background charge den-
sity varies linearly from the center of the sphere of radius R
towards the surface, then we may assume the confinement
shape to be cubic. This is possible by surrounding the QD
into a matrix of a material (dielectric or polymer) so that the
adhesive force is larger than the cohesive force. Then there
may exist a linearly varying background charge density, giv-
ing rise to the cubic confinement. If there are excess charges
on the surface then the confinement potential may be as-
sumed to be a quasisquare well. Some evidence for a non-
uniform background charge density is available from the
first-principles calculations of Buda et al.?’

Through our calculations we find spin blockades for k
=3,4,8,10, etc., but not for k=1 and 2. In particular, for k
=3 (cubic potential), we find that spin-blockade effects are
more prominent and are observed over a large variation in
the size of the QD and the depth of the confinement poten-
tial. However, for k=4, 8, and 10 spin blockades occur for
large N. This means that spin blockades are observed only
when the background charge density is more towards the
surface.

The amount of energy needed to add an electron into the
dot is known as the capacitive energy or the addition energy,
defined as
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FIG. 1. Capacitive energy ¢>/C(N) as a function of the total
number of electrons, N, for k=3, R=8, and V=10, 20. Electrons
are filled according to Hund’s rule. The strong- and weak-spin-
blockade effects are shown by arrows. Notice that weak spin block-
ade is suppressed at large V.

2

C(N)

=E(N+1)-2E(N)+EN-1), (2)

where E(N) is the total ground-state energy of an N-electron
QD. Note that we are working within EMT and employ con-
stant effective mass of the electron inside the potential well.
Nonetheless, employing a constant effective mass is appro-
priate as long as the wave function tail outside the well is
negligibly small. We point out that the depth V,; employed
may take care of both the band offset as well as to some
extent the difference in the effective masses inside and out-
side the well. Reference 21 discusses the complementary role
of barrier height and effective masses by introducing a new
scale: namely, the mass modified strength of the potential. In
Fig. 1, we depict the capacitive energy with the number of
electrons, N, added for k=3 (cubic potential). Interestingly,
both the strong and weak spin blockades are more prominent
for the shape index k=3. The size R is taken to be 8, and
depths of the confinement potential V|, are 10 and 20. Elec-
trons are filled in the dot according to Hund’s rule. Note that
for V,=10, the capacitive energy plot exhibits an irregularity
at N=26. This is the signature of WSB at N=26. The elec-
tronic  structure of the QD with N=25 s
15%,2p®,3d'%, 25" 25!} 45T, The addition of 26th electron
changes the electronic structure of the dot as
15%,2p%,3d'0,2s'T, 4171 [AS=|S(26)-S(25)|>1/2]. As V,
becomes larger, the weak spin blockade disappears and we
recover the original shell structure at N=26:
ls2,2p6,3d'0,2s”,2s'l,4f6T. In addition to this we also ob-
serve SSB. This is found to show up at N= 38, 49, and 70
when V, is 20 as indicated in Fig. 1 by arrows.

Figure 2 is also for cubic confinement (k=3). We take the
size R=10 and V=10, 20. The inset is for R=12 and V,
=10, 12. We note that both strong and weak spin blockades
are observed over a wide range of confinement potential at
R=10. Notice that the shell structure is destroyed due to spin
blockades. It becomes irregular, and the heights of peaks are
suppressed. This is due to increase in the exchange-
correlation energy. For R=10, V=10, the weak spin block-
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FIG. 2. Capacitive energy e¢*/C(N) as a function of the total
number of electrons, N, for k= 3, R=10, and V,=10,20. Electrons
are filled according to Hund’s rule. The inset is for k=3, R=12, and
Vp=10,12. Notice that with an increase in the size the weak spin
blockade (WSB) is suppressed. However, we still find strong spin
blockade (SSB) for this case.

ade occurs at N=21. The electronic structure from N=20
to N=21 changes as 1s5%,2p%34d'"0,2s'7,25'0  to
15%,2p%,3d'0,2s'T,42T  [AS=|S(21)-S(20)|>1/2]. The
strong spin blockade occurs at N=36. The electronic
structure from N=35 to N=36 changes as 1s2,2p°,
3d'0,25%,4f14,3p!T to 152,2p%,3d"°,25%,4f14,3p!1, 5.

The electronic structure in the case of R=10 and V,
=20 after the addition of 25th electron is
15%,2p%,3d'0 25", 25" 4751, The addition of a 26th electron
causes the 2s! electron to flip its spin and go to the 4f'
orbital so that the total ground-state energy is minimized.
This happens because the system gains energy in the form
of total exchange interaction energy and the correspond-
ing lowering in the electron-electron interaction energy.
Consequently  the new  electronic  structure  is
15%,2p%,3d'0,2s'1,4f7", with a total spin change |S(26)
-S(25)|=3/2 (weak spin blockade). Similarly the electronic
structure after the addition of a 37th electron is
152,2p%,3d'%,2s2,4f'*,3p31. Now the 38th electron does not
go to the 3p!! orbital; rather, it goes to the 5g'! orbital. This
happens due to the spin blockade of the first kind or strong
spin  blockade. The new electronic structure is
15%,2p®,3d'0, 252,414, 3p31 5¢!1.

The shell-filling sequence for k=3, with size R=10 and
depth of the confinement V=20, is summarized in Table 1.
The points where weak spin blockade occurs are marked by
a dagger and those points where strong spin blockade occurs
are marked by an asterisk. We have observed that the weak
spin blockade occurs at N=26, when R=8 and V,=10 (Fig.
1), but for higher V|, (=12, 15, and 20) it is not found. Simi-
larly, when R=10 and V=10, the weak spin blockade occurs
at N=21, but as we increase V|, it is found to occur at larger
and larger N (Fig. 2). For Vy=12, 15, and 20 it is observed at
N=22, 24, and 26, respectively. It is interesting to note that
for the case R=10, V=20, the weak spin blockade is found
to occur at N=76, 78, and 81 also in addition to N=26 (Fig.
2 and Table I). As we increase the size further—e.g., at R
=12—the weak spin blockade disappears (inset of Fig. 2).

When the size is small, R=8, the strong spin blockade is
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TABLE 1. The electronic structure of a QD. Cubical confine-
ment potential (k=3) is used. We mark with a dagger (1) where
weak spin blockade occurs and with an asterisk (*) where strong
spin blockade occurs.

k=3, R=10, V,=20

N Electronic structure AS
25 152,2p%,3d'0,25'T 251} 41 12
267 15%,2p%,3d"0, 251,471 312
37 1s2,2p6,3d10,252,4f14,3p3T 172
38" 1s2,2p6,3d10,2sz,4f14,3p3T,Sg” 172
46 152,2[76,3d10,252,4f14,3p3T,SggT 172
47" 1s2,2p6,3d10,2s2,4f14,3p31,SggT,Sgu 172
58 15%,2p®,3d",252,4f1,3p31 ,5¢%1,5¢% ,3p3t 172
69 15%,2p%,3d'0,25%,411,3p%,5¢'8, 6011 172
70" 15%,2p%,3d"0,25%,411,3p°%,5¢'8, 6011, 44" 172
73 15%,2p%,3d'0,25%,411,3p%, 5018, 6011, 441 172

74" 15%,2p%,3d'0,252 4114, 3p% 58 6h1T 44T 6h'! 172
75 15%,2p%,3d'0, 252,414, 3p%,5¢'8 61T 44T 6h%! 172
76" 15%,2p%,3d'0, 252,474, 3p% 58 6n'1T 4431 6h*! 32
77 15%,2p%,3d'0, 252,411 3p°,5¢'8 61T 44°T 647! 12
78" 15%,2p%,3d'0,25% 4714 3p°,5¢'8 61T 44%T 6K7! 32
80 15%,2p%,3d'0, 252,414, 3p% 58 61T 4421 6h°! 172
817 15%,2p%,3d"0,25%,4f1%,3p5,5¢'8 6h'11 44", 600 372
901s%,2p%,3d"0, 257, 4f14,3p%, 5¢'8 61", 4d°T ,6h'14 4d°t 172
92 152,2p®,3d'0,25% 41 3p°,5¢"8, 602,440, 7i%1 172

found to occur at N=38 for V=12 and at N=38, 48 for V,,
=15. Whereas for V=20, it is observed at N=38, 49, and 70.
For intermediate size, R=10, the strong spin blockade ap-
pears at N=36 when V=10 and at N=36, 47 when V=12,
whereas for V=15 and 20 it is found to be at N=37, 47 and
N=38, 47, 70, 74, respectively (Fig. 2 and Table I). For large
size, R=12 the strong spin blockade also appears at N=20.
For R=12, V=10 and 12 it is observed at 20, 30, and 44
(inset of Fig. 2). From these observations we conclude that
the spin-blockade effects strongly depend on the size of the
dot and the depth of the confinement potential.

We find that spin blockade is an exchange-driven phe-
nomenon. However, for large N, the electron correlation may
also play an important role. We have verified these by per-
forming our calculations with the exchange-only LSDA, em-
ploying the Dirac exchange functional. One such observation
is encapsulated in the Table II. Notice from Tables I and II
the difference in the electron-filling schemes. We find that
only those electronic levels which are nearly degenerate can
show weak spin blockade. This should be due to the
exchange-driven coupling between the states. Thus an elec-
tron with a down spin in one of the states of a system with N
electrons flips its spin and goes to the state with the maxi-
mum ground state spin of the system with N+ 1 electrons and
lowers the energy. However, with the Dirac exchange-only
approximation, we observe that the weak spin blockade oc-
curs at different N than when the correlation is included. On
the other hand, the number of places where the strong spin
blockade takes place remains unchanged. This means that the

165307-3



R. K. PANDEY, MANOJ K. HARBOLA, AND VIJAY A. SINGH

TABLE II. The electronic structure of a QD. Cubical confiement
potential (k=3) is used. We mark with a dagger (1) where weak
spin blockade occurs and with an asterisk (*) where strong spin
blockade occurs. Calculations are performed using Dirac exchange
only the LSDA.
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48 |

4.6 -

k:3,R:10,V0:20

corr

k=3, R=10, V,=20

N Electronic structure AS
23 15%,2p%,3d'0,25'1 251} 437 1/2
247 152,2p%,3d'0, 251,451 32
37 15%,2p%,3d'0, 252,41 3p31 12
38" 15%,2p%,3d'0, 252, 4714 3p31 561 1/2
46 15%,2p%,3d'0, 252, 4114 3p31 56%1 1/2
47" 15%,2p%,3d'0,252 4714 3p31 56%T 511 1/2
58 15%,2p%,3d'0, 252,471 3p31 56%T,56% 3p3L 1/2
69 15%,2p%,3d'0,252,4f14,3p% 5¢'3, 61T 172
70" 15%,2p%,3d"°, 252,414 ,3p%,5¢'8,6h'1T, 44" 172
74 15%,2p%,3d"0, 252,411 ,3p%,5¢'8, 61T 401 172
75 152,2p°,3d'0, 252,41 ,3p°,5g'8 6h"1 44T 60" 112
80 15%,2p°,3d"0,252,4f1*,3p% 5¢'3 60'1T 4a°T ,6K00 172
817 152,2p%,3d'0,25%,4f14,3p0 58 6n1T 4441 6h3"  3/2
827 1s52,2p%,3d'0,25%,4f1%,3p5,5¢'8, 6111 4437 61100 372
83 1s7,2p%,3d",25%,4f',3p% 508 60" 4d°T 6" 172
91 15%,2p%,3d"0,25%,411,3p% 5018, 602,44, 7i"T 172

inclusion of correlation (in our case we have used the
Gunnarsson-Lundqvist parametrized form) affects the
electron-filling scheme in that it shifts the weak spin block-
ade. It also induces the additional strong (at N=74) and weak
(at N=76) spin blockades (see Tables I and II for a compari-
son of the electronic structure within the correlation-included
LSDA and the exchange-only LSDA). As stated earlier, for
large N, the electron correlation may also play an important
role in spin-blockade effects. In this connection we point out
that within the correlation-included LSDA, the strong spin
blockade occurs at N=74 (see Table I), where the 74th elec-
tron does not occupy the 4d' orbital but rather it occupies the
6h! orbital. This is against Hund’s rule. On the other hand,
within the Dirac exchange-only LSDA, the 74th electron oc-
cupies the 4d' orbital (see Table II). In a recent work?® the
violation of Hund’s rule in spherical QD’s, under applied
magnetic field, has been discussed. We note that the higher
levels in the dot are very close in energy and therefore they
strongly mix together. This may lead to a reordering of lev-
els.

Both strong and weak spin blockades are observed for
intermediate size (e.g., R=10) and larger depths of confine-
ment so that more electrons can be accommodated into the
dot. Spin-blockade effects depend on the shape of the con-
finement (that is, the way the background positive charge is
distributed in a dot), size of the dot, and depth of the con-
finement (that is, the gate voltage applied to a single-electron
transistor). The weak spin blockade can be suppressed when
the size of the QD is small and the depth of the confinement
is large (since the levels are no longer nearly degenerate) as
shown in Fig. 1. For small sizes the degeneracy between the

s Single Spin Flips and Violation of Aufbau Principle

Hund’s Rule and Aufbau Principle---

E_/E

38 1
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FIG. 3. The ratio of total exchange energy to total correlation
energy (E,/E.,,) is depicted as a function of total number of elec-
trons (N) for the case k=3, R=10, and V;=20. The dashed line
shows the case when electrons are filled according to Hund’s rule
and the Aufbau principle, whereas the solid line shows the case in
which a single spin flip gives rise to weak spin blockade and vio-
lation of the Aufbau principle gives rise to strong spin blockade.
The weak-spin-blockade regions are shown by thin arrows whereas
the strong-spin-blockade regions are shown by thick arrows.

4f and 2s states is lifted, because the 4f wave function is
more spread out. At very large sizes also, the weak spin
blockade is suppressed no matter how small or large depth of
the confinement we chose, as shown in the inset of Fig. 2.

To get a better understanding of our observation of spin
blockade effects, we plot in Fig. 3 the ratio of the total ex-
change energy to the correlation energy of the electrons in a
QD as a function of the number of electrons in it. The pa-
rameters chosen are k=3, R=10, and V;=20. The dashed line
shows the case when electrons are filled according to Hund’s
rule and the Aufbau principle, whereas the solid line shows
the case in which a single spin flip? (for the minimum-energy
configuration; the two energies are different when spin
blockade occurs) and violation of the Aufbau principle give
rise to weak and strong spin blockades, respectively. As is
clearly seen, the magnitude of exchange energy is maximum
when the shell is half filled in both cases. However, notice
the dramatic increase in the exchange energy where the spin
blockades occur. The exchange-driven coupling between the
two electronic levels which are fraction of a meV apart may
lead to spin blockades. The difference in the total ground-
state energy between the two schemes of Fig. 3 is equal to
the spin-blockade energy. However, the strength of strong-
spin-blockade energy is larger than the weak-spin-blockade
energy by roughly an order of magnitude and varies from
material to material. The magnitude of weak-spin-blockade
energy varies from 0.01 meV to 1 meV, whereas the magni-
tude of strong-spin-blockade energy varies from 0.1 meV to
10 meV. Table III lists typical weak- and strong-spin-
blockade energies for different materials.

In conclusion we have demonstrated that spin blockade
may be observed depending on the system, its size, and the
environment chosen. Imamura et al.'> found the spin-
blockade effect by varying the magnetic field. Lee et al.®
have shown that moving a hydrogenic impurity off center
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TABLE III. Typical weak-spin-blockade energy at N=26 for different materials and for k=3, R=8, and
Vp=10. The strong-spin-blockade energy at N=38 is listed for different materials and for k=3, R=8, and

Vo=12.
Material R (nm) Vo (eV) WSB energy (meV) Vo (eV) SSB energy (meV)
GaAs 79.6 0.115 0.035 0.138 0.384
InP 71.8 0.130 0.039 0.156 0.434
CdSe 30.0 0418 0.125 0.501 1.395
Si 24.8 0.397 0.119 0.476 1.333
CdS 11.7 1.80 0.539 2.16 6.005
ZnS 5.8 2.23 0.669 2.68 7.455

results in spin blockade. In our case we have varied the shape
of the confinement corresponding to the shape index k [Eq.
(1)], size, and depth of the potential and shown that spin
blockade may occur for k= 3. In particular spin blockade is
more prominent for the case when k=3 and is observed over
a wide range of size and depth of the confinement. We have
found that spin blockades (both strong and weak) are
exchange-driven phenomena and that both depend on the

shape of the potential, size of the dot, and depth of the con-
finement. Weinmann et al.'> have suggested that the spin-
blockade effect can be suppressed by applying a sufficiently
high magnetic field. We have shown that the weak spin
blockade can be suppressed if the size of the dot is small and
depth of the potential is large. On the other hand, if the size
is very large, then independent of the depth of the confine-
ment potential, the weak spin blockade can be suppressed.
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