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The radiative recombination rates of interacting electron-hole pairs in a quantum dot are strongly affected by
quantum correlations among electrons and holes in the dot. Recent measurements of the biexciton recombina-
tion rate in single self-assembled quantum dots have found values spanning from two times the single exciton
recombination rate to values well below the exciton decay rate. In this paper, a Feynman path-integral formu-
lation is developed to calculate recombination rates including thermal and many-body effects. Using real-space
Monte Carlo integration, the path-integral expressions for realistic three-dimensional models of InGaAs/GaAs,
CdSe/ZnSe, and InP/InGaP dots are evaluated, including anisotropic effective masses. Depending on size,
radiative rates of typical dots lie in the regime between strong and intermediate confinement. The results
compare favorably to recent experiments and calculations on related dot systems. Configuration interaction
calculations using uncorrelated basis sets are found to be severely limited in calculating decay rates.
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I. INTRODUCTION

The small size and strong optical properties of self-
assembled quantum dots (QDs) make them appealing candi-
dates for optoelectronic devices.'> When light is absorbed,
photons create electron-hole (eh) pairs (excitons) that be-
come confined in the quantum dot. Recent photolumines-
cence (PL) spectra have measured the recombination energy
of electron-hole pairs with meV resolution.>* Analysis of
single dot PL spectra at different incident light intensities
reveals that the exciton recombination energy is shifted by
other “spectator” excitons and free charges in the dot.>* For
example, the recombination energy is redshifted a few meV
by the presence of a spectator exciton.>* Detailed under-
standing of the effect of spectators on recombination is im-
portant for nonlinear optical applications, such as quantum
logic gates® or turnstiles.®’

The rates of the PL processes determine the steady-state
occupation of the dots for a given incident intensity.* Time-
resolved photoluminescence measurements can track the
electron-hole recombination rate in single self-assembled
quantum dots.* Recent experiments give differing results
about the decay rate of the biexciton relative to that of an
isolated exciton in the same dot. Measurements on a single
CdSe/ZnSe dot find a biexciton decay rate I'yy about equal
to the exciton rate I'y,% while other experiments on similar
sized CdSe/ZnSe QDs report a biexciton decay rate twice
the exciton rate.” Similar measurements in InGaAs have
found T'yy/Ty=1.5* Tyy/Tx=2,'" and even D'y /Ty
~(.33.12

Theoretically, there are two limits to consider for recom-
bination rates. In the strong confinement limit, the exciton
and biexciton wave function is a simple product of the elec-
tron and hole single-particle wave functions in the dot. Cou-
lomb interactions are assumed to only slightly perturb the
wave function. In that case the recombination rates contain
matrix elements of the single-particle wave functions, which
are the same for excitons and biexcitons. Taking into account
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the number of allowed decay channels, the biexciton should
decay at twice the exciton rate, I'yy/I'y=2. The other limit is
the weak confinement limit, which applies when the exciton
binding energy significantly exceeds the single-particle level
spacing of the dot. In that limit, the exciton or biexciton is
bulklike, bound together as a small composite particle. This
exciton or biexciton unit is weakly confined in a dot much
larger than the exciton or biexciton radius. In this case the
dipole matrix element is dominated by the exciton or biexci-
ton structure, which is independent of dot size. The compos-
ite particle has a coherent wave function that extends across
the volume of the dot, leading to constructive addition of
radiative matrix elements for exciton decay. Thus, in the
weak confinement limit, the radiative decay rate of the exci-
ton increases with dot size, until the dot diameter approaches
the wavelength of the emitted light. For the biexciton, the
exciton final state after recombination suppresses this con-
structive enhancement, significantly reducing the value of
I'yx/T'x in the weak confining limit. In the intermediate re-
gime, the exciton wave function generally cannot be sepa-
rated, except for some special choice of the external poten-
tial, such as a harmonic confinement.!® Still, the coherent
extent of the many-particle wave function—the coherence
volume'3>—leads to an increasing decay rate with increasing
dot size and will play an important role in the interpretation
of our results. In this paper we show that the radiative decay
rates of typical self-assembled dots lie in the regime between
strong and intermediate confinement.

Theoretical descriptions of single particle (electron or
hole) states in quantum dots have improved greatly in the
last ten years,>'4~16 yet the description of exciton or multi-
exciton states is not as well developed. The energies of states
with several electrons and holes are usually treated within
first-order perturbation theory. Some spectral energies, such
as the biexciton shift, require treatment of correlation with
configuration interaction (CI) or quantum Monte Carlo
(QMC) techniques.'” The limited accuracy of approximate
CI wave functions is known to affect the calculated
energies.!’
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There have been a few attempts to calculate biexciton
decay rates in quantum dots. Takagahara used a variational
calculation to determine the decay rate of a biexciton in an
infinite barrier spherical dot with dielectric effects.'® More
recently, Ungier'® et al. have calculated the biexciton decay
rate for zinc blende and wurtzite structures. Using CI expan-
sions, Corni et al. have studied the size dependence of exci-
ton and biexciton recombination rates in strain-induced
dots.”® These dots are formed in a near-surface
InGaAs/GaAs quantum well by the stress field of an InP
self-assembled island grown on the surface. These dots have
much shallower confinement than self-assembled dots, are
often much larger, and are well-approximated by truncated
two-dimensional (2D) parabolic confinement. This puts the
strain induced dots well into the weak confinement regime,
contrary to the more common self-assembled dots that are
subject of this paper. Recently, Narvaez et al. have per-
formed CI calculations on InGaAs/GaAs self-assembled
dots beyond the effective mass approximation using
pseudopotentials.?! These CI results must be viewed with
some caution since decay rates are more sensitive than ener-
gies to errors in the wave function, as we will show in this
paper.

In this paper we develop a Feynman path integral descrip-
tion of exciton and biexciton recombination rates. This tech-
nique can be easily applied to complicated dot geometries,
does not depend on a finite basis set, and fully treats corre-
lation. In Sec. II we derive a path-integral expression for the
recombination rate. This expression is then evaluated using a
real-space Monte Carlo technique that we introduce in Sec.
III. In Sec. IV we apply our path integral technique to a
model system and compare with full CI calculations. In Sec.
V we apply both the path-integral technique and the CI ex-
pansion to realistic three-dimensional (3D) models of
InGaAs/GaAs, CdSe/ZnSe, and InP/InGaP dots and com-
pare to single-dot experiments. While our path-integral
method is currently restricted to single-band effective mass
approximation (EMA) models, the insights, trends, and even
quantitative rates revealed in these make them quite useful,
as we conclude in Sec. VI.

II. METHOD

Starting from a standard treatment of electron-hole radia-
tive recombination in the effective mass approximation, we
rewrite the square of the matrix element in the rate equation
as a path-integral expression. In the path-integral formalism,
we will show that the rate is proportional to the ratio of two
path integrals: one with the standard thermal trace, and the
other with a “radiating” configuration that pairs an electron
and hole, as illustrated in Figs. 1(a) and 1(b).

A. Exciton recombination rate within the effective mass
approximation

Our Hamiltonian is a commonly used effective mass
model,
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FIG. 1. (Color online) Illustration of our path-integral calcula-
tion of biexciton recombination rates in self-assembled quantum
dots. We express the rate as a ratio of path integrals with (a) diag-
onal and (b) radiating constraints, see Eq. (6). We evaluate the path
integrals using Monte Carlo integration on realistic three-
dimensional models. A typical path contributing to the integrals for
an InGaAs/GaAs dot is shown in (c). These paths sample the prob-
ability density, energy, rate, and other properties of the radiating
states.

Pi p; < 9
H= 2 w Vh(rh) + 2 e* + Ve(re) + _2 5
m 2m

N, e 25z €ry

(1)

where V, and V), describe a lens-shaped confining potential
and the hole effective masses m, are anisotropic. In contrast
to previous approaches to this problem, we do not construct
single-particle or variational wave functions. Rather, we use
Metropolis Monte Carlo to sample the recombination rate
directly from a path-integral. The path-integral Monte Carlo
(PIMC) method allows us to calculate the density matrix for
the Hamiltonian, Eq. (1). As we describe below, this is an
essentially exact solution without basis set problems or the
difficulties of variational approaches. A snapshot of a typical
path for an electron-hole pair in our simulation is shown in
Fig. 1(c). A sum over all such paths is a complete quantum
mechanical solution for the model, Eq. (1).

The rate of spontaneous decay of an exciton into a photon
is the sum of the rates of all possible decay processes. For
generality, we consider a state ®;* with N electron-hole pairs
decaying to a state (I)J?‘ with N—1 pairs. The rate of sponta-
neous emission into a photon with polarization A\, momentum
ik, and energy Aiw, in a medium with index of refraction n

(=Ve), is
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which follows from Fermi’s golden rule. Since the emitted
photon has energy slightly less than the band gap (typically
1-3 eV), the photon wavelength is much greater than the
dimensions of the self-assembled dot (typically 5-50 nm),
so we take the k— 0 limit in the current operator, ji_o . The
usual approximation for the exciton decay rates in semicon-
ductors is to use the envelope approximation, in which the
single-particle wave functions are approximated as an enve-
lope times a periodic Bloch function, ¢(r)=¢(r)u(r). Then
the current operator splits into a delta function on the enve-
lope and the current operator j=p/m on the Bloch function.
The momentum matrix element between the conduction band
(CB) and valence band (VB) Bloch functions is given by the
Kane parameter, Ep=2|(CB|p|VB)|*/m. Since all significant
transitions occur in an energy range given by the Coulomb
interaction (a few tens of meV), which is much smaller than
the gap energy, we take the usual approximation fiw= E,,,.
Thus, within the envelope approximation, the recombination
rate due to transition « is approximately
o 2nEg,, Epe? I
3n2Am N

g 3)

where the point contact matrix element / is the overlap inte-
gral of the initial and final envelope functions,

= f U Ry i (Ry )80~ £ Ry, (4)

B. Path integral expression for the rate

The determination of exciton and biexciton recombination
rates using Egs. (3) and (4) faces two difficulties. First, the
initial and final states contain several interacting particles,
for which correlation must be treated carefully. Second, the
total rate is a sum over all possible transitions, I'=3 I"®
These difficulties may be treated explicitly for model sys-
tems (such as harmonic oscillators), but generally the direct
determination of the matrix elements and rates in a wave
function representation leads to approximations. For ex-
ample, Takagahara’s variational calculation'® treats correla-
tion very well for a single transition from a biexciton to the
exciton ground state, but is limited to very symmetric,
spherical QDs. On the other hand, Ungier!® et al. treat ma-
terial details in the bulk with much care (even beyond the
envelope function above), but the correlation is only partially
included, an approximation known to underestimate biexci-
ton binding energies.!” CI calculations can in principle solve
the full many-particle Schrodinger equation for excitons and
biexcitons for EMA models®® and pseudopotentials,?! but
may be severely limited by the underlying basis set, as we
will show.

We now derive a path-integral solution for the total re-
combination rate that will fully treat correlation, thermally
distribute the initial states, and include all final states. To
relate Egs. (3) and (4) to a path integral, we begin by squar-
ing the point contact matrix element,
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where py, and py_, are the density matrices of the initial and
final states. As in Ref. 3, we assume that the carriers reach
thermal equilibrium before the transition, and use the thermal
density matrix of N electron-hole pairs, py(Ry,Ry;3). The
final state can take on any value, so we sum over all final
states, yielding py_;(Ry_,Ry_) =8> D(Ry_;-R}_)). Af-
ter integrating out the Ry coordinates in Eq. (5) with this
delta function and using Eq. (3), we find the temperature-
dependent radiative recombination rate,
2nE,,, Epe®

LyB) = W(VNV)[;, (6)

where

<|IN|2>B=Z;/1ffpN(RN’RIIV;:B)g(RI,\]—l_RN—I)

X 8(rg, —rh) S(ry - iy )dRydR},. (7)

In this equation Zy=Tr py is the partition function for N
electron-hole pairs and is needed to normalize py in the in-
tegral.

The thermal density matrix in Eq. (6) may be represented
as a real-space Feynman path integral,??

! 1 B
p(Ry. Ry B) = f DRN(t)exp[— %f Hdt}, (8)
0
where the ends of the paths are Ry(0)=R}, and Ry(B)=Ry.
Thus the partition function Zy and the recombination integral
(|Iy|*)5 can be represented by path integrals that differ only
by constraints on the paths,

1 (5
Zsz DRN(t)exp{— gf Hdt], )
diagonal 0

ZullIn) = j

T

1 (8
DRN(t)expl— —f Hdt:|. (10)
adiating fi 0

The diagonal constraint is the usual trace, Ry(0)=Ry(8),
illustrated in Fig. 1(a). The radiating constraint is a trace over
the nonradiating pairs, Ry_;(0)=Ry_;(8), and a pairing of
the recombining particles, rf\,=r1}{, and r,i,’ =r,1f,’, as illustrated
in Fig. 1(b). For the sake of clarity, the times r=0 and =
are plotted in the middle of the world-line diagrams of Fig. 1,
as the paths are periodic in imaginary time.

It is insightful to consider how this path-integral formal-
ism for the recombination rate, Eq. (6), relates to the strong
and weak confinement limits. Consider the 7=0 slice in
imaginary time. In the diagonal boundary conditions, the
path-integral samples the diagonal of the density matrix in
the position basis. For a noninteracting exciton or biexciton,
the electron and hole sample the probability density func-
tions of the single-particle electron and hole ground states. In
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the radiating boundary condition, the electron and hole are
forced to coincide, but may sample two different points for
t=0_ and r=0,. The effects approximately cancel out, giving
([Ix|»g~ 1, appropriate for the strong confinement limit.
With the attractive el interaction in the weak confinement
limit, the electron and hole pair together in an exciton. In the
diagonal boundary conditions, the volume sampled by the
electron and hole is the dot volume Vg, times the exciton
volume ~a)3(. In the radiating boundary conditions, the vol-
ume sampled is Vy, for t=0_ times another factor of V for
t=0,. This gives (|Iy|*) s~ Vyoi/ ay. appropriate for the weak
confinement limit with dot diameter much less than the
wavelength of light.

Now consider a bound biexciton. One exciton has radiat-
ing boundary conditions and the other exciton has diagonal
boundary conditions. For the strong confining case we see a
similar cancellation of boundary condition effects as for the
single exciton. Since we have contributions from pairing ei-
ther the spin-up or spin-down electrons and holes, we see
I'yx/T'x=2. In the weak confining limit, the ek pair in the
radiating boundary condition is bound to the other e/ pair in
the diagonal boundary condition, with a biexciton radius ayy.
This binding suppresses a factor of V,, in the biexciton rate,
leading to a reduced relative rate, I'yy/I'y~ Zaix/ Vior- While
this ratio may drop below one for very large dots, most self-
assembled dots are not much bigger than biexcitons, so we
would not expect to see this limit except in extreme cases.

III. COMPUTATIONAL METHODOLOGY

The path integral expression for the recombination rate
can be directly sampled with Monte Carlo integration, for
two- or four-particle interacting quantum systems. We have
implemented this as a computer simulation that allows for
anisotropic masses and any three-dimensional confining po-
tential we choose.

A. Path-integral Monte Carlo

With the use of Monte Carlo integration, the path-integral
approach allows an essentially exact numerical solution to
many quantum statistical problems.?> Quantum Monte Carlo
methods have been useful for problems related to this one,
such as trion binding energies in quantum wells,>* multiex-
citon energies in quantum dots,'” and positron-electron anni-
hilation rates,?’ as well as bulk phenomena, such as exciton-
exciton scattering?® and Bose condensation of excitons.?’

To compute {|Iy|*)g we define a density matrix that con-
tains both radiating and diagonal constraints

ﬁ(RN9R],V) = prad(RN’ R],\]) + pdiag(RN’ R],v) s (1 1)
where
Prad(Ry, Rzlv) = py(Ry, R;v) ARy — R],V—l
X S(rfy — r},{,)ﬁ(rfv’ - rh’) (12)
and
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pdiag(RN» R],V) = pN(RN’ R]’\]) 5(RN - RIIV) . (1 3)

Since the radiating and diagonal constraints form two dis-
joint subsets in configuration space we can write the prob-
ability of being in either state as

P(radiating/diagonal state) = J Z‘lprad,diag(RN,R]'\,)dRNdR,’\,,
(14)

where Z:fﬁ(RN,R,’V)dRNdR,'\,. Combining Egs. (7) and (14),
we get an expression suitable for evaluation within PIMC:

P(radiating state)

<|IN|2>/3= (15)

P(diagonal state)

In our simulations we use a path-integral expansion of
the density matrix py with a finite number of imaginary
time slices. The configuration space of this expansion
is (R%”:RN,RS), ,RI(\T):RI’V) where m is the number of

time slices. We sample the probability distribution Z'p
using the Metropolis algorithm. Since the number of time
slices m is of order 10* in a typical calculation, it is essential
to use a multilevel Metropolis algorithm,?? especially when
changing the configuration from radiating to diagonal state
and vice versa. The probability of being in either state can
then be estimated from the relative frequencies x4 and
Xdiag= 1 —Xpq Of radiating and diagonal path configurations in
the Markov chain.
Finally, we arrive at (|[Iy|*) 3= X34/ Xgiag, and from Eq. (6)
we get the radiative recombination rate,
2
() = i Pt (16
3hcTm Xgige

When calculating rates, we use the exciton energies from the
simulation for Eq,.

Since the temperature kg7 in our simulations is small
compared to the single-particle level spacing in the dot, we
can assume that electrons and holes in the biexciton are in a
singlet state, S=0. Therefore, the fermion sign problem does
not occur in our calculations. (For a review on the origin of
the sign problem, see, e.g., Ref. 28.) Instead of simulating an
S=0 ensemble (symmetric wave function) for the electrons
and holes in the biexciton, we sample an S,=0 ensemble of
distinguishable particles which includes both singlet and trip-
let states, but which has S=0 as the lowest eigenstate. As in
this study we are only interested in ground state properties of
excitons and biexcitons, the algorithm can be kept simple by
treating the same-type particles as distinguishable. When
studying temperature dependence, it is necessary to explic-
itly symmetrize the density matrix via permutations of same-
type carriers,?® since then the excited states become impor-
tant.

B. Configuration interaction calculations

To demonstrate our method, we have also performed CI
calculations on the same EMA models, Eq. (1). The single-
particle states are calculated by finite-difference discretiza-
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tion in a cylindrical cell with 30 nm height and 100 nm di-
ameter, with grid spacing of 0.5 nm and 0.8 in the vertical
and radial directions, respectively; Coulomb integrals are
evaluated by successive over relaxation. This is the same
approach used to calculate multiexciton states reported in
Ref. 29.

For the simulation of excitons and biexcitons in self-
assembled QDs, our CI expansion uses a 6s5p4d3f2g2hli
basis set, including 44 single-particle states. In contrast, the
CI expansion by Corni ef al. uses a 4s4p3d basis set (18
single-particle states) in the xy plane and only a single state
for the z direction consisting of Gaussians centered on the
dot. Contrary to the direct expansion of the many-particle
wave function in our approach, Corni et al. use this basis set
first to solve the restricted Hartree-Fock equation to obtain
an optimized basis set for the CI expansion. Like our ap-
proach, the CI calculations by Narvaez et al. also use single-
particle states from a noninteracting Hamiltonian to expand
the many-body wave function. No basis set size is given in
Ref. 21, but a previous paper by the same authors using an
identical method used six electron and ten hole states (12
electron and 20 hole states including spin).*

IV. TESTS ON PARABOLIC DOT

To compare our methods, we first consider a model sys-
tem consisting of two oppositely charged particles in a har-
monic oscillator potential (“Hooke exciton”). The Hamil-
tonian then reads

2 2 2 2
: m:; e
H= (p—’+ ’wr?)— . (17)
€lr; — 1|

Using center-of-mass and relative coordinates, the problem
reduces to an ordinary differential equation (ODE) that can
be integrated numerically with almost arbitrary exactness.
We apply both the PIMC and CI techniques to this system.
Within the path-integral calculations we use a temperature of
B=10Ha""!, which is low enough to ensure that only the
ground state contributes, and m =500 time slices. The CI cal-
culations use 54 single-particle states to expand the two-
particle wave function.

Figure 2(a) shows the total and the binding energy of the
two particles as a function of the harmonic confinement.
Both CI and PIMC show very good agreement with the re-
sults from numerical integration of the ODE. However, for
[Iy]> only PIMC shows good convergence whereas the CI
results are in general too low, up to a factor of 2 in the weak
confinement case. But even for strong confinement there is a
considerable discrepancy, although the confinement energy
significantly exceeds the exciton binding energy [see Fig.
2(b)]. In our calculations we have also found that the CI
result for |I|* approaches the correct value rather slowly
with increasing basis set size, thus leading to a false impres-
sion of convergence. If only the dependence of the result on
the basis set is used as a measure of convergence, it is hard to
decide whether a calculation has converged or not.

The true many-particle wave function for Coulombic in-
teractions must have a coalescence cusp for r;=r,,3! but a CI
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FIG. 2. (Color online) Comparison of results for Hooke exciton
from PIMC and CI (expansion in 54 basis states): (a) total and
binding energies and (b) || from integration of ODE, from PIMC
and CI (dashed line, circles, and X’s). Energies are given in units of
reduced Hartrees Ha" = ue*/%%€?, where u is the reduced mass of
the exciton. Error bars are of the order of symbol size.

expansion of the wave function in products of smooth single-
particle basis functions cannot have a nonanalytic behavior.
Convergence problems of CI associated with the failure to
reproduce this cusp are, for example, solved by using corre-
lated basis functions (e.g., Ref. 32). It is therefore not sur-
prising that CI calculations give better results for energies
than for the overlap matrix element: The energy is calculated
using the wave function at every grid point, whereas for the
decay rate mainly the cusp at r,=r, enters. That the overlap
matrix element is more sensitive to errors in the wave func-
tion than the energy, also shows in the fact that even a
Hartree-Fock calculation gets up to 95% of the exciton bind-
ing energy'” but completely lacks the correlation cusp, lead-
ing to a decay rate that does not depend on the dot size.?’
Still, it is striking that the CI results are able to reproduce
energies very accurately and yet completely fail to obtain the
correct overlap matrix element. PIMC does not suffer from a
finite basis set and can thus reproduce both energies and the
overlap matrix element very accurately.

V. RESULTS FOR SELF-ASSEMBLED DOTS

We have applied these techniques to common single-band
effective mass models of quantum dots, summarized in Table
I. We chose these materials and sizes because of availability
of published experimental values. The dot geometry is a lens
shape, with a height to diameter ratio of 1:10. The calcula-
tions include a wetting layer, modeled as a quantum well
with thickness fy; extending from the base of the dot. The
dot potential consists of potential steps of finite height
V, (V,) for electrons (holes) at the boundaries of the lens and
the wetting layer. The three systems we have studied are:

165305-5



WIMMER, NAIR, AND SHUMWAY

PHYSICAL REVIEW B 73, 165305 (2006)

TABLE 1. Single-band effective mass parameters used in the calculations.

dot/barrier Egigier (eV) € m, m‘,‘, my AV, (eV) AV, (eV) twr. (A) Ep (eV)
Ing sGay sAs/GaAs 1.519* 12.5° 0.067° 0.11° 0.38° 0.250° 0.200° 16, 0 25.7°
InP/Ing sGag sP 1.920¢ 12.6° 0.079° 0.150° 0.600° 0.420¢ 0.070¢ 5 20.4¢
CdSe/ZnSe 2.820° 9.3f 0.130f 0.380¢ 1.0008 0.735" 0.135" 5 17.5¢

4Reference 33.

"We approximate the strained InGaAs material in the dot by just taking the bulk GaAs value (Ref. 33).

“Estimated from strain-modified band offsets plotted in Ref. 34.

dEstimated from empirical pseudopotential method (EPM)/valence force field(VFF) calculations (Nair, unpublished).

°Bulk InP value (Ref. 33).

fBulk CdSe values (Ref. 33).

gReference 35.

hCdSe/ZnSe band offsets chosen to match simulations in Ref. 36.

1. InGaAs/GaAs: This is the most studied material for
optical properties of self-assembled dots, and we are compar-
ing our results with four separate PL rate experiments. Some
of these dots are grown as alloyed InGaAs material, while
others are nominally pure InAs. Even for nominally pure
dots, intermixing and annealing at high temperatures often
leads to dots with significant Ga content. Based on reported
growth conditions and PL energies, we have chosen to simu-
late dots composed of Ing;Gay sAs. The dot diameters, from
10 nm to 60 nm, cover the size range for nearly all dots of
this material reported in PL studies. We have included a 6
monolayer (ML), or 16 A, InysGaysAs wetting layer under
the dot.! To show the influence of the wetting layer we also
give results for ry; =0.

2. InP/InGaP: We have included a 2 ML, or 5 A, InP
wetting layer under the dot.

3. CdSel/ZnSe: We have included a 2 ML, or 5 A, CdSe

wetting layer under the dot.?’
In this study, the effective masses are kept constant through-
out the simulation region. We have made this approximation
to keep the algorithm simple, but the simulation of a
position-dependent mass is possible. Mathematically, the is-
sue is the same as sampling random walks with a position-
dependent diffusion constant. Similar quantum Monte Carlo
techniques have been used to sample pseudo-Hamiltonians®®
containing terms equivalent to a position-dependent mass.
Another issue is the effect of band nonparabolicity and band
mixing. Band nonparabolicity can be included directly in the
PIMC approach, as demonstrated in Ref. 39. Full multiband
models are more complicated, and path-integral Monte Carlo
for six- or eight-band k-p has not yet been realized. For
simplicity in presentation, all our calculations are restricted
to single-band, position-independent effective masses, and
this approximation should be considered in the comparison
to experiments.

While our path-integral formalism allows for a thermal
distribution of initial states, we have chosen a low tempera-
ture (T=8 K) so that we consider only emission from the
ground state. We have discretized imaginary time in the path
integral in steps of 7=1.3X 107> K~!. The simulation time
for one dot diameter was approximately 200 min for the
exciton and 350 min for the biexciton on 10 Athlon MP
1600+ processors.

In Fig. 3 we present results of our path-integral calcula-
tions, along with our CI results and published experimental
data points. In Fig. 3(b) we see that the absolute exciton
decay rate I'y increases for large dots with increasing dot
diameter due to the larger exciton coherence volume. As al-
ready expected from our model calculations, the CI results
for the decay rate suffer from underconvergence, although
the exciton energies from PIMC and CI agree very well. This
is particularly evident in the decay rate for CdSe/ZnSe
where the CI result begins to saturate for large dot sizes due
to missing correlation, whereas the Monte Carlo result still
increases uniformly with increasing dot diameter. A similar
flattening of the decay ratio with increasing dot diameter can
also be observed in the CI results of Corni et al., possibly
indicating missing correlation at larger dot sizes.?® For small
dots, we observe a minimum of the decay rate when the dot
height 2 becomes comparable to the wetting layer thickness
twr- The InGaAs/GaAs dots without wetting layer do not
show this behavior. Note that in this case we only give re-
sults down to dot diameter d=15 nm, because the exciton
becomes unbound for smaller dot sizes. The exciton decay
rate in the InGaAs/GaAs material system is larger for ty;,
=16 A than for ryy; =0 A since the effective dot size and thus
the exciton coherence volume is larger for the dots including
a wetting layer.

The relative decay rate I'yy/I"y of the biexciton, Fig. 3(a),
varies from approximately 2 down to 1.5 for InGaAs/GaAs
and InP/InGaP and even down to 1 for the CdSe/ZnSe ma-
terial system. For large dots we observe a decrease of
I'yx/T'x for increasing dot size, at small dot sizes there is a
maximum of the relative biexciton decay rate corresponding
to the minimum in the exciton decay rate. Again, the data for
InGaAs/GaAs without wetting layer does not show an extre-
mum for small dots but reaches I'yy/I'y=2, corresponding
to the strong confinement or noninteracting limit. As we ex-
plained above, CI underestimates decay rates. However,
since it underestimates both exciton and biexciton decay
rates, the relative ratio from CI is actually rather similar to
the Monte Carlo result.

To gain more insight into the size dependence of the de-
cay rates, it is useful to study the spatial extent of the exciton
wave function in the dot. The decay rate is closely linked to
the coherence volume and thus to the volume that is filled by
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FIG. 3. (Color online) Our results of path-integral calculations for InGaAs/GaAs, InP/InGaP, and CdSe/ZnSe lens-shaped dots of
different diameters, with height/diameter=0.1. Rows of panels present (a) the relative decay rate of biexciton to exciton, (b) the absolute
decay rate of exciton, (c) the exciton energy, at which the exciton luminescence peak would be observed, and (d) the energy shift of the
biexciton luminescence peak. Solid circles are path integral results for #y; >0, open circles for ¢y =0. Error bars are only given if the error
exceeds the symbol size. We compare to our configuration interaction calculations for fy; >0 (X’s), which miss some of the correlation. We
also show experimental data for InGaAs/GaAs (A’s are data from Ref. 10, where we have assumed d=20 and used their measured X" and
XX" data points; [I’s are data from Ref. 4, O’s are from Ref. 11, +’s are from Ref. 12) and for CdSe/ZnSe ((J’s are data from Ref. 8, the

range of data from Ref. 9 is indicated by dashed crosses).

the exciton wave function. In Fig. 4 we present the size de-
pendence of the exciton radius ay and the standard deviation
of the exciton center-of-mass (com) coordinate Ar,,
= V(rgom)—(rcom)z for the InGaAs/GaAs and CdSe/ZnSe
material systems. The results for InP/InGaP quantum dots
are similar to those for InGaAs/GaAs, just as in Fig. 3.

For small dot sizes we find a minimum of both ay and
Areom corresponding to the minimum in the decay rate. As
the dot height becomes comparable to the wetting layer
thickness, the exciton center of mass moves into the wetting
layer and the wave function extends further into the quantum
well underneath the dot. A dot height less than fy;, thus cor-
responds to an effectively larger dot size. The increased co-
herence volume leads to an increase in the decay ratio I'y and
a decrease of the relative biexciton ratio I'yy/I'y. In the limit
of zero dot size, we would be in the quantum well situation;
however, the dipole approximation leading to Eq. (3) does

not hold for an extended quantum well state.'> In the case of
the QD without wetting layer, the coherence volume de-
creases monotonically until the exciton becomes unbound,
thus we do not observe an extremum in the decay rates.

In the case of larger dot sizes we observe different behav-
ior for InGaAs/GaAs and CdSe/ZnSe: In the case of
InGaAs/GaAs, Ar.,,<ay for all studied diameters and the
exciton radius ay does not show saturation towards the bulk
value. With respect to these properties of the wave function,
the dots are in the strong confinement limit, whereas the
decay rate shows signatures of strong to intermediate con-
finement: The relative biexciton ratio can be tuned over a
relatively large range—from 2 to 1.5—by changing the dot
geometry, an effect entirely due to electronic correlation.

For CdSe/ZnSe we find a crossover to Argy,>ay with
increasing dot diameter. This corresponds to the weak con-
finement limit—an exciton “bouncing” around in the dot—
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FIG. 4. (Color online) Exciton radius ay ([J’s) and exciton cen-
ter of mass fluctuations Ar .y, (A’s) for InGaAs/GaAs dots with a 6
ML wetting layer (full symbols) and for CdSe/ZnSe dots (open
symbols).

and thus we observe relative biexciton ratios down to 1.
However, reported photoluminescence measurements on this
type of QDs are usually carried out on dots with a diameter d
around 10 nm, so that the relevant experimental data for
CdSe/ZnSe also lie in the strong to intermediate confinement
regime.

When comparing to experiment, we notice that for some
of the reported data our calculated exciton energies are much
smaller than the experimental values. In these cases (Refs. 4
and 8) the growth conditions enhanced alloying. Our param-
eters for the band offsets do not seem to describe these shal-
low dots very well. However, since we use an abrupt poten-
tial step for the QD boundaries, the step height should not
influence our calculated decay rates significantly, as long as
the exciton is still bound. The step height just determines the
exponential decay length of the wave function into the bar-
rier, so its influence on the wave function inside the dot is
only indirect. Comparison of our calculated results with
these experiments is thus still valid.

In comparing to the work of Thompson et al.,'” we found
it was necessary to reidentify their reported exciton spectra
line as a charged exciton. Our concerns were their reported
negative (blue-shifted) biexciton binding energy and their ra-
tio I'yx/I'y=2.3. Their spectra are very similar to spectra
reported by Lomascolo et al, which are dominated by
charged exciton,*” only with the exciton/charged exciton la-
bels switched. Since Thompson et al. called their identifica-
tion of the charged and neutral exciton tentative, and did not
offer any alternative explanation for the unusual energy shift
and relative decay rate of their supposed neutral exciton/
biexciton pair, we chose to compare to the data they had
attributed to the charged exciton and charged biexciton.
These states have I'yy/I'x=2.06 and a biexciton binding en-
ergy of +2 meV. This identification makes little difference in
our comparison of decay rates, but does give us much better
agreement for the positive biexciton binding energy and is
consistent with the relative biexciton decay rate in the
strong-confinement limit. Thompson ef al. do not give any
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value for the dot size in their experiment, but claim that their
dots are smaller than those of other photoluminescence ex-
periments. We chose to attribute their data a dot diameter of
20 nm, based on our energy calculations for the
InGaAs/GaAs dot without wetting layer. In the absence of
further information about the wetting layer thickness in the
experiment, this seems reasonable since the nominal InAs
coverage in this experiment is only 1.7 ML. Accordingly, we
will always compare the experimental data from Thompson
et al. as well as the data from Ulrich et al.'! (experimental
wetting layer thickness 1 ML) with the results of our calcu-
lation with #y; =0 ML.

Our PIMC results for the exciton decay rate in
InGaAs/GaAs agree with experiment within about a factor
of 2, but seem to systematically overestimate the decay rate.
This could be due to our simplified model of an ideal dot.
The agreement with experiment could, for example, be im-
proved by including the effects of alloying in the dot poten-
tial. Disorder introduced by alloying leads to stronger local-
ization of the particles in the dot,*' thus reducing the
coherence volume and the electron-hole overlap. Another
possiblity for improving the path-integral results would be to
use a dot potential from strain calculations,>* since strain
might also lead to an increased electron-hole separation.*?
The inclusion of such single-particle potentials in PIMC is
perfectly feasible and does not introduce any additional com-
putational cost. Even in the strong confinement or noninter-
acting limit |I|>~1, so I'yZ2 ns~! using the parameters
from Table 1. Thus the low decay rate from Refs. 10 and 11
cannot be explained in our model, hinting at the need of a
more detailed dot potential. However, for the study of the
size dependence of the decay rates a model potential is per-
fectly valid and yields results that are easier to interpret.

The Monte Carlo calculations can reproduce the range of
observed relative biexciton ratios from 2 to 1.5. The data
from Refs. 10 and 11 are described very well by the QD
without wetting layer, whereas the data from Ref. 4 seem to
be best reproduced by a QD with wetting layer, although we
have to assume a somewhat larger effective dot size. The
calculated biexciton binding energies are also close to the
experimental values. The extremely low relative biexciton
decay rate from Ref. 12, I"yyx/T'y=0.33, however, cannot be
explained at all in our model. In the original paper, the low
biexciton decay rate was attributed to weak confinement ef-
fects, but from our calculations we can conclude that
InGaAs/GaAs QDs with diameters around 50 nm are still far
from the weak confinement regime.

We are not aware of any studies on the exciton and biex-
citon dynamics in single InP/InGaP QDs, but our calcula-
tions are within the reported exciton lifetime range of
100-500 ps for QD ensembles with dot diameters between
20 nm and 40 nm.*3

When comparing to the experimental data on single
CdSe/ZnSe dots by Patton et al.,” we chose to only give the
range of the reported data. The variation of exciton energies
in Patton et al. is attributed to different localization poten-
tials, i.e., different Cd concentration, and not to different dot
sizes. The dot diameter for their samples is reported to be
between 5 nm and 10 nm.** The CdSe/ZnSe exciton decay
rates calculated by PIMC agree very well with the reported
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experimental data. However, we completely fail to reproduce
the relative biexciton ratio I'yy/I'y=1 from Bacher et al.®
Such a low biexciton decay rate is only to be expected for
very large dots in our simulation. The experiments by Patton
et al. on very similar sized QDs in contrast yielded a relative
biexciton ratio I'yy/I'y=~2 with a rather large experimental
spread (I'yy/I'y=1.4-2.8). We expect CdSe/ZnSe QDs of
about 10 nm to be towards the strong confinement limit, con-
sistent with the experiment by Patton et al. Therefore we
presume that more knowledge about the dot potential would
be needed to explain the results of Bacher et al.; a simple
box model, as suggested in Ref. 8, is certainly not enough.
The fact that the exciton energies from Ref. 9 are well ex-
plained by our model, whereas the rather shallow dots from
Ref. 8 are not, supports this presumption. It should also be
noted that the QDs of Ref. 45 were grown under conditions
similar to those of Bacher et al. They show recombination
energies and exciton lifetimes comparable to the results of
Bacher et al., but much shorter biexciton lifetimes. Since no
estimate of the dot size was given, we cannot directly com-
pare to our calculations, but the reported ratio of I'yy/I'y
=~ 1.4 agrees well with the ratios expected from our calcula-
tion.

We cannot compare our hitherto obtained rates with the
calculations of Corni et al. on the size dependence of the
exciton and biexciton decay rates because of the different dot
potentials. However, if we apply our technique to the trun-
cated parabola potentials used in their study, we obtain exci-
ton decay rates that are for small dots around 50%, and for
large dots even up to two times larger than the results of Ref.
20. Given that even our CI expansion, using a large basis set
of 44 single particle states, yields absolute rates that are too
low, it is not surprising that the much smaller basis set of
Corni et al. also fails to calculate absolute rates. Yet, the CI
calculations show the right trends—increasing decay rate and
decreasing [I'yy/I'y with increasing dot size—compatible
with our results. Also, the relative biexciton decay rate from
PIMC is very similar to the one obtained by Corni et al.

Narvaez et al. have performed CI calculations on the
height dependence of recombination rates in lens-shaped
Ing (Gay4As/GaAs quantum dots with a fixed diameter
(25.2 nm), using atomic pseudopotentials and a realistic
model for alloying. Their calculated decay rates lie in the
range of 0.4-0.5 ns~!, a factor of 4 lower than our results,
but also a factor of 2 lower than experimental values.'®!!
Their reported relative biexciton decay ratio I'yy/T'y=4 is a
factor of 2 larger than what is expected for strong confine-
ment and is to our knowledge not observed in experiment.
Path-integral techniques cannot be adapted to using pseudo-
potentials easily, and thus we cannot directly compare re-
sults. Still, from our experience with the calculation of rates
from CI, we are somewhat concerned with the absolute value
of the rates. The reported basis set size in Ref. 30 is much
smaller than the one used in this study. For example, their
minimum of the exciton lifetime (corresponding to a maxi-
mum in the decay rate) at a dot height of 65 A could possi-
bly be a sign of missed correlation at larger dot sizes: From
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our calculations we would expect the decay rate to grow
monotonically with dot volume. The decrease of the exciton
lifetime found at smaller dot heights, however, is compatible
with our findings.

VI. CONCLUSION

We have developed a path-integral Monte Carlo approach
for studying exciton and biexciton recombination rates in
self-assembled quantum dots. This technique allows us to
study general 3D potentials for a wide variety of single-band
EMA models. Our calculations indicate that self-assembled
dots are in the strong to intermediate confinement regime,
where Coulomb correlation effects are becoming important.
In particular, for large dots we see a clear monotonic rise in
recombination rate versus diameter, and a decrease in the
relative biexciton decay rate, I'yy/I"y. From our calculations
we can state that relative decay rates I'yy/['y=1.5-2 are
expected for typical photoluminescence experiments, an ef-
fect due entirely to correlation. We have seen that quantum
dots of the size used in PL experiments tend towards the
strong confinement regime. Thus, the low relative biexciton
decay rates I'yy/T'y<1 from some experiments,®!? that were
attributed to weak confinement, cannot be explained by weak
confinement effects. It should be noted that in single-dot ex-
periments rather large dot-to-dot fluctuations have been
reported.” Given the spread of experimental data, our calcu-
lations compare rather favorably against experiment.

We have further shown that CI expansions using uncorre-
lated single-particle basis sets have severe shortcomings in
calculating decay rates. Rather surprisingly, we have found
that CI expansion in a large basis set of 44 states underesti-
mate decay rates by far, even for dot sizes comparable to the
exciton Bohr radius and although the calculated energies
were well-converged. Yet, due to a cancellation of errors, the
relative biexciton decay rate calculated by CI was found to
be similar to the path-integral result. Also, trends were in
general reproduced correctly by CI. CI has some advantages
over PIMC, such as being able to use an atomistic descrip-
tion of the quantum dot. However, absolute decay rates from
CI must be regarded with caution.

In conclusion, we have developed a microscopic path-
integral technique for calculating exciton and biexciton de-
cay rates, that fully treats quantum correlation in realistic
models. We can apply this to arbitrary geometries within
single-band EMA models. Our calculations on lens-shaped
self-assembled dots indicate that these commonly studied
structures are in the regime between strong and intermediate
confinement. The formalism has a built-in thermal distribu-
tion of carriers that we have not yet exploited. Another area
for future research is an extension of this technique to semi-
conductors with indirect band gaps, such as Si/Ge.
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