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The spin-orbit coupling may generate spin transverse force on moving electron spin, which gives a heuristic
picture for the quantum transverse transport of electron. A relation between the spin and anomalous Hall
conductance and spin force was established, and applied to several systems. It was predicted that the sign
change of anomalous Hall conductance can occur in diluted magnetic semiconductors of narrow band and can
be applied to identify intrinsic mechanism experimentally.
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I. INTRODUCTION

The theory of anomalous Hall effect has a long history
since the 1950s.1 It was realized that several different mecha-
nisms are contributed to the total Hall conductance in ferro-
magnetic metals and semiconductors. Except for the skew
scattering and the side jump from the impurity scatter-
ing,2–5 an intrinsic mechanism tells that the spin-orbit cou-
pling in the electronic band structure of the system may in-
duce a nonzero Berry phase or magnetic monopole in the
momentum space and cannot be neglected in the transverse
transport of electrons, especially in the diluted magnetic
semiconductors.6,7 On the other hand, the spin aspect of
transverse transport was also studied recently, in which an
external electric field may drive electrons to form a trans-
verse spin current in the systems with spin-orbit coupling
even in paramagnetic electronic systems.8–10 These two ef-
fects reflect the charge and spin aspects of electron transport,
respectively, and have some common features as their physi-
cal origin stems from the same spin-orbit coupling of con-
duction electrons. More and more experiments support the
intrinsic mechanism.11–13 Since the spin-orbit coupling re-
flects the interaction between the electron spin, momentum
and external or environmental potential, it was shown that
this coupling, as an extension of Ehrenfest’s theorem in
quantum mechanics, may generate a spin transverse force on
the spin current instead of the Lorentz force on electric cur-
rent in a magnetic field in conventional Hall effect.14 This
spin transverse force provides a new route to get insight into
the transverse motion of electrons.

In this paper we focus on the relation between the spin
force and intrinsic quantum transverse transport. For the
electronic system with spin-orbit coupling and exchange
coupling, it was found that a spin transverse force exerts on
moving electron spins in the anomalous transverse effect, as
a result, a set of formulas based on spin force were derived
for intrinsic spin and anomalous Hall conductance. As an
intrinsic feature it was predicted that the sign of the anoma-
lous Hall conductance can be changed when the system
breaks both the bulk and structural inversion symmetry and
time reversal symmetry. It is also shown that spin Hall effect

in the two-dimensional �2D� Luttinger system is equivalent
to the intrinsic anomalous and spin Hall problems in a ferro-
magnetic metal, and its robustness against impurities can be
also understood very well from the point of view of spin
force.

II. GENERAL FORMULA

To develop a general formula for spin and anomalous Hall
conductance, we start with an effective Hamiltonian for elec-
trons with spin 1/2

H = ��p� + �
�=x,y,z

d��p���, �1�

where ��p�= p2 /2m* is the kinetic energy with the band elec-
tron effective mass m* and �� are the Pauli matrices; d��p�
are the momentum-dependent coefficients which describe the
spin-orbit interactions and exchange interaction of magnetic
impurities. The energy eigenvalues are Epn=��p�+�d�p�
with �=±, and d=�dx

2+dy
2+dz

2, and the corresponding states
are denoted by �p ,��. Using the Heisenberg equation, the
kinetic velocity operator �j=x ,y ,z� is defined as

v j =
1

i�
�rj,H� =

pj

m* + �
�=x,y,z

�d�

�pj
��, �2�

where the first term is the canonical velocity, and second part
can be regarded as the spin gauge field or anomalous veloc-
ity, �e /m*c�A j =��=x,y,z�d� /�pj��. As an extension of the
Ehrenfest theorem,14 the spin-dependent force is introduced
as the derivative of kinetic momentum operator with the re-
spect to time

Fj =
m*

i�
�v j,H� =

2m*

�
����

�d�

�pj
d���. �3�

This spin force is a purely quantum quantity, and has no
classical counterpart.

The quantum transverse transport of electrons caused by a
weak electric field E can be calculated within the framework
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of linear response theory. The Kubo formula for the dc con-
ductivity gives15

�ij =
e2�

	
�

p,����

�fp� − fp���Im�	p��vi�p���	p���v j�p���

�Ep� − Ep����Ep� − Ep�� + i
+�

�4�

with 
+→0+, and the Dirac–Fermi distribution function
fp,�=1/ 
exp���E��p�−���+1�. With the formula of the ki-
netic velocity in Eq. �2�

	p��vi�p��� = �
�=x,y,z

�d�

�pj
	p�����p��� �5�

for ���� and, furthermore, an identity can be proved for
this system

Im�	p�����p���	p������p��� = �����

d�

d
, �6�

for ����. We limit our discussion to the case that two spec-
tra are nondegenerated in the whole momentum space, i.e.,
d�0 in the whole momentum p space such that 
+ can be
taken to be zero before the integral over p.16 Thus the intrin-
sic transverse conductance can be expressed as

�ij = −
e2�

2	
�

p

�fp,− − fp,+�
d3 ����

�d�

�pi

�d�

�pj
d�. �7�

This recovers the conductance formula in terms of the Berry
curvature.17–19 On the other hand, the anticommutators of the
spin force Fj and spin gauge field Ai give

Tr�
Fj,Ai�� =
8m*2c

�e
����

�d�

�pi

�d�

�pj
d�, �8�

where the trace runs through the spin variables,
��	p��¯ �p��. In this way we established a relation be-
tween the electric conductance and spin force

�ij = −
e3�2

16m*2c	
�

p

�fp,− − fp,+�
d3 Tr�
Fj,Ai�� . �9�

Since Tr�
Fj ,vi��= e
m*c

Tr�
Fj ,Ai��, the anomalous Hall con-
ductance is determined by both the spin force and the spin
gauge field, or anomalous part of the velocity. This fact re-
flects the physical origin of spin-orbit coupling in this effect.
Note that Tr�
Fj ,Ai��=−Tr�
Fi ,A j��, so �ij =−� ji for i� j,
that is the so-called Onsager relation. It is noticed that
Tr�
Fj ,Ai��=0 if any one of d� is zero.

The Kubo formula for spin Hall conductance is written as

�ij
� =

e�

	
�

p,����

�fp� − fp���Im	p��Ji
��p���	p���v j�p��

�Ep� − Ep����Ep� − Ep�� + i
+�
,

�10�

where spin current operator Ji
� is defined conventionally as

Ji
�= �� /4�
vi ,���. Note that this choice is a natural one but

not a unique one in the presence of spin-orbit coupling since
this is no continuity equation for spin density as is the case

for charge density. Following the calculation mentioned
above, from Eq. �10� one can obtain18

�ij
� =

e�2

4	
� �fp,− − fp,+�

d3

��

�pi
d�

�d�

�pj
����. �11�

Similarly, the spin conductance can also be expressed in
terms of the spin force

�ij
� = −

e�2

16m*	
�

p

�fp,− − fp,+�
d3 Tr�
Fj,Ji

��� , �12�

which is given by the anticommutator of the spin force and
spin current operators Ji

� with

Tr�
Fj,Ji
��� = − 4m* ��

�pi
d�

�d�

�pj
����. �13�

On the other hand, due to the spin-orbit coupling, an elec-
tric field can also induce a nonzero spin polarization. Its
linear response to the field is

� j
� =

�

2
�	���E − 	���E=0�/Ej

= −
e�3

32m*	
�

p

�fp,− − fp,+�
d3 Tr�
Fj,���� . �14�

In this way we have established an explicit relation between
the spin force and the quantum spin and charge transverse
transport in a system with spin-orbit coupling.

In general, for any observable O, its linear response to an
external electric field E , 	Oi�=�ijEj, where, from the Kubo
formula,

�ij = −
e�2

16m*	
�

p

�fp,− − fp,+�
d3 Tr�
Fj,Oi�� . �15�

III. APPLICATIONS OF THE GENERAL FORMULA

A. 2D ferromagnetic system with the wurtzite
and zinc-blende structures

Now we apply the general formula to several systems in
semiconductors. We first consider an effective Hamiltonian
for a two-dimensional ferromagnetic system with the wurtz-
ite and zinc blende structures

H =
p2

2m* + a0f�p��py�x − px�y� + h0�z. �16�

The exchange field due to the magnetic impurities or Cou-
lomb interaction is taken to be uniform, as a mean field ef-
fect, and is normal to the plain f�p�=1 for the wurtzite struc-
ture, and f�p�= p2 for the zinc blende structure such as
Hg1−xMnxTe.20 The components of spin gauge field A in this
system are

Ax =
m*ca0

e
�py

�f

�px
�x − 
 f + px

�f

�px
��y� , �17�
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Ay =
m*ca0

e
�
 f + py

�f

�py
��x − px

�f

�py
�y� �18�

and the spin force is

Fs =
4m*

�2 a0
2f2Js

z � ẑ −
2m*a0h0

�
�p�fp · �� . �19�

From the formula we notice that a spin transverse force
arises due to the spin-orbit coupling if a spin current exists
along the electric field and also an in-plane spin force arises
due to the interference between the spin-orbit coupling and
the exchange field. To calculate the intrinsic Hall conduc-
tance, we notice that the anticommutator

Tr�
Fy,Ax�� =
8m*2ch0

�e
a0

2f�d�pf�/dp� , �20�

which vanishes when h0=0. Thus if the system does not
violate the time reversal symmetry, no anomalous Hall cur-
rent circulates. Assuming at zero temperature and taking the
bottom subband to be occupied and the top one to be empty,
the anomalous Hall conductance is

�xy = −
e2

2h
�1 − h0/�a0

2xf
2 + h0

2�1/2� , �21�

where xf
2= pF

2 f2 at the Fermi surface. If a0pFf 
h0, the
anomalous Hall conductance is almost quantized, �xy �− e2

2h .
This is consistent with the theory of Berry curvature.20

According to Eq. �12�, one can obtain the intrinsic spin
Hall conductance

�xy
z =

e�2

4m*	
�

p

�fp,− − fp,+�px
2a0

2f2

�p2a0
2f2 + h0

2�3/2 . �22�

For the Wurtzite structure, i.e., f�p�=1, assuming the Fermi
energy � lies in the gap, the intrinsic spin Hall conductance
is

�xy
z =

e�2

16m*�

�h0 − �1�2

a0
2�1

, �23�

where

�1 = �h0
2 + pF

2a0
2�1/2 �24�

with

pF = �2
�m*2�a0
4m*2 + h0

2 + 2a0
2�m*��1/2 + m*�a0

2m* + ���1/2.

�25�

For the zinc blende structure, i.e., f�p�= p2,

�xy
z =

e�2

32m*�

�h0 − �2�2

a0
2�2

, �26�

where

�2 = �h0
2 + pF

4a0
2�1/2, �27�

with

pF = 
2m*�� + �h0
2 − 4a0

2m*2�h0
2 − �2��1/2�/�1 − 4a0

2m*2��1/2.

�28�

B. 2D ferromagnetic electron gas with both Rashba
and Dresselhaus coupling

In some materials the spin-orbit coupling has two differ-
ent contributions when a system has the structural and bulk
inversion asymmetry. Here we consider a two-dimensional
ferromagnetic electron gas with both Rashba and Dressel-
haus coupling

H =
p2

2m* − ��px�y − py�x� − ��px�x − py�y� + h0�z.

�29�

In the language of d� in Eq. �1�

dx = �py − �px, �30�

dy = − �px + �py , �31�

dz = h0. �32�

It is straightforward that

Tr�
Fy,Ax�� =
8m*2ch0

�e
��2 − �2� , �33�

which is independent of p. Using the formula for the Hall
conductance, we conclude immediately that the anomalous
Hall conductance vanishes at h0=0. The Hall conductance
will change its sign near the point of �2=�2. Since h0�0,
the band spectra open a finite gap at p=0, and degeneracy of
two electron bands is removed. If one assumes that the Fermi
surface is below the up band of the spectrum, the anomalous
Hall conductance �xy reads

�xy = −
e2

2h
sgn��2 − �2��1 − �� , �34�

where

� =
1

2�
�

0

2�

d�
��2 − �2�

�����1 + pF
2�������/h0

2�1/2 �35�

with

���� = �2 + �2 − 2�� sin 2� �36�

and pF is the Fermi momentum

pF = �2m*
� + m*����� − 2 sin 2�� + �h0
2 − �2

+ �m*�2�2 + � − 2m*�� sin 2��2�1/2�1/2. �37�

The dependence �xy on � of numerical calculations is plotted
in Fig. 1. The parameters are taken as:20 �=23 meV nm/�,
h0=1.38 meV, �=1.38 meV, m*=0.9m0, and � is compa-
rable with �. It is shown that the anomalous Hall conduc-
tance will change its sign near the point of �2=�2. If pF��
−��
h0, �xy is approximately equal to −sgn��2−�2� e2

2h .
If one assumes that the Fermi surface is below the up

band of the spectrum, the intrinsic spin Hall conductance can
also be obtained
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�xy
z =

�2e

4m

1

�2��2�
0

2�

d�
��2 − �2��h0 − �����2 cos2 �

����2����
.

�38�

While the Fermi energy is above the gap, the intrinsic spin
Hall conductance is

�xy
z =

�2e

4m

1

�2��2�
0

2�

d�
��2 − �2�cos2 �

����2�−�+

��h0
2 − �−�+���+ − �−� , �39�

with

�± = �h0
2 + p±

2�����1/2 �40�

and

p± = �2m*
� + m*����� − 2 sin 2��

� �h0
2 − �2 + �m*�2�2 + � − 2m*�� sin 2��2�1/2�1/2.

�41�

The numerical calculation of the intrinsic spin Hall conduc-
tance �xy

z with � is plotted by the dashed line in Fig. 1. When
sgn��2−�2�= +1, the intrinsic spin Hall conductance �xy

z is
positive; sgn��2−�2�=−1, �xy

z is negative.
The sign change of anomalous Hall conductance as that of

spin Hall conductance21 may be observed experimentally in
some diluted magnetic GaAs quantum wells where the
Rashba and Dresselhaus coupling is usually of the same or-
der of magnitude. The Rashba coupling is adjustable by a
gate field perpendicular to the electron gas plane. Thus there
is no practical difficulty to achieve the situation near �
= ±�. Since the Rashba coupling has a relation to the gate
voltage, �=�0+
�Vg, the gate field can be used to control
the direction of intrinsic anomalous Hall current. If the ex-
trinsic contribution to the Hall conductance is comparable
with the intrinsic one, at least a jump of the anomalous Hall

conductance should be observed even if the Hall current
could not change its direction. This effect can be identified as
the intrinsic mechanism for anomalous Hall effect.

C. 2D Luttinger model

We now turn our attention to the Luttinger Hamiltonian
for spin S=3/2 holes in the valence band of centrosymmetric
cubic semiconductors22

H =
1

2m

�1 +

5

2
�2�p2 −

�2

m
�p · S�2, �42�

where �1, �2 are material-dependent parameters and m is the
electron mass. In terms of SO �5� Clifford algebra, the
Hamiltonian �42� can be cast into23

H = ��p� + da�a, �43�

where ��p�=�1p2 /2m, �a �a=1,2 , . . . ,5� the five Dirac �
matrices and da the five d-wave combinations of p are given
in Ref. 23. In the two-dimensional case, for the first heavy-
and light-hole bands, the confinement in a well of thickness a
is approximated by the relation 	pz�=0, 	pz

2����� /a�2.24 In
this case, d1=d2=0 and �a �a=3,4 ,5� forms reducible rep-
resentation of an SO �3� Clifford subalgebra.17 In the follow-
ing, one introduces a new representation under which the
expressions of S matrices and �a �a=3,4 ,5� are given in the
Appendix. Under this new representation, the two-
dimensional Luttinger model is block diagonal

H = 
H+ 0

0 H−
� , �44�

where

H� = ��p� + � �
�=x,y,z

da�� �45�

with �= ±1, and

��p� =
�1

2m
�px

2 + py
2� , �46�

dx = −
�3�2

m
pxpy , �47�

dy = −
�3�2

2m
�px

2 − py
2� , �48�

dz = −
�2

m

	pz

2� −
1

2
p2� �49�

�see Refs. 24–26�. These two effective Hamiltonians are con-
nected by the time reversal operator �=−i�yK �K is the
complex conjugate operator that forms the complex conju-
gate of any coefficient that multiplies a ket�: H+=�H−�−1.
Thus the energy eigenstates of H are at least doubly degen-
erated. H� has the same form as that for the ferromagnetic
metal with exchange coupling since dz�p� in H� contains a

nonzero term, −
�2

m 	pz
2�, but the Pauli operators �� here do not

FIG. 1. Variations of the conductivity �xy and the spin conduc-
tivity �xy

z with the coupling parameter � �meV nm/��. The param-
eters are �=23 meV nm/�, h0=1.38 meV, �=1.38 meV, and m*

=0.9m0. The solid line corresponds to �xy, and the dashed line to
�xy

z .
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represent a real spin. To calculate the linear response of the
spin current Ji

z= 1
2 
�H /�pi ,Sz� to an electric current v j

=�H /�pj, the Kubo formula gives

�xy
z = �

�=±1
�− 2�xy

z��� + �
�

2e
�xy

���� , �50�

where �xy
��� and �xy

z��� are the anomalous and spin Hall con-
ductance of H�, respectively. The anomalous Hall conduc-
tance �ij =��=±1�xy

���. These relations are valid even if the
nonmagnetic disorder and interaction are taken into account.
It was known that the spin Hall conductance is invariant
�xy

z�+1�=�xy
z�−1�, but the anomalous Hall conductance changes

its sign �xy
�+1�=−�xy

�−1� under time reversal. Therefore the cal-
culation of spin Hall conductance in the 2D Luttinger model
is reduced to those of spin Hall conductance and anomalous
Hall conductance in a ferromagnetic metal or band insulator
of H�. For a numerical calculation the material-specific pa-
rameters of band structure for GaAs are adopted as �1
=6.92 and �2=2.1. The thickness of quantum well a
=8.3 nm corresponds to the gap between the light- and
heavy-hole bands at the �-point �E=40 meV. Using the for-
mula of Eqs. �9� and �12� �xy

�+1�, �xy
z�+1�, and �xy

z are calculated
numerically in terms of chemical potential � as shown in
Fig. 2. It is noted that, for an infinite confinement, 	pz

2�
→ +�, the eigenstates of H� become fully saturated.27 As a
result the spin-orbit coupling is suppressed completely, and
both spin and anomalous Hall effect vanish, which is in
agreement with Bernevig and Zhang.24

IV. DISCUSSION

Here we may present a heuristic picture for electronic
transverse transports in these systems and the effect of dis-
order from the point of view of spin force. The effect of
disorder on anomalous Hall conductance has been investi-
gated in Refs. 28 and 29. For simplicity we focus on the

system with the Wurtzite structure, i.e., f =1 in Eq. �16� or
�=0 in Eq. �29�. The spin-orbit coupling induces the spin
force, which contains two parts: the transverse force on mov-
ing electron spin

F1 =
4m*2�2

�2 Js
z � ẑ �51�

and the exchange coupling interacting also induces a spin
force within the plane, which is relevant to the spin polariza-
tion

F2 = −
2m*�h0

�
��xx̂ + �yŷ� . �52�

If the disorder potential Vdisorder is taken into account, in a
steady state, the spin force may reach at balance

1

i�
�� e

c
A,H + Vdisorder�� = 	F1 + F2� = 0. �53�

This result is independent of the nonmagnetic disorder and
interaction because the spin gauge field commutes with non-
magnetic potential Vdisorder. From the spin force balance we
have a relation between spin current and spin polarization

	Jx
z� = +

�h0

2m*�
	�y� , �54�

	Jy
z� = −

�h0

2m*�
	�x� . �55�

It becomes obvious that the spin Hall current vanishes in the
case of h0=0, which is consistent with previous complicated
calculations.30–33 Of course the purely intrinsic responses of
spin current and spin polarization without impurities do not
satisfy this relation, and the extrinsic contributions have to
be included to reach the balance. Thus, this gives a clear
picture for anomalous Hall effect in ferromagnetic metal:
When the external electric field is applied along the x axis, it
will circulate an electric current Jc,x, and also a spin current
Jx

z, since the charge carriers are partially polarized. The spin-
orbit coupling exerts a spin transverse force on the spin cur-
rent, Jx

z, and generates a drift velocity or the anomalous Hall
current Jc,y. From the Rashba coupling the spin polarization
tends to be normal to the momentum or electric current. The
electric current Jc,x along E induces a nonzero 	�y� and the
anomalous Hall current Jc,y induces nonzero 	�x�. These non-
zero spin polarizations maintain the balance of spin trans-
verse force, and further a nonzero spin current in a steady
state. Thus the anomalous electronic transverse transport is
robust against the disorder in the ferromagnetic metals and
semiconductors. This picture can also be applied to under-
stand the spin Hall effect in the quasi-2D Luttinger system.
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APPENDIX

In order to write the two-dimensional Hamiltonian in the
form of Eq. �44�, one introduces a new representation under
which S matrices are expressed as

Sz =�
−

3

2
0 0 0

0
1

2
0 0

0 0 −
1

2
0

0 0 0
3

2

� , �A1�

Sx =�
0 0 − i

�3

2
0

0 0 1 i
�3

2

i
�3

2
1 0 0

0 − i
�3

2
0 0

� , �A2�

Sy =�
0 0

�3

2
0

0 0 − i −
�3

2

�3

2
i 0 0

0 −
�3

2
0 0

� . �A3�

Now the Dirac matrices �a �a=3,4 ,5� become

�3 =
1
�3

�SxSy + SySx� = �z � �x, �A4�

�4 =
1
�3

�Sx
2 − Sy

2� = �z � �y , �A5�

�5 = Sz
2 −

5

4
= �z � �z �A6�

and furthermore

�12 =
1

2i
��1,�2� = �z � I , �A7�

�34 =
1

2i
��3,�4� = I � �z, �A8�

Sz = − �34 −
1

2
�12. �A9�
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