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This theory examines the effect of the screened Coulomb field generated by impurity ions on various
semiconductor phenomena. The exact equation for the screening length, which is derived for semiconductors,
is a function of temperature, doping density and intrinsic carrier density. In silicon the screening length varies
from a fraction of a nanometer to thousands of nanometers depending on the temperature and the doping
density. The overlap of these impurity fields causes both crystal potential shift and repulsion among impurity
ions. The repulsion among the impurity ions gives rise to a pressure build-up, which is attributed to such
phenomena as solid solubility and diffusion-induced defect generation. The experimental solubilities of lithium
in germanium, and boron, phosphorus, and arsenic in silicon are compared with the theoretical values. Also, the
optically enhanced solubility during rapid thermal processing is explained.
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I. INTRODUCTION

The impurity doping of a semiconductor has been known
only as a process by which the host material is converted into
either n-type or p-type. However, little attention has been
given to the interaction among impurity ions. As long as the
overall charge neutrality is maintained, these ions have been
treated as noninteracting point charges. The prevailing view
has been that after these ions generate electrons or holes,
their only role is as space charge. Consequently their other
contributions to various semiconductor phenomena have
been completely overlooked.

In 1969, this author published a paper explaining the ef-
fect of impurity field on the Fermi-level shift and the built-in
electric field in semiconductors.1 Although the screened Cou-
lomb field around an isolated impurity ion has been dis-
cussed in many textbooks2–4 and some research papers,5–8

these studies have failed to look into the collective behavior
of these ions.

A mathematical analysis shows that an impurity ion in a
semiconductor is shielded by oppositely charged mobile car-
riers as part of the neutralization process. Because of the
screening effect of the shielding electrons or holes, the re-
sultant Coulomb field around the ionic charge becomes short
range. However the sphere of influence extends to a certain
distance before it becomes negligible. Therefore, if another
impurity ion is brought close enough, they begin to see each
other’s Coulomb field through their shielding electron �hole�
clouds. When the doping is very light, the inter-ionic dis-
tance is far enough not to cause any Coulomb interaction
among neighboring impurity ions. However, as the semicon-
ductor’s doping becomes heavier, the ions come closer to
experience each other’s Coulomb field. Depending on their
proximity, they can repulse strongly.

The screening effect comes from free charge carriers that
are attracted to the ionic charge. These free carriers neutral-
ize the ionic charge collectively by staying closer to the ion.
Since none of these charge carriers are bound to any ion,
numerous free electrons or holes participate in the shielding.
As it turns out, the shielding is much more effective if the
carrier density is high. The thicker the electron �or hole�

cloud, the more effective is the shielding. However, what
differs for the impurity field in a semiconductor in compari-
son to a similar Coulomb field in a vacuum is its dynamic
nature. A Coulomb field inside a vacuum is steady and con-
stant. However, the impurity field in a semiconductor fluctu-
ates depending on the temperature and instantaneous carrier
density variation. The impurity field in a semiconductor
shrinks or expands as the electron �hole� density fluctuates.

In wafer fabrication, the processes like diffusion, oxida-
tion and annealing take place at high temperatures in the
order of 900–1100 °C. At this high temperature range, the
carrier density in the wafer is high and the screening length
becomes very short. Therefore, the impurity ions’ interaction
is minimal. However, as the wafers are cooled after a high
temperature process, the carrier density decreases rapidly.
This in turn causes the screening length to increase. As the
sphere of the impurity field expands, the impurity ions see
each other’s Coulomb field and either attract or repulse
strongly. Hence, the attraction promotes ion-pairing �com-
pensation�, and the repulsion affects such phenomena as
solid solubility, impurity precipitation, diffusion induced de-
fect generation, etc.

II. SCREENED COULOMB POTENTIAL OF AN
IMPURITY ION

For simplicity, let us assume a nondegenerate N-type
semiconductor in which all the donors are ionized. Then
from the charge neutrality condition

no − po = ND, �1�

where no, po, and ND are electron, hole, and impurity con-
centrations at thermal equilibrium respectively. The electron
and hole concentrations are given by

no = nie
q�b/kT, �2�

po = nie
−q�b/kT, �3�

where ni, �b, q, and k are the intrinsic electron concentration
at temperature T, the Fermi-level shift, the electronic charge,
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and the Boltzmann constant, respectively. Substituting Eqs.
�2� and �3� into �1�, ND can be expressed as

ND = 2ni sinh
q�b

kT
. �4�

In order to understand the behavior of the Coulomb field
around an ionized impurity, we have to solve the Poisson’s
equation at the vicinity of an ionic charge q,

�2V = −
q

�
�p − n + ND� , �5�

where n and p are the local carrier densities which corre-
spond to the potential perturbation V near the point charge.
Substituting Eqs. �2�–�4�, into �5�,

�2V =
2niq

�
�sinh

q��b + V�
kT

− sinh
q�b

kT
� . �6�

For V �
kT

q
, �7�

�2V �
2niq

2

�kT
�cosh

q�b

kT
�V . �8�

The condition set by Eq. �7� can be satisfied at the fringe of
the Coulomb field away from the point charge. The solution
of the above equation for a point charge, q, in the polar
coordinate system is

V =
q

4��r
e−r/rs, �9�

where

rs =� �kT

2niq
2 cosh

q�b

kT

. �10�

Equation �9� shows that the Coulomb potential due to an
ionic charge, +q, in a semiconductor is the normal Coulomb
field, q /4��r, modified by the screening factor, exp�−r /rs�.
Here rs is the well-known screening length or Debye length.
In a semiconductor, the screening of the Coulomb potential
is due to the neutralizing electron and hole clouds that shield
the impurity ions. As a result the Coulomb field attenuates
rapidly as the distance from the point charge is increased.
According to Eq. �10�, the screening length rs is a function of
temperature, carrier density, and the Fermi-level shift.

Equation �9� is identical to the Debye-Hückel9 equation
for an ionic charge in electrolytic solution. However, the
main difference is in the parameters that determine the
screening length. In electrolytes, there are cations and anions
in equal numbers. In semiconductors there are electrons,
holes, and fixed ions.

From the denominator of Eq. �10�,

2ni cosh
q�b

kT
= ni�eq�b/kT + e−q�b/kT� = n0 + p0. �11�

Substituting Eq. �11� into �10�,

rs =� �kT

q2�n0 + p0�
. �12�

The above equation gives a better insight into the nature of
the screening effect. The screening length is now a function
of temperature and the carrier densities only. That is, the
screening length is proportional to the square-root of tem-
perature and inversely proportional to the square-root of the
mobile carrier densities.

The physical interpretation of the above equation is that,
as temperature rises, mobile carriers acquire more kinetic
energy and the shielding cloud tends to spread farther out,
thus increasing the screening length. On the other hand, the
raised temperature generates more electron-hole pairs, thick-
ening the shielding electron cloud, and thus shortening the
screening length. Therefore, as the temperature is raised, two
physical phenomena compete to decide the final screening
length. One is the increased kinetic energy of carriers, which
tends to increase the screening length, and the other is the
generation of more electron-hole pairs, which tends to make
the screening length shorter by thickening the shielding elec-
tron cloud. Depending on which process dominates, the
screening length either shrinks or expands.

From Eq. �1�

N2 = n0
2 − 2n0p0 + p0

2 = n0
2 − 2ni

2 + p0
2. �13�

Here we drop the subscript from ND to generalize the equa-
tion. Manipulation of Eq. �13� yields

n0 + p0 = �N2 + 4ni
2. �14�

Substituting Eq. �14� into �12�,

rs =� �kT

q2�N2 + 4ni
2�1/2 . �15�

The above equation relates the screening length to the doping
density and the intrinsic carrier density.

III. CHARACTERISTICS OF SCREENING LENGTH, rs

One can visualize an impurity ion surrounded by the
sphere of a shielding electron cloud. Within the sphere of
screening radius rs, the Coulomb field is strong. But it decays
exponentially outside and becomes negligible. The screening
radius fluctuates as the temperature or the carrier density is
varied.

From Eq. �18�, the screening length can be estimated for a
given temperature. The accuracy of the ni value more or less
dictates the accuracy of the calculated screening length. In
this study, the empirical equation proposed by Morin et al.10

for silicon is used. It was derived from experimental data
measured up to 1000 °K �727 °C�.

ni = �1.5 � 1033T3 exp�− 1.21 + �E

kT
��1/2

, �16�

where �E = 7.1 � 10−10�ni

T
�1/2

. �17�
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Although the validity of the above equation is very good
for the temperature range up to 700 °C at which the
electron-hole pair generation is purely thermal, its accuracy
at higher temperature is somewhat questionable. The reason
why the above empirical equation may not be accurate at a
high temperature is because it represents only the thermally
generated carriers. However, at the high temperature ranges
above 900 °C, the photo-electric generation of carriers can-
not be ignored. In the red-hot furnace where the samples are
heated, photons from the heating element, which would natu-
rally have a higher temperature than the furnace temperature,
would continuously bombard the samples. Also, the energy
gap at this temperature range shrinks by about
0.3–0.5 eV,11,12 making the photo-generation more pro-
nounced. Therefore, the appreciable portion of the carrier
generation must be photo-electric. Consequently when the
photo-electric effect is taken into account the carrier density
in this temperature range would be much higher than the
value calculated by Eq. �16�. McCaldin13 reported the mea-
sured ni value of GaAs at 1000 °C to be 4�1018 cm3 which
is about six times greater than the value predicted by the
extrapolation of lower temperature Hall measurement data.
Also this value is about ten times greater than the value
calculated by the Morin-Maida’s equation for GaAs,11 4
�1017 cm3. The wide discrepancy can only be explained by
the unaccounted photo-generated carriers. In the absence of a
reliable equation which would take the photo-effect into ac-
count, the above empirical equation will be used, keeping in
mind that the carrier density at a high temperature is much
higher due to the photo-effect.

The screening length rs for silicon calculated from Eq.
�15� is plotted as a function of temperature and doping den-
sity in Figs. 1 and 2. In Fig. 1, the screening length increases
as the temperature is raised, initially indicating the effect of
the kinetic energy being predominant over that of thermal
generation. After peaking, the screening length decreases as
the temperature is further raised, probably because the effect
of the thermal generation becomes predominant.

Also, note that, as the temperature is raised higher, the
curves converge on the one that corresponds to the intrinsic
carriers only, because the thermally generated carrier density
is higher than that of the doping density. Figure 2 shows the
screening length versus the impurity concentration for vari-
ous temperature values. The screening length is almost con-
stant up to the point where the doping density approaches the
intrinsic carrier density, and thereafter it decreases rapidly as
the doping density is further increased. It shows, at a given
temperature, the screening length remains constant until the
doping density approaches to that of the intrinsic carriers. As
the doping density approaches and exceeds the intrinsic car-
rier density, the screening length starts to shrink because
overall carrier density is increased. Another way to look at
Fig. 2 is that, on the left side of the curves, shown by the
arrow “A,” the effect of the carrier generation is predomi-
nant, so the screening length decreases as the temperature is
raised. The right side, shown by arrow “B,” is where the
effect of kinetic energy predominates over the carrier genera-
tion.

IV. FERMI-LEVEL SHIFT AND IMPURITY FIELD

It is worthwhile to test the validity of the theory by cal-
culating one of the well-known semiconductor parameters.
One such test is that if the impurity field truly exists in the
semiconductor as described in Eq. �9�, the superposition of
all such potentials from individual impurity ions would add
up to modify the original crystal potential. The amount of
total potential shift thus calculated can very well be equal to
the well-known Fermi-level shift14 derived from Eq. �4�,

�b =
kT

q
sinh−1 ND

2ni
. �18�

Physically, the doping of a semiconductor is equivalent to
the injection of fixed ions and the same number of oppositely
charged carriers into the crystal lattice. Since the equal and

FIG. 1. Screening length vs temperature.
FIG. 2. Screening length as a function of the doping density.
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opposite charges are injected, the total system remains neu-
tral. However, the Fermi level shifts when the impurity at-
oms are ionized. The impurity ions give rise to individual
impurity fields inside a semiconductor. Depending on the
density of the ions in the semiconductor, the tail portions of
the impurity fields overlap to change the electro-static poten-
tial inside the semiconductor. Since every ionized impurity
atoms has its own Coulomb field, the superposition of these
fields should add up to an average potential shift that must be
identical to the Fermi-level shift of Eq. �18�.

For a uniformly doped semiconductor, let us use a jellium
model in which the charge density, qND, is uniformly distrib-
uted. Then, the potential perturbation dV at an arbitrary point
which is assumed to be the center of a spherical shell ele-
ment 4�r2dr can be obtained by use of Eq. �9�. The spherical
charge density at radius r from the center is 4�r2qNDdr.
Because of the spherical symmetry, dV can be found as

dV =
qND

�
re−r/rsdr . �19�

Now integrating the above equation over all space, we obtain
the total potential shift due to the surrounding impurity ions.

V =
qND

�
	

0

�

re−r/rsdr , �20�

or

V =
qrs

2ND

�
. �21�

Equation �18� is the Fermi-level shift predicted by the
energy band theory and Eq. �21� is the potential shift calcu-
lated from the screened Coulomb fields of impurity ions.
Although the equations are not identical, they could still rep-
resent the same entity within the confines of Eq. �7�. If they
are identical, then the Fermi-level shift can now be attributed
to the screened Coulomb field of the ionized impurities.

The numerical comparison of Eqs. �18� and �21� is made
in Fig. 3 by plotting the computed values of each equation.
The two sets of curves coincide perfectly within the limit
imposed by Eq. �7�.15 It is evident from the figure that indeed
the Fermi level shift in a doped semiconductor is caused by
the screened Coulomb potential of individual impurity ions.
Also this result validates the impurity field theory of this
paper.

Figure 4 depicts the effect of the impurity field on the
Fermi-level shift. The Fermi potential before the doping is
shown by the solid line which is equivalent to the intrinsic
level. After the doping, the impurity ions set up their
screened Coulomb field to modify the electronic potential by
“V” as shown.

V. IMPURITY-IMPURITY INTERACTION

In a lightly doped semiconductor, the impurity ions do not
see each other’s Coulomb field if the inter-impurity distance
is much farther than the screening length. However, as the
doping density is increased, the impurity fields from adjacent

impurity ions start to overlap and the ions start either to
repulse or attract each other depending on the polarities.
Since the normal doping of a semiconductor involves the
same type �N or P� at a time, the impurity interaction is
repulsive.

Figure 5 is a simplified depiction of the ionic interaction.
Each circle represents an elastic ball within which the Cou-
lomb field is strong enough to affect mutual repulsion or
attraction. Within the ball, the impurity field is strong, but
outside it is negligible. Although it is somewhat an over-
simplification, it helps us to visualize the impurity interac-
tion. In Fig. 5�a�, the balls touch and push each other indi-
cating overlap of the impurity fields, which would lead to a
strong repulsion. In Fig. 5�b�, the balls are somewhat sepa-
rated so that the interaction is negligible. Also, note that the
size of the balls expands or shrinks depending on the tem-
perature and the local carrier density based on Eq. �15�. For
example, if a sample depicted in Fig. 5�a� is illuminated by a
strong beam of light, then the balls shrink to a small size and
they do not touch each other. This is because the light beam
generates a high density of electron-hole pairs which make
the screening length shrink. The new, thick electron and hole
clouds shield the ions effectively to make the impurity field
within a very short range. However, if the light beam is
turned off, then the excess carriers recombine quickly mak-

FIG. 3. Comparison of Eqs. �18� and �21�.

FIG. 4. Impurity field and potential shift.
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ing the balls to expand to their original size. This simple
picture is useful in understanding the behavior of impurity
ions during high temperature processing.

A. Internal pressure

If the impurity density is high enough to cause strong
repulsion, then the repulsion leads to a pressure build up in
the host crystal. In Sec. IV, it was established that the impu-
rity fields add up to boost the crystal potential by the amount
of the Fermi-level shift �b. Assuming that the impurity ions
are brought from infinity to the crystal one by one to raise
the potential from zero to �b, then the total energy required
to do the job is

W =
1

2
q�bNV , �22�

where N is the density of impurity ions and V is the volume
of crystal. Therefore, NV is the total number of ions in the
crystal. The pressure generated by the repulsion can be de-
rived by differentiating the energy by volume V,

P =
dW

dV
,

=
1

2
q�bN . �23�

From the above equation, the pressure is a function of the
impurity density and the Fermi-level shift. Substituting Eq.
�18� into �23�,

P =
1

2
kTN sinh−1 N

2ni
. �24�

Now the pressure is a function of doping and the intrinsic
carrier densities. The above equation is plotted as a function
of the doping density for several temperature parameters in
Fig. 6. It is clear from the figure that the pressure is negli-
gible for a low to moderate doping density, but increases
beyond the doping density of about 1019 atoms/cm3. High
temperature pressure curves in Fig. 6 would shift right, as
shown by the dotted line in the figure, if the ni value was
modified to take into account the optically generated
electron-hole pairs. The dotted line is a hypothetical curve
when ni value is increased by tenfold due to optical genera-
tion of carriers at 1100 °C �see note in Sec. III�.

It is important to note that the inter-impurity repulsion
gives rise to tensile pressure which induces more vacancy

generation than without the pressure. It also implies that the
highly doped region of a crystal has a higher pressure and
more vacancies than the rest of the region.

B. Ion-pairing and impurity compensation

When both donor and acceptor impurities are present in a
crystal, the oppositely charged impurity ions attract each
other during the diffusion process. If they are close enough
they form ion-pairs, either in the form of dipoles or chemical
compounds.16,17 In other words, the ion pairs can have direct
chemical-bonds to form a compound or they can be just di-
poles without chemical bonds. As soon as the ions are paired,
their electric field becomes localized between the two ions
and the original radial impurity field of each ion disappears.
The paired ions automatically neutralize each other making
the shielding electron-cloud unnecessary. This is why the
compensated impurities do not generate free carriers.

It is proven fact that the ion-pairing increases the solid
solubility of the impurities involved.16,18 Reiss et al.16 dis-
covered that the solubility of lithium �donor� increased when
the host crystal �germanium� was pre-doped with known
quantity of gallium �acceptor�. In another experiment, they
reported the increase of mobility in compensated crystal
compared to one without compensation. That is, they mea-
sured Hall mobility of a germanium sample doped with
known quantities of gallium and then measured the mobility
after the same sample was partially compensated by lithium.
The latter showed marked improvement in Hall mobility de-
spite the fact that it contained a higher density of total im-
purities �gallium plus lithium�. They attributed this to the
disappearance of scattering centers. These findings are con-
sistent with the present theory that the ion-pairing eliminates
the original screened Coulomb fields of each ion.

VI. SOLID SOLUBILITY

Trumbore19 studied and compiled the solid solubility of
various impurities in silicon and germanium. His solubility
chart is still being used universally. He proposed three fac-
tors that might affect the solubility, namely, chemical com-

FIG. 5. Impurity repulsion.

FIG. 6. Pressure vs active impurity density.
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patibility, atomic size, and crystal structure. He showed cor-
relations of the solubility with the atomic sizes and the heats
of sublimation of the impurity elements. He also suggested
that the solubility is determined by the thermodynamic free
energy of the crystal at a given temperature. Shockley and
Moll20 studied the solubility of charged impurities in heavily
doped semiconductors and proposed the correlation between
the solubility and the Fermi-level.

According to the Trumbore chart, the substitutional impu-
rities in silicon can be divided into two groups. The first
group, which shows the highest solubility, includes P, B, and
As. These impurities are chemically compatible with silicon
and their atomic sizes are either about the same or smaller
than silicon atom. For these impurities, the structural mis-
match is not much of a problem. The next group, which
includes Al, Sb, Sn, and Ga, has lower solubility values,
possibly due to their atomic sizes being bigger than silicon.
If the impurity atoms are bigger in size, then they have dif-
ficulty in fitting into the host crystal. In this study, the dis-
cussion will be limited to the former group to study the effect
of the screened Coulomb field on the solubility.

The solubility is defined as the maximum concentration of
a given impurity atom that can be incorporated into a host
crystal at a given temperature. It is a well accepted concept
that the solubility is the value that minimizes the thermody-
namic free energy of the host system. Reiss et al.16 carried
out an extensive study on Li diffusion in Ge and Si. Also,
they developed a theoretical solubility formula which was
based on the law of mass action and the Fermi statistics.
Their calculated solid solubility agreed very well with the
experimental values, which is reexamined in Fig. 7.

However, there has been no basic understanding of the
microscopic behavior of individual impurity atoms in rela-
tion to the solubility. In light of this theory, we can now
visualize the situation much better. Under the light doping
condition, the impurity ions do not see each other’s Coulomb
field and, therefore, they behave like noninteracting point

charges. When the doping density approaches that of solid
solubility, the inter-impurity distance becomes short and the
impurity field of neighboring ions overlap, which gives rise
to a repulsive force. Because of the exponential factor in the
screened Coulomb field, the repulsive force increases drasti-
cally as two ions are pushed closer. The solubility is deter-
mined by the critical inter-impurity distance at which the
repulsive force becomes so strong that further introduction of
impurities is rejected.

The same phenomenon can be explained by using the
pressure build-up shown in Fig. 6. The repulsion among the
impurity ions gives rise to internal pressure as shown in the
figure. At an elevated temperature the pressure is negligible
up to about 1019 atoms/cm3. However, the pressure curve
rises beyond this point and the slope becomes steeper at
about 1020 atoms/cm3 and beyond. At a certain concentra-
tion, the pressure build-up becomes so excessive that no
more impurity can be introduced substitutionally beyond this
limit. Note, however, that the curves in Fig. 6 have to be
modified if there is an optical generation of carriers, which is
the case with a temperature above 900 °C and also with the
RTP process. The dotted curve in Fig. 6 is such a modifica-
tion assuming that the carrier density increased tenfold by
photo-generation. Tenfold is arbitrarily chosen in reference
to McCaldin’s finding on GaAs mentioned in Sec. III of this
article.

If the aforementioned elastic ball model is used, the radius
of the ball is determined by the balance of the repulsive force
among the impurity ions and the counter retaining force
composed of the chemical bond and the potential barrier of
the crystal lattice. If the repulsive force is stronger than the
retaining force imposed by the crystal lattice, then the impu-
rity ions would be dispersed by force, either to precipitate,
by breaking chemical bonds, or to undergo enhanced diffu-
sion to be pushed out. Therefore, the solubility is simply the
maximum number of the elastic balls that can be safely
squeezed into a unit volume at a given temperature.

As a first order of approximation, let us assume that the
radius of the elastic ball is the same as the screening length.
This is a reasonable approximation given that the Coulomb
field increases exponentially if the radius becomes shorter
than the screening length. Also if another ion is brought
within this proximity, then a strong repulsion is to be ex-
pected. Further, it is assumed that the solubility is the num-
ber of these balls which can be close-packed into a unit vol-
ume of the host crystal. The close-packing of these balls is
achieved by assuming that the packed balls form tetrahedral
pyramids, with one ball sitting on top of three triangularly
packed balls. The corresponding number of balls that can be
packed this way in a unit volume �/cm3� is

N =
1

5.657rs
3 �25�

Note that this close packing density is higher than the pack-
ing density of cubes with size �2rs�3.

To test this theory, the solubility of Li in germanium crys-
tal is analyzed. The atomic size of germanium �atomic num-
ber 32� is much bigger than that of lithium �atomic number

FIG. 7. Li solubility in germanium.
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3�, and these two atoms do not form chemical bonds. How-
ever, the lithium atoms ionize to become donors. As a result,
the lithium ions diffuse relatively easily through the intersti-
tial voids of germanium crystal. Fortunately, we have experi-
mental solubility data in the temperature range of
100–700 °C.19 Also, for this temperature range, the accurate
carrier density can be calculated by using the Morin-Maita’s
equation,

ni = �3.1 � 1032T3 exp�− 0.785 + �E

kT
��1/2

, �26�

where �E = 4.61 � 10−10�ni

T
�1/2

�27�

The packing density of these balls with radius rs is calcu-
lated using Eqs. �10�, �25�, and �26�, and is compared with
the experimental data on Li solubility in germanium. Al-
though it may seem an oversimplification, at least this
method is the first step toward estimating the theoretical
solubility which would shed some light on the relationship
between the screened Coulomb field and the solubility. The
solubility calculated from the packing density is plotted in
Fig. 7, together with the theoretical values of Reiss et al.16

and the experimental values of Ref. 19. The solid line is for
the calculated solubility and the dotted line having “�” rep-
resents the theoretical values of Reiss et al. The experimental
solubility of Li from the Trumbore19 curve is retraced with
“�” markings. A remarkable agreement is found between the
two different set of theoretical values and the experimental
solubility, although it deviates somewhat at the high and low
ends of the temperature range.

A similar comparison is made for active B, P, and As
solubility in silicon for the 800–1200 °C range. In Fig. 8,
the solid line represents the theoretical values calculated
from Eqs. �10�, �16�, and �25�. The dotted lines having “�”
markings representing B are from the experimental data of

Ryssel et al.21 and Maekawa and Oshida.22 The upper dotted
line with “	” markings represents the experimental solubil-
ity of As from Guerrero et al.23 The cluster of “�” markings
represents experimental values for P from Refs. 28–30. As
expected the theoretical curve is fairly lower than that of the
experimental curves. This discrepancy can be attributed to
the underestimation of carrier density in Eq. �16�. This equa-
tion does not account for the carriers generated by the photo-
effect, which would be substantial at the temperature range
of interest. Also, the discrepancies between the solubility of
B, P, and As are noteworthy. This may be due to the fact that
the size of the ions in the host crystal could hinder the mo-
bility of the ions under Coulomb repulsion. The bigger ions
are harder to move once they settle into a crystal lattice.

Figures 7 and 8 strongly suggest that, indeed, there is a
strong correlation between the screened Coulomb field and
the solid solubility of electrically active impurities. However,
more research is needed to clarify the relationship between
the solubility and various other factors, such as atomic size,
chemical bond strength, and activation energy.

A. Optically enhanced solubility

Rapid thermal process �RTP� has been used to anneal im-
planted impurities. Regolini et al.24 reported activation of
implanted As to 1021 cm3 by electron beam and laser anneal-
ing at the wafer temperature of 350 °C. Also Lietoila et al.25

reported the activation of implanted As in silicon to 5
�1020 cm3 by RTP annealing at 560 °C. These values are
way above the solid solubility limit. Singh et al.26,27 reported
that they were able to carry out shallow high density phos-
phorus diffusion at 700 °C by use of UV light activated RTP
process. They achieved the surface concentration of about
3�1020 atom/cm3 with the junction depth of 0.125 
 after
30 min diffusion. This value also exceeds the solid solubility
at the temperature and is about the same order of magnitude
as those reported for 1050 and 1100 °C with the conven-
tional furnace diffusion.28,29,31,32

The RTP process relies on optical radiation for heating the
wafers. The illumination of strong light onto the wafer sur-
face will generate numerous electron-hole pairs in the sur-
face area by the photo-electric effect. From Eq. �10� or �12�,
it is obvious that the increased carrier density will make the
screening length very short. As the impurities are diffused
under the continuous illumination, the high density of
electron-hole cloud shields the impurity ions more effec-
tively. As a result, a higher density of impurity ions can be
introduced into the wafer beyond the conventional solubility
limit. This fact is illustrated by a dotted line in Fig. 6.

VII. DIFFUSION INDUCED DEFECT GENERATION

Tannenbaum28 first reported the anomalous diffusion of
phosphorus into silicon and discovered that the diffusion pro-
file she obtained not only deviated from the ideal profile
predicted by the simple diffusion theory but also an appre-
ciable portion of the diffused impurities were electrically in-
active. The diffusion profile of the phosphorus determined by
a radio-tracer showed much greater density than that deter-

FIG. 8. Solubility of active B, P, and As in silicon.
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mined by conductivity data. She attributed these electrically
inactive phosphorus atoms to precipitation. Her finding was
confirmed by many other researchers.22,29,31,32

When the impurities are introduced into the host crystal
from an infinite source, the surface area of the crystal be-
comes saturated with impurities to a solid-solubility limit. At
the high furnace temperature of about 1000 °C, the furnace
heating element had to be heated to a higher temperature to
compensate for the heat loss of the open-tube system. In
other words, the heating element and its immediate surround-
ings would be at higher temperature than that of wafers to
maintain the necessary temperature gradient needed to sup-
port required wafer temperature. These overheated elements
radiate visible and infrared lights just like an incandescent
light bulb. When the wafers are irradiated with these light
beams at high temperature, numerous electron-hole pairs are
generated in addition to the normal intrinsic carrier density
due to thermal generation. As a result the carrier density in
the wafers is much higher than that predicted by thermal
generation alone.

Naturally, the solubility in the wafer is boosted by the
optically generated electron-hole pairs as discussed in the
previous section. Thus, the wafer absorbs higher density of
impurities than it would in the absence of photo-generated
carriers. After the diffusion process, when the wafers are
pulled out quickly, the excess carrier density due to the op-
tical generation drops abruptly because the wafers are out of
the optical zone. There was no motorized loading system in
the old days. Wafers were pushed in and out manually and
quickly. As the wafers are cooled down, the carrier density
drops even further though not as quickly as the optical por-
tion. As the carrier density drops, the screening length ex-
pands causing a sudden increase in ionic repulsion and inter-
nal pressure.

The diffusion-induced defects and crystal damage have
been well studied in the past.29,31,32,34 The heavy doping of
impurities by the diffusion process not only produces a high
density of inactive impurities in the diffused layer, but also
generates numerous defects such as dislocations, slips, and
precipitation clusters. Although atomic misfit stress30 could
cause some defects, it is not likely to be the main cause in
the case of boron and phosphorus. The tetrahedral radii of
both boron �0.88A� and phosphorus �1.1A� are less than that
of silicon �1.17A�. When smaller impurity atoms replace big-
ger host atoms, their small size might induce some tensile
stress locally. However, the inter-impurity repulsion could
counter and override the size related stress at high impurity
concentration. The smaller impurity ions tend to reduce vol-
ume while the repulsion among them tends to increase the
volume.

To relieve sudden rise of internal pressure, numerous
stress-induced crystal defects are generated. At the same
time, some of the excess impurity ions are squeezed out to
precipitate. The strong repulsion among the impurity ions at
the time of cooling must have produced enormous pressure
in the heavily doped region of the wafers. From Fig. 6, the
internal pressure for 1020 atoms/cm3 is estimated to be about
17 atm. at 1100 °C, although the actual pressure should be
lower if the effect of the photo-generated electron-hole pairs
is taken into account. Also note that the pressure increases

exponentially beyond this point. Czaja31 reported the critical
surface concentration for the generation of slip during phos-
phorus diffusion to be in the range of 2�1020 to 2.5
�1020 atoms/cm3. He carried out the diffusion at 1050 °C.
A similar result was reported by McDonald et al.,29 but they
went a step further to prove that the defect generation is not
just a function of surface concentration but also a function of
diffusion depth. They were able to minimize the defect den-
sity by using a shallower diffusion. At any rate, all these
findings are consistent with the implication of Fig. 6.

Levine et al.33 discovered that the diffusion induced dis-
location density was maximal at the layer where the impurity
concentration gradient was maximum. If the entire crystal is
under uniform pressure, then nothing happens. Only when
there is a pressure differential, the crystal planes will be
shifted or pushed. Such a pressure differential occurs at the
surface and this is where the impurity concentration gradient
is maximal. Therefore, it is only natural to find more dislo-
cations at the region where the impurity concentration gradi-
ent is maximal. Similarly, numerous slip patterns are found
on the surface of heavily doped wafers.

VIII. CONCLUSION

The impurity field theory provides greater insight into the
hitherto unexplained phenomena of semiconductor physics.
The most important concept of this theory is that the impu-
rity ions carry their own screened Coulomb fields and inter-
act with each other to cause various phenomena observed.
The superposition of the impurity fields is proven to be iden-
tical to the Fermi level shift in the semiconductor. The
screening length is a function of temperature and fluctuating
carrier density. When the impurity ions are brought close
enough, the ions start to repulse or attract each other depend-
ing on the impurity types. Those of opposite type attract each
other either to form an ion-pair or an outright chemical bond.
These pairings nullify individual screened Coulomb fields
for the participating ions, because their fields become local-
ized between two ions.

The repulsion among the same type impurity ions plays a
more important role in high temperature processing technol-
ogy. At a given temperature, the solid solubility of substitu-
tional impurity which has comparable atomic size to the host
crystal is determined mainly by the Coulomb repulsion
among the impurity ions. The impurity ions can be intro-
duced into the crystal as long as the repulsion is not strong
enough to be rejected. In other words, because of the strong
repulsion from the ions already in the crystal, any new im-
purity ion cannot substitutionally enter into the crystal. In a
way, the solid solubility can be defined as the maximum
number of impurity ions whose mutual repulsion can be
countered by the binding force of the crystal lattice. The first
order of approximation presented in Figs. 7 and 8 proves
that, indeed, the mutual repulsion of impurity ions plays an
important role in determining the final solubility.

The optically enhanced solubility of impurities reported
for the rapid thermal processing �RTP� process can be ex-
plained by the shielding effect of those optically generated
numerous electron-hole pairs. The thicker electron-hole
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cloud shields impurity ions more effectively to enhance the
solubility beyond the normal limit without the optical gen-
eration. The same explanation can be given for the shallow
and high surface concentration accomplished by the low
temperature RTP diffusion reported in Refs. 26 and 27.

When the heavily diffused wafers are cooled at the end of
diffusion cycle, the impurity fields of each ion expand as the
excess electrons and holes recombine reducing the total car-
rier density. At the early stage of cooling, the carrier density
decreases abruptly by recombination of optically generated
carriers. Then the normal recombination of thermally gener-
ated carriers follows as the cooling process continues. The
sudden decrease in carrier density gives rise to a strong re-
pulsion among the impurity ions and causes pressure build-

up. When the pressure build-up becomes excessive, various
crystal defects such as dislocation, slip, precipitation cluster,
etc. are generated to release the pressure. However, the quick
cooling would also freeze the impurity ions and vacancies in
the lattice above the equilibrium values.

As pointed out, we do not currently have an empirical or
theoretical equation to predict the exact carrier density at an
elevated temperature which takes into account the photo-
generated carriers. Also, the effect of band-gap narrowing for
heavy doping30,35,36 is not taken into account for intrinsic
carrier calculation. Therefore, the calculations presented in
this paper would deviate somewhat from the true values at
the high temperature range where the photo-electric effect
becomes appreciable.
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