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We report our study on unconventional charge-density waves �UCDW� �i.e., a charge-density wave with a
wave vector dependent gap� in pure quasi-one-dimensional conductors. We develop a possible mechanism of
establishment of such a low temperature phase, in which the driving force of the phase transition is the
electron-phonon interaction with coupling depending on both the momentum transfer �q� and the momentum
of the scattered electron �k�. Mean field treatment is applied to obtain the excitation spectrum, correlation
functions such as the density correlator and the optical conductivity, and the effective mass of the phase
excitation. The fluctuation of the order parameter leads to the sliding of the UCDW as a whole. In the absence
of impurities, we calculated the effect of this fluctuation on the optical properties. The inclusion of the
collective mode significantly alters the optical conductivity, and leads to an effective mass which is nonmono-
tonic in temperature as opposed to conventional CDWs.
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I. INTRODUCTION

As a result of intense research during the past few de-
cades, much is known about the properties of density waves
�DW� possessing a constant � order parameter.1 On the other
hand, it is also well known that the momentum dependent
order parameter ��k� plays an important role in theories of
superconductivity �termed unconventional�.2,3 Indeed, many
unusual features of the high temperature superconductors are
understood in terms of a k-dependent single particle gap of
d-wave symmetry, and therefore the case of d-wave super-
conductors for high-Tc cuprates is now well established.4,5

Also, most heavy fermion superconductors and organic su-
perconductors appear to be unconventional or nodal with
gapless quasiparticle spectrum.6

It follows from the success of these developments natu-
rally, that investigating the density wave sector may as well
turn out to be a fruitful enterprise. Momentum dependent
order parameter in an electron-hole condensate was first in-
troduced in the context of an excitonic insulator.7 Since then
considerable attention has been focused on investigating un-
conventional density waves �UDW� and other current carry-
ing ground states under various circumstances.8–13 A striking
feature of these unconventional condensates is that due to the
vanishing momentum average of the gap over the Fermi sur-
face ����k��=0�, these systems are not characterized by spa-
tially periodic modulation of either the charge or the spin
density, though the name “density wave” is widely used.14

This property makes UDW a very likely candidate for those
systems where a clear and robust thermodynamic phase tran-
sition is not accompanied by an order parameter detectable
by conventional means, the situation often referred to as
“hidden order.”12

Possible materials with UDW ground state include: the
quasi-two-dimensional transition metal dichalcogenid 2H-
TaSe2 for which an f-wave UCDW was proposed;15 the mys-
terious low temperature micromagnetic phase of the heavy
fermion compound URu2Si2 for which an USDW has been

suggested originally,16,17 then later further corroborated;18

and the pseudogap phases of �TaSe4�2I,19,20 and the under-
doped high-Tc superconductors for which the d-wave DW
scenario was proposed.12,21

Perhaps, one of the most likely candidates for possessing
some kind of CDW of an unconventional type in the low
temperature phase is the organic conductor �-�BEDT-
TTF�2KHg�SCN�4. This salt has been extensively investi-
gated experimentally in the past few years,22–27 and recently,
the experimental findings of these latter works have been
explained rather well by a quasi-one-dimensional UCDW
with momentum dependent order parameter, including the
threshold electric field,28–30 the angular dependent magneto-
resistance,31,32 and the magnetothermopower and Nernst
effect.33

In this paper, our goal is to develop the theory of a quasi-
one-dimensional UCDW, in which the phase transition is
governed solely by electron-phonon interaction. A prelimi-
nary report of some of our results has already been
presented.34 The article is organized as follows: in Sec. II we
define our model and develop its mean field theory and ther-
modynamics. Section III is devoted to the optical conductiv-
ity and the effective mass of the phase excitation. Our con-
clusions are given in Sec. IV.

II. THE MODEL

A. The coupling and the order parameter

Let us start by considering the Hamiltonian of the inter-
acting electron-phonon system of our quasi-one-dimensional
conductor

H = �
k,�

��k�ck,�
+ ck,� + �

q,�
���q�aq,�

+ aq,�

+
1

�N
�

k,q,�,�
D��k,q�ck+q,�

+ ck,��aq,� + a−q,�
+ � , �1�

where the one particle energy ��k� for the electrons is given
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by the usual highly anisotropic �ta� tb� tc� nearest neighbor
tight-binding formula measured from the chemical potential

��k� = − 2ta cos�akx� − 2tb cos�bky� − 2tc cos�ckz� − 	 .

�2�

Henceforth, the most conducting crystal axis x will often be
called the chain direction. Our system is based on an ortho-
rhombic lattice with lattice constants a ,b ,c, with one atom
per unit cell. The three acoustic phonon branches that the
crystal possesses, labeled by the polarization index �, have
all been taken into account in Eq. �1�. As usual, ck,� is the
annihilation operator of a Bloch electron with momentum k
and spin � in a single band, while aq,� is the same for a free
phonon with energy ���q�, momentum q, and polarization �.
The interaction matrix element in Eq. �1� is given by

1

N
D��k,q� =

1
�2M���q�

� d3r
k+q
* �r�e��q�

��− �Uat�r�	
k�r� , �3�

with Uat being the atomic potential, N is the number of unit
cells in the sample, and e��q� denotes the unit vector of
polarization � and momentum q. The k dependence of the
coupling—emanating from a second quantization on a
Bloch-basis �
k�r�	—turns out to be crucial in order to form
an unconventional charge density wave �UCDW�. Indeed, it
is clear from Eq. �3�, that choosing plane waves �
eikr� for
the one electron basis, one ends up with the well known
Fröchlich model35,36 of the conventional charge density
waves �CDW� with coupling simplified to the Fourier com-
ponent �at wave number q� of the atomic potential. This
approximation would therefore lack any kind of unconven-
tionality, which can only originate from the k dependence of
the electron-phonon coupling.

Let us now proceed with the mean field treatment of the
Hamiltonian in Eq. �1�. We introduce the phononic operator
���q�=aq,�+a−q,�

+ . Within mean field theory, the operator is
replaced by its expectation value ����q��, which differs from
zero only if the momentum is set to q= ±Q, with Q
= �2kF , /b , /c� being the best nesting vector. With this, the
electronic part of Eq. �1� simplifies to a quadratic Hamil-
tonian in the electronic operators, and one obtains

HMF = �
k

�+�k����k��3 + ���k��1 − ���k��2	��k� . �4�

Here �i stand for the Pauli matrices acting on the space
of left- and right-going electrons, �+�k�= �ck↑

+ ,ck−Q↑
+ ,

ck↓
+ ,ck−Q↓

+ � is the four component spinor operator, ��k� de-
notes the linearized electron spectrum in kx around ±kF, the
Fermi surface: ��k�=vF��kx�−kF�−2tb cos�bky�−2tc cos�ckz�,
and finally ��k�=���k�+ i���k� is the decomposition of the
order parameter into real and imaginary parts. The order pa-
rameter itself reads as

��k� =
1

�N
�
�

����Q��D�
*�k,− Q� . �5�

Now the diagonalization of Eq. �4� is straightforward: for
the excitation energies we have E±�k�= ±E�k�, E�k�
=���k�2+ ���k��2, which is the usual two band quasiparticle
spectrum known for example from the theory of unconven-
tional spin- and charge-density waves driven by purely elec-
tronic correlations.9 The thermodynamics of the system in
the low temperature phase is determined solely by the mo-
mentum dependence of E�k�, and the possible node structure
�line or point nodes� on the Fermi surface, if there are any.
Thus in the following we explore the momentum dependence
of the order parameter. Making use of the Bloch-Wannier
transformation for the electronic wave functions, 
k�r�
=1/�N�ReikR��r−R�, we change the representation in Eq.
�3� to a Wannier basis and obtain

D�
*�k,− Q� = g��

R
A��R�e−ikR, �6�

where

A��R� = e��Q� � d3r��r���
R�

eiQR��− �Uat�r − R��	
��*�r − R� , �7�

and g�= �2M���Q�	−1/2. Equation �6� is clearly a Fourier ex-
pansion of the coupling in its argument k in the Brillouin
zone harmonics, with coefficients as overlap integrals of the
Wannier orbitals localized on different sites. Since our sys-
tem is a tight-binding solid �see Eq. �2�	, these are consid-
ered to be exponentially small if the spacing is large between
the two orbitals. Therefore it is a reasonable approximation
to retain only the onsite �R=0� and the nearest neighbor
terms �R= ±a , ±b , ±c�. Indeed, as is easily seen from Eqs.
�5� and �6�, in order to keep the possibility of an UCDW
formation with a momentum dependent order parameter, one
has to go beyond the onsite term. This situation is similar to
the development of a CDW in an interacting electron system:
in the simple Hubbard model the interaction U�0 is not able
to drive the system into an unconventional charge density
wave ground state either, and one has to include two center
exchange integrals as well to facilitate an unconventional
condensate.9,14,16 With all this

D�
*�k,− Q� = D0

� + D1
� cos�bky� + D2

� sin�bky� + D3
� cos�ckz�

+ D4
� sin�ckz� , �8�

where we have set kx=kF, since the relevant k dependence of
both the coupling and the gap is confined to a narrow region
near the Fermi sheet at +kF. The coefficients are therefore
given by

D0
� = g��A��0� + A��a�e−ikFa + A��− a�eikFa	 , �9�

D1
� = g��A��b� + A��− b�	 , �10�

D2
� = − ig��A��b� − A��− b�	 , �11�
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D3
� = g��A��c� + A��− c�	 , �12�

D4
� = − ig��A��c� − A��− c�	 . �13�

Consequently, the gap will be of the form

��k� = �0 + �1 cos�bky� + �2 sin�bky� + �3 cos�ckz�

+ �4 sin�ckz� , �14�

with

�i =
1

�N
�
�

����Q��Di
�, i = 0, . . . ,4. �15�

We note here that the coupling D0
�, that determines the mo-

mentum independent part �0 of the order parameter, is not
necessarily much larger than the other couplings in Eqs.
�10�–�13� favoring the k dependence of ��k�. Equation �7�
shows that the main contribution to A��0�—the onsite contri-
bution—should come from the vicinity of the origin where
the Wannier-orbitals are strongly localized. However, since
the squared wave function is an even function while the
force-field is odd, the whole integrand in Eq. �7� is odd too,
leading to a small result.

The structure of the gap function in Eq. �14� makes it
clear that there are line nodes on the Fermi surface in any of
the latter four unconventional cases �e.g., �2 sin�bky�=0, kz

varies freely	. The quasiparticles around these nodes, often
termed nodal in the terminology of superconductivity, will
determine the nature of the thermodynamics. Since the gap
function itself is the same as the one in the quasi-one-
dimensional electronic UDWs9 �either spin or charge�, the
thermodynamics of a one-component �with only one type of
gap amplitude being finite among the four possible uncon-
ventional cases in Eq. �14�, e.g., ��k�=�2 sin�bky�	 phononic
UCDW is therefore identical to those of either an electronic
UDW,9 or a d-wave superconductor37 �in spite of the differ-
ent topology of their Fermi surfaces�.

B. The gap equation

In this section, we shall now proceed with the derivation
of the self-consistency condition for the order parameter
��k� known as the gap equation. Let us consider the equa-
tion of motion of the phonon operator ���Q� introduced in
the previous subsection

−
d2

dt2���Q� = ���Q�2�a�Q� + 2���Q�B��− Q�, � = 1,2,3

�16�

with

B��− Q� =
1

�N
�
k,�

D��k,− Q�ck−Q,�
+ ck,�. �17�

Taking the expectation value of Eq. �16� over the full Hilbert
space, the anomalous electron-hole expectation value appear-
ing in Eq. �17� can be easily calculated in the low tempera-
ture phase, and using Eq. �5� we get

�B��− Q��MF = �
��

������−
1

N
�
k,�

D��k,− Q�D��
* �k,− Q�

�
tanh��E�k�/2�

2E�k�  � �
��

���������. �18�

At this point it is important to call attention to the fact that
since the susceptibility matrix ���� in Eq. �18� is clearly not
diagonal, the three equations for the corresponding phonon
modes are thus coupled together in Eq. �16�. This can be
easily understood: although there is no direct interaction be-
tween the different phonon modes, the electron system due to
its coupling to all branches acts as a medium, and mediates
an effective phonon-phonon interaction. Applying the ansatz
����t��= ����0��e−i�t to Eq. �16� averaged over the full Hil-
bert space, the eigenfrequencies �	

2 �	=1,2 ,3� of the new,
effectively noninteracting quasiparticles are obtained from
the following eigenvalue problem:

�2���� = �
��

���
2���� + 2������	�����, � = 1,2,3.

�19�

Due to the temperature dependence of ����, the matrix in the
square brackets in Eq. �19� may develop a zero eigenvalue
signaling a soft mode at sufficiently low T. The point where
this takes place defines the transition temperature Tc of the
charge density wave instability. The gap equation is essen-
tially equivalent to the softening condition of any of the three
new phonon modes below the transition temperature ���T
�Tc�=0	,

0 = �
��

������� + 2����	�����, � = 1,2,3. �20�

Adding up the three equations for � in Eq. �20�, after some
straightforward algebra one obtains the gap equation for
��k� in the familiar form9,38

��k� =
1

N
�
k�

P�k,k����k��
tanh��E�k��/2	

2E�k��
, �21�

P�k,k�� = �
�

4

���Q�
D�

*�k,− Q�D��k�,− Q� . �22�

Once the gap equation is solved, comparing Eqs. �21� and
�22� with Eq. �5� yields the soft mode amplitude as

���� =
1

�N

4

���Q��k
D��k,− Q�

��k�
2E�k�

tanh��E�k�
2

 .

�23�

At this point, it is worth noting that one can deduce the
very same gap equation by minimizing the thermodynamic
potential of the system
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��	,T;������� =
1

2�
�

���Q�������2 −
2

�
�

k,�=±
ln�1 + e−��E�k��

�24�

with respect to its undetermined variables ����.
Before we go on to the next section dealing with the so-

lution of the gap equation, we find it necessary and instruc-
tive to summarize what the theory has provided us with so
far. Up to this point our calculations have been completely
general in the sense that no assumptions were made on the
particular form of the electron-phonon coupling D��k ,q�.
The primary formula in Eq. �5� shows that the momentum
dependence of the gap stems solely from the coupling. If it is
unconventional, then the averaged value over the Fermi sur-
face vanishes ����k��=0� leading to a spatially homoge-
neous density of the electronic charge. This state of affairs
might remind one of the similar result found in unconven-
tional spin- and charge-density waves governed purely by
electronic correlations.39 Although there are similarities in
many aspects between the two types of condensates, there is
one point that is completely different in nature in the
phononic UCDWs under focus, and must be emphasized by
all means. Namely, though there is no spatial modulation of
the electronic density at all, the Peierls distortion of the un-
derlying lattice with periodicity Q is still present �note the
finite soft mode amplitude in the low temperature phase in
Eq. �23�	, which could be detected by usual means, like x-ray
scattering. This feature is to be contrasted with that of an
electronic DW �either spin or charge�, where the density
wave instability is caused purely by the electron-electron in-
teraction, and the lattice is not affected at all. Further, if the
system favors an unconventional ground state, then there is
no modulation either in spin or charge. Thus these systems
are often referred to as “systems with hidden order,” and are
consequently promising candidates for systems where robust
thermodynamic signals of a phase transition are seen without
any order parameter.

On the other hand, the static deformation of the lattice is
a charasterictic feature of the conventional charge-density
waves with constant gap,1 and in such systems it is always
accompanied by the electronic charge oscillation. Now we
face a different situation, namely: in a phononic UCDW
these two phenomena need not go together.

Regarding all these, we conclude that the notion hidden
order might not be applicable to the phononic UCDW, be-
cause entering the low temperature phase a new periodicity
with wave vector Q develops. Nevertheless, the model ex-
hibits all peculiar properties of the aforementioned UCDW
that were applied to explain the experimental findings mea-
sured on the �-�BEDT-TTF�2KHg�SCN�4 salt.28–33 More-
over, the extra feature of the distorted lattice might give an
explanation to a recent x-ray study performed on this salt,27

in which enhanced structural modulation is found below T

10 K suggesting a coupling to the electronic degrees of
freedom.

The following section will be devoted to the solution of
Eq. �21�.

C. Competing phases in the ground state

In this section we focus on the solutions of the gap equa-
tion obtained in Eq. �21�. The knowledge of the explicit mo-
mentum and temperature dependence of � is essential for our
further investigation. So far the calculation is completely
general within the frames of the Hamiltonian in Eq. �1�. For
further study however, we retain only the longitudinal term
in the interaction in Eq. �22�, which is considered to be the
strongest component, and ignore the coupling to the trans-
verse phonon modes. Therefore we drop the polarization in-
dex � in the following for brevity. With this, the kernel sim-
plifies to P�k ,k��=4��Q�−1D*�k�D�k��. The immediate
consequence of the factorization of P in its momentum argu-
ments, that follows right from the gap equation and from the
explicit form of D*�k� �see Eq. �8�	 is as follows:

�i�T�
� j�T�

=
Di

Dj
, i, j = 0, . . . ,4. �25�

The relation in Eq. �25� not only fixes the ratios of the dif-
ferent gap amplitudes to a given, temperature independent
value, but also involves only one Tc, where each type of
phase �with nonzero coupling� simultaneously opens. Ac-
cordingly, the solution of Eq. �25� is simply �i�T�=Dih. Here
h�T ; �Di�� is a dimensionless function of order unity deter-
mined by

1 =
2

��Q�N�
k

tanh����k�2 + h2�D�k��2

2T
 �D�k��2

���k�2 + h2�D�k��2
,

�26�

from which the transition temperature is obtained as

Tc =
2�


vFkFe−��Q�/�2�0�0���D�2�	. �27�

In Eq. �27� �0�0�=a /vF stands for the normal state density
of states per spin, and �¯� denotes the Fermi surface aver-
age. Furthermore, at zero temperature and around Tc we have

h�0� =


�
exp�−

��D�2 ln�Tc
−1�D���

��D�2�
 , �28�

h�T� = Tc� 8

7��3�
���D�2�

��D�4�
�1 −

T

Tc
. �29�

The whole temperature dependence of h below Tc is shown
in Fig. 1�a� for the case where only D0 and D2 are set to
nonzero, real and positive values in Eq. �8�. This restricted
choice of the parameters is sufficient and simple enough to
present results for a coexisting CDW+UCDW phase. Con-
sequently, the order parameter will have the form

��k� = �0 + �2 sin�bky� , �30�

with the gap amplitudes both positive. At this point it is
important to call attention to the fact that since the coupling
amplitudes Di in Eq. �8� can be complex as well, it is even
possible that there is a relative phase between �0 and �2
leading to an optical gap in the single particle density of
states regardless of the values of ��0� and ��2�, but this case is
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beyond our scope of investigation in this paper. We note
however, that the complexity of the same order parameter in
electronic UCDW can account for a number of peculiar
properties observed in �TaSe4�2I.20

Since ��k�=h�T�D*�k�, thus Eq. �5� implies that ���
=�Nh�T� for the longitudinal phonons. Consequently the Q
Fourier component of the lattice distortion can be written as
u�Q��g���e�Q�
h�T�. This Peierls distortion of the ions
can be seen by x rays even if the electron system is purely
unconventional. As we have already pointed out in the pre-
ceding subsection, the lattice distortion and the screening
charge modulation in the electronic density need not go to-
gether. It is the microscopic coupling D0

� alone �see Eq. �9�	
that accounts for this possible screening effect. If it is finite,
then of course a screening electronic charge with the same
momentum Q will develop.

Now we calculate the quasiparticle density of states for
the coexisting phase having the type of gap function in Eq.
�30�. The density of states reads as

����
�0�0�

= �
0

2 dy

2
Re

���
��2 − ��0 + �2 sin�y��2

=
2


Re� ���

����� + �2�2 − �0
2
K�2� ����2

���� + �2�2 − �0
2� ,

�31�

where K�z� is the complete elliptic integral of the first kind.
The energy dependence of ���� is shown in Fig. 1�b� for
different values of �0 /�2. It is clear from the figure and can
be easily verified from Eq. �31�, that a true optical gap G
=2��0−�2� opens at the Fermi energy only if �0��2, fur-
thermore the positions of the logarithmically divergent peaks
are given by

��peak� = ���2 − �0���0 ± �2� + ���0 − �2���0 + �2� .

�32�

One can also easily check that in the �0=0 limit �D0=0�, Eq.
�31� simplifies to the well known result of a single compo-
nent unconventional density wave,9 and obviously the �2
=0 limit �D2=0� yields the conventional BCS result.

III. CORRELATION FUNCTIONS

In this section we calculate the frequency dependent con-
ductivity of the previously introduced model, namely that of
the coexisting CDW+UCDW phase with ��k�=�0

+�2 sin�bky�. The outline is as follows: we shall start with
the formulation of the Green’s function. We then proceed
with the evaluation of the quasiparticle contribution of the
density-density correlator. We do this because we are prima-
rily focused on the optical conductivity in the chain direc-
tion, which can be determined from the charge conservation
rule that is the continuity equation. Afterwards we study the
one bubble result for the conductivity, we go on and incor-
porate the effect of interaction between electrons and
phonons into the theory on the level of random phase ap-
proximation �RPA�. The RPA calculation enables us to iden-
tify the effective mass of the collective motion, the sliding of
the density wave.

A. Single particle conductivity

The Green’s function of a charge-density wave, either
conventional or any type of unconventional wave, is given
by G−1�k , i�n�= i�n−H�k�, where H�k�=��k��3+���k��1

−���k��2 is the four by four matrix appearing in the mean
field Hamiltonian in Eq. �4�. Here, unconventionality is
manifested solely in the momentum dependence of the gap.
From this, G is explicitly obtained as follows:

G�k,i�n� = −
i�n + ��k��3 + ���k��1 − ���k��2

�n
2 + ��k�2 + ���k��2

. �33�

Now, the single particle contribution to the retarded product
of the density correlator, �11

0 ���n ,n	�0, is calculated in the
usual way and reads as follows:40

FIG. 1. �a� The temperature dependence of the function
h�T ; �D0 ,D2�� for fixed D2 /Tc=0.7 and for different D0 /D2 values,
where h0�T��h�T ; �0,D2��. For the numerical computations
vFkF /Tc=30 was applied. �b� The quasiparticle density of states for
�0 /�2=0, 0.6, and 1.3. The curve with the highest peak at ���
=�2 belongs to the value 0 �one component UCDW�, while the one
with the symmetrically placed smaller peaks belongs to 0.6, finally
the curve with one peak and a clean gap belongs to 1.3.
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�11
0 ��,i� → �� = −

1

�N
�
k,�n

Tr„G�k,i�n�G�k + q,i�n + i��…

= 2�0�0�
�2

�2 − �2 �1 − f� , �34�

where, for simplicity, we limited our analysis to q
= �qx ,0 ,0� �i.e., the wave vector pointing in the quasi-one-
dimensional direction� and �=vFqx. In addition, f is the gen-
eralized version of the function that also appears in the cor-
relation functions of conventional DWs with a constant
gap,41 only minor differences are present due to incorpora-
tion of unconventionality

f = ��2 − �2�
2


�

0

� �
0

2

tanh��E

2
N

D
Re

���y��2

�E2 − ���y��2
dydE ,

N = ��2 − �2�2 − 4E2��2 + �2� + 4�2���y��2,

D = N2 − 64E2�2�2�E2 − ���y��2� , �35�

where ��y�=�0+�2 sin�y�.
Now, making use of Eq. �34� and charge conservation, the

single particle contribution to the complex conductivity in
the chain direction is of the form ��� ,��=ne2m−1i���2

−�2�−1�1− f�, where n /m=2�0�0�vF
2 /Vc, with n being the par-

ticle density and Vc is the cell volume. Here, and in Eqs. �34�
and �35� the frequency � means �+ i�. Furthermore, in the
�→0 long wavelength limit, after performing the analytic
continuation to real frequencies the real and imaginary parts
of the optical conductivity ��=�1+ i�2� are given by

�1 = D���� + �ne2/m��−1f0�, �36�

�2 = �ne2/m��−1�1 − f0�� , �37�

where f0� lim�→0f = f0�+ if0� is the decomposition of f0 into
real and imaginary parts, and D= �ne2 /m��1− f0�0�	 is the
Drude weight. The regular part of �1 in Eq. �36� can be
calculated explicitly, since f0� has a closed form if both gap
amplitudes are real. That is, we again constrain our analysis
to a real gap function, just as we did in the previous section
�see Eq. �30� and the subsequent argument	. With all this

f0���� = tanh� �

4T
Re�C�x,u��

4x
. �38�

Here

C�x,u� =
1

��x + 1�2 − u2�2��u + 1�2 + x2	

�K�2� x

�x + 1�2 − u2 − 2��x + 1�2 − u2	

�E�2� x

�x + 1�2 − u2 − 4u�u − x + 1�

��� 2x

x + u + 1
,2� x

�x + 1�2 − u2� , �39�

x= ��� / �2�2�, u=�0 /�2, K�z� and E�z� are the complete el-
liptic integrals of the first and second kind, while ��n ,z�
stands for the incomplete elliptic integral of the third kind.
The imaginary part �2 in Eq. �37� is evaluated numerically
with a Kramers-Kronig transformation at zero temperature.
The frequency dependence of both quantities are shown in
Fig. 2 for different values of the ratio �0 /�2, including the
case of �0=0, which is simply the one component UCDW
limit.9 It is interesting to see from Fig. 2 that however small
the �2 is, while we are in the �0��2 regime, the sharp onset
of absorption with a square root divergence at the gap edge
known for a conventional density wave disappears. The size
of the gap is G=2��0−�2�, as has been mentioned already
along with the single particle density of states �see Fig. 1�. In
addition, the peaks of logarithmic type are apparently located

FIG. 2. �a� The real part of the optical conductivity in the quasi-
one-dimensional direction at zero temperature for �0 /�2=0, 0.6,
and 1.3, respectively. The curve with a single peak at ���=2�2

belongs to the value 0, and is the result for a single component
UCDW. The curve with two symmetrically placed peaks around
2�2 belongs to 0.6. Finally the spectrum with a clean gap around
zero frequency has �0=1.3�2. �b� The imaginary part of the optical
conductivity at zero temperature for the same �0 /�2 values that
appear on the left panel. The line with a positive jump of  /2 at
���=2�2 is the single component UCDW result with �0=0. The
other two belong to 0.6 and 1.3 �from left to right�.

VÁNYOLOS, DÓRA, AND VIROSZTEK PHYSICAL REVIEW B 73, 165127 �2006�

165127-6



at 2�peak, where �peak is the corresponding singular point in
the quasiparticle density of states defined in Eq. �32�.

B. Conductivity with collective contribution

We shall now turn our attention to the effect of collective
contributions on the results of the previous section. Namely,
we investigate how the conductivity is affected if we include
the short wavelength component of the interaction within
RPA. This part of the interaction is responsible for the den-
sity wave instability and depending on the strength of the
couplings in Eq. �8�, it drives the system into one of the
possible symmetry breaking ground states, either a conven-
tional CDW, a single component unconventional CDW, or
even one of the many coexisting phases. We proceed with the
assumption we have made throughout the paper, that the
ground state of the interacting electron-phonon system is a
coexisting CDW+UCDW phase with an order parameter
��k�=�0+�2 sin�bky�. Our goal is to calculate the dressed
chain direction conductivity by taking into account the fluc-
tuation of the order parameter, leading to the sliding of the
condensate as a whole. With this, we are in a position to
identify the effective mass of the collective excitation, the
same way as it was done in the seminal paper of Lee, Rice,
and Anderson.36

The interaction part of the Hamiltonian in Eq. �1�, de-
scribing scatterings of the electrons from one Fermi sheet to
the other, can be recast as

H� =
1

�N
�
q,k

�D�k,− Q��+�k + q��−��k��+�Q� + h.c.� ,

�40�

where �±= ��1± i�2� /2, and only the coupling to the longitu-
dinal phonon has been retained in accordance with what has
been pointed out in the section dealing with the solutions of
the gap equation. Namely, it is a reasonable approximation to
omit the coupling to the transverse modes, as they do not
really form ionic charge fluctuations that the electrons can
feel and couple to. The bare phonon propagator, that acts as
the interaction between electrons in the diagrammatic lan-
guage, is given by

D0�q,i�n� = − �
0

�

d�ei�n��T���q,����− q�� =
2��q�

�i�n�2 − ��q�2 .

�41�

With all these, the coupled RPA equations for the renor-
malized density-density correlator �11= ��n ,n	� are

�11 = �11
0 − �1+

0 D0�−1 − �1−
0 D0�+1, �42�

�+1 = �+1
0 − �+−

0 D0�+1 − �++
0 D0�−1, �43�

�−1 = �−1
0 − �−+

0 D0�−1 − �−−
0 D0�+1. �44�

Here �11
0 is given by Eq. �34�, and the other zeroth order

correlators �with the superscript 0� are also evaluated within
the standard method, and we find

�±�
0 ��,i� → �� = −

1

�N
�
k,�n

�D�k��2 Tr„�±G�k,i�n�

���G�k + q,i�n + i��…

=
��Q�

2
+

�0�0�
4h2 ���2 − �2�f − 2f4	 ,

�45�

and similarly

�±±
0 ��,i� → �� = −

�0�0�
2h2 f4, �46�

�1±
0 ��,i� → �� = ±

�0�0�
2h

�f . �47�

In addition, f4 differs from f only in the integrand in Eq.
�35�, namely there is an extra ���y��2 factor in the numerator.
After some algebra, one finds for the dressed density cor-
relator

�11 = 2�0�0�
�2

�2 − �2�1 −
f�2

�2 + �f��2 − �2� , �48�

where �=�0��2�Q� / ��2��2�	���Q��0�0� / �2h2� is the renor-
malized temperature dependent electron-phonon coupling,
while �0=2�0�0���D�2� /��Q� is the bare coupling, see Eq.
�27�. With the aid of Eq. �48� one ends up with the following
formula for the in-chain optical conductivity:

���� =
ne2

m

1

i�
�− 1 + f0 − f0

m

m* , �49�

where m*��� /m=1+�−1f0
−1��� is the effective mass. Here,

and in the correlation functions above the frequency, �
means �+ i�. After performing the analytic continuation to
the real frequency axis, the real and imaginary parts ��=�1

+ i�2� read as

�1 = D���� +
ne2

m

f0�

��1 + �f0�2
, �50�

�2 =
ne2

m

1

�
�1 −

f0� + ��f0�2

�1 + �f0�2
 , �51�

with D= �ne2 /m��1−�−1m /m*�0�	 the Drude weight. Both
�1 and �2 are shown in Fig. 3 versus the frequency at zero
temperature, for different values of ��0� and �0 /�2. Now we
have to point out one interesting feature of �1 that cannot be
seen properly from the figure. As the function f0� has loga-
rithmic singularities at frequencies �=2�peak, furthermore f0�
is bounded, this implies that the regular part of �1 in Eq. �50�
vanishes in an inverse logarithmic manner at the same fre-
quencies. Since the logarithmic singularity is very weak, the
plots in Fig. 3 cannot really resolve this kind of behavior
around the zeros. Nevertheless, as the coupling ��0� in-
creases, the feature becomes more and more apparent. We
shall note at this point that the way the RPA result relates to
the quasiparticle contribution shown in Fig. 2 can be con-
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trasted to what has been found for a conventional charge-
density wave.36 In such a system, the familiar square root
singularity at the gap edge 2� is suppressed and transformed
to a square root edge by the collective contributions. In our
phononic UCDW however, the absorption is finite for the

whole energy range, unless �0��2, where a clean optical
gap develops in the spectrum.

The static effective mass of the sliding for our CDW
+UCDW model can be seen in Fig. 4 with ��0�=0.4. The
parameters used for the numerical calculations are:

FIG. 3. The real �left panels� and imaginary parts �right panels� of the optical conductivity in the RPA at zero temperature from Eqs. �50�
and �51�. The �0 /�2 ratio is fixed to the same values as in Fig. 2 �one bubble results�, that are 0, 0.6, and 1.3. Beside that, the dimensionless,
renormalized coupling appearing in the RPA formula is set to ��0�=0.4 for �a� and �b�, ��0�=0.7 for �c� and �d�, and ��0�=1.1 for �e� and
�f�, respectively.
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�0�T� /�2�T��D0 /D2=0, 0.6, and 1.3, respectively, with
D2 /Tc=0.7 being fixed �see the results for h�T /Tc� in Fig.
1�a�	. Along with these results, we have also plotted the ef-
fective mass of a conventional CDW for comparison, where
we used D0 /Tc=0.7. Looking at the figure, an interesting
feature of the phononic UCDW can be established; as long as
D0 is smaller than D2, that is the system possesses small
energy excitations, Dirac fermions, around the nodes of
��k�, the effective mass m* increases linearly in temperature
around T=0. Further, it is a nonmonotonic function of the
temperature regardless of the value of the ratio D0 /D2. That
is not the case for a conventional CDW, as it decreases in a
monotonic fashion as we approach Tc from below.42

IV. CONCLUSIONS

In this paper we have developed the mean field theory of
a quasi-one-dimensional unconventional charge-density
wave, where the density wave instability is caused purely by
phonons. As the electron-phonon coupling exhibits signifi-
cant dependence on the momentum of the scattered electron,
this leads us to a wave vector dependent order parameter
taking different values on different points on the Fermi sur-
face. In particular, it turns out that the explicit form of the
single particle gap is identical to that in an electronic UCDW,
where in contrast, the phonons do not play any role in the

development of the density wave condensate, leaving the lat-
tice unaffected. It is important to realize that if the system
favors an unconventional ordering in the ground state, then
due to the vanishing momentum average of the order param-
eter the system lacks any periodic oscillation in the elec-
tronic charge. Though the two types of condensates appar-
ently have much in common, like thermodynamics deter-
mined by the Dirac electrons around the nodes of the gap for
instance, there is an important difference that has to be em-
phasized. That is in a phononic UCDW, while the electronic
density remains homogeneous, the underlying ionic lattice
undergoes a distortion as we enter the low temperature
phase, clearly signaling the phase transition. For this reason
we might say that the hidden order reveals itself in such a
way, and could be experimentally accessible and measurable
by x-ray scattering.

On the other hand, the aforementioned Peierls distortion
is a key feature of the conventional charge-density waves
arising from the coupling of the lattice to the electronic de-
grees of freedom. Hence, we conclude that the present model
of the phononic UCDW is a natural generalization of the
conventional theory to more complicated, even k-dependent
couplings.

We have calculated the optical conductivity in the quasi-
one-dimensional direction, and identified the effective mass
of the collective phase excitation. The calculations were car-
ried out using a multicomponent gap allowing us to investi-
gate the effect of the coexisting conventional and unconven-
tional orders. Consequently, the spectra are more structured
compared to the pioneer result of Lee, Rice, and Anderson.36

Nevertheless, though the singularities and zeros are of a
logarithmic type characteristic to UDWs in general, the
single component UCDW limit shows the familiar property:
the singularity at the maximum optical gap is suppressed by
the collective contributions. In addition there is considerable
absorption for small frequencies arising from the nodal exci-
tations. We have also found that the effective mass exhibits
nonmonotonic temperature dependence, as opposed to con-
ventional systems. This could serve as a valuable tool in
identifying the nature of the low temperature phase.
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