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The properties of the electron-phonon interaction in the presence of a sizable electronic repulsion at finite
doping are studied by investigating the metallic phase of the Hubbard-Holstein model with dynamical mean-
field theory. Analyzing the quasiparticle weight at finite doping, we find that a large Coulomb repulsion reduces
the effect of electron-phonon coupling at low energy, while this reduction is not present at high energy. The
renormalization of the electron-phonon coupling induced by the Hubbard repulsion depends in a surprisingly
strong and nontrivial way on the phonon frequency. Our results suggest that phonon might affect differently
high-energy and low-energy properties and this, together with the effect of phonon dynamics, should be
carefully taken into account when the effects of the electron-phonon interaction in a strongly correlated system,
like the superconducting cuprates, are discussed.
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I. INTRODUCTION

One of the open problems of high-temperature supercon-
ducting cuprates is the role played by the electron-phonon
interaction. The experimental evidences suggest a fairly
strong influence of the electron-phonon interaction on some
physical properties, while for some other aspects, lattice ef-
fects seem to have almost no role. On one side, inelastic
scattering measurements have shown that a specific optical
in-plane phonon mode displays an anomalously pronounced
softening.1–4 The coupling to the same phonon mode has
been invoked to explain the kink in the nodal electron dis-
persion detected by photoemission,5–7 On the other hand, the
almost perfectly linear behavior of the resistivity in a wide
range of temperatures seems to indicate a little influence of
phonons on transport properties. Isotope effects also show a
complex phenomenology: While the superconducting tem-
perature has a little isotope effect at optimal doping,8–10 the
in-plane penetration depth is much more sensitive to isotope
substitution.11–13 Such a large �around 5%� effect is usually
translated into an isotope effect on the effective mass sug-
gesting the presence of polaronic carriers in underdoped
compounds.14

The above puzzling scenario leads to a lively debate
which ultimately focuses on whether the effects of electron-
phonon �e-ph� coupling on different quantities are depressed
or enhanced by the presence of strong correlations. Given the
intrinsic nonperturbative character of the problem, there is no
obvious theoretical approach. Different approaches seem in-
deed to draw conflicting scenarios in studies of the Holstein
model for the e-ph coupling in the presence of strong corre-
lations, described by the Hubbard or the t-J models. Accord-
ing to quantum Monte Carlo �QMC� and exact diagonaliza-
tion �ED� a single hole in the t-J model experiences an
enhanced polaronic effect due to the “prelocalizing” mecha-
nism associated to the antiferromagnetic spin

background.15–18 QMC calculations in the Hubbard model at
finite density and fairly high temperature suggest that strong
correlations favor the small transfered momentum electron-
phonon vertex �or depress it less than its large momentum
counterpart�, and that this quantity increases by increasing
repulsion for a window of parameters.19 Slave boson ap-
proaches suggest however that such an effect is just a finite-
temperature precursor of a phase separation that would take
place at low temperatures.20,21 Such tendency towards phase
separation, indicated by mean-field approaches also for the
three-band Hubbard model,22 has been recently confirmed by
the more accurate dynamical mean-field theory �DMFT�.23

Another piece of information comes from the DMFT of
the half filled Hubbard-Holstein model in the paramagnetic
sector �i.e., neglecting the antiferromagnetic ordering�, where
detailed phase diagrams are available.24,25 In Ref. 26 we have
shown that, close to the Mott transition, phonons have dif-
ferent effects on high- and low-energy single particle prop-
erties �self-energy, spectral weights, density of states,¼�.
Namely, high-energy features are significantly affected by
phonons, whereas the low-energy quasiparticle features are
basically untouched and they coincide with those of an ef-
fective purely electronic with a slightly weaker repulsion U.
In other words, the strong correlations strongly reduce the
impact of e-ph interaction on quasiparticle properties, at least
when the e-ph coupling is not too large. The only residual
effect is a phonon-induced screening of U which moreover is
found to vanish linearly with the phonon frequency in the
adiabatic limit.

This variety of results is certainly due to the different
physical regimes they refer to. In this work we start from our
analysis of the half filled Hubbard-Holstein model and relax
the half filling condition, therefore putting ourselves away
from the Mott transition, in a regime closer to that of other
approaches. We find that strong correlations still significantly
harm the e-ph interaction. In our strongly correlated metal
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polaronic behavior only establishes for e-ph coupling larger
by at least a factor two than the corresponding values in the
absence of strong correlations or for a single hole in an an-
tiferromagnetic background. Moreover, we find that the in-
terplay of electron-electron and e-ph interaction makes the
value of the phonon frequency quite relevant, particularly for
its effect on the effective mass. Remarkably, phonon dynam-
ics turns out to be more relevant close to half filling.

The paper is organized as follows: in Sec. II we compare
the half filled and finite doping cases of the Hubbard-
Holstein model. In Sec. III we analyze the renormalization of
the quasiparticle weight as a function of the electron-phonon
coupling and the phonon frequency. In Sec. IV the behavior
of the chemical potential is studied and the conclusions are
then drawn in Sec. V.

II. DMFT OF THE HUBBARD-HOLSTEIN MODEL: HALF
FILLING VS FINITE DOPING

The Hamiltonian of the Hubbard-Holstein model reads

H = − t �
�i,j�,�

ci,�
† cj,� + U�

i

ni↑ni↓ − g�
i

ni�ai + ai
†�

+ �0�
i

ai
†ai, �1�

where ci,� �ci,�
† � and ai �ai

†� are, respectively, destruction �cre-
ation� operators for fermions with spin � and for local vibra-
tions of frequency �0 on site i, t is the hopping amplitude, U
is the local Hubbard repulsion, and g is an electron-phonon
coupling constant. In this work we will always consider an
infinite coordination Bethe lattice with semicircular density
of states of semibandwidth D. �=2g2 /�0D is the standard
electron-phonon coupling and �0 /D is the adiabatic ratio.

We solve the model by means of dynamical mean-field
theory �DMFT�, which in recent years has emerged as one of
the most reliable tools for the analysis of both correlated
materials and electron-phonon interactions. The method
maps the lattice model onto an effective local theory which
still retains full quantum dynamics, and it is therefore ex-
pected to be quite accurate for models with local interactions
as �1�. The mean-field correspondence between the local
theory and the original model is achieved by imposing a
self-consistency condition which contains the information
about the original lattice.27 In practice, the local problem is
described through an Anderson-Holstein impurity model,28,29

whose impurity Green’s function has to be calculated and
used to generate a new impurity model through the self-
consistency equation. To solve the impurity model we use
ED,30 truncating the infinite phonon Hilbert space allowing
up to Nmax phonon states �ranging from 20 to 40�, and using
up to Nb=9 sites in the conduction bath.31

DMFT has been widely use to study the properties of the
Hubbard model, and a clear framework for the Mott-
Hubbard transition has been determined. Without entering
the details of these studies, we just recall the qualitative dif-
ference between the half filled system, where a metal insu-
lator occurs at U=Uc2�3D, and finite-doping systems that
have metallic character regardless the value of U. Such a

distinction makes the effects of phonons different in the two
cases.

At half filling, in the strongly correlated metallic phase for
U smaller, but not far from Uc2, the Hubbard model presents
a clear separation of energy scales, with high-energy Hub-
bard bands well separated from the low-energy quasiparticle
peak. In this regime the charge fluctuations are frozen, there-
fore strongly harming the e-ph interaction, at least with a
Holstein coupling. As discussed in Ref. 26, the residual ef-
fect of phonons can be described as a partial screening of the
static Hubbard repulsion, which is ruled by the parameter
�0 /U, according to the expression Uef f =U−��D, with �
given by

� =
2�0/U

1 + 2�0/U
. �2�

Notice that the above expression for Uef f correctly repro-
duces the antiadiabatic limit �0 /D→�, where the e-ph in-
teraction mediates an instantaneous local attraction of
strength �. The description in terms of an effective Hubbard
model with a suitably rescaled repulsion Uef f works surpris-
ingly well in the proximity of the Mott transition: The full
Hubbard-Holstein model and the effective purely electronic
model display an identical electronic spectrum at low energy
and, quite remarkably, the same rescaling for Uef f makes the
position of the Hubbard bands basically coincide. The effects
of the electron-phonon coupling close to the Mott transition
are well visible in the high-energy parts of the electronic
spectrum, where phonon satellites show up, while the low-
energy metallic peak turns out to be “protected” by correla-
tion.

This paper is devoted to the extension of this analysis to
generic fillings, still limiting ourselves to the paramagnetic
sector. Conceptually the peculiarity of half filling is the clear
separation between high- and low-energy scales, which is
rapidly lost as the density deviates from one. This lack of
hierarchy of energy scales makes it more complicated to
draw a simple physical picture such as the one described
above. On the other hand, the properties of the metallic
phase at finite doping are not severely affected by the anti-
ferromagnetic order, which, if included, would instead
change considerably the half filling picture.

III. QUASIPARTICLE PROPERTIES

As in Ref. 26, we start our analysis from the inspection of
the quasiparticle weight

Z = �1 − � ������
��

�
�=0

	−1

, �3�

where �� is the real part of the local self-energy �. Due to
the momentum independence of the self-energy in DMFT, Z
is also inversely proportional to the quasiparticle effective
mass ratio m* /m. It is therefore clear that this quantity mea-
sures the metallic nature of the system, small values of Z
implying poorly metallic situations.
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A. Dependence on electron-phonon coupling

At half filling, in the correlated metal for U	Uc2, the
quasiparticle weight Z increases with the electron-phonon
coupling �.25,26 This counterintuitive behavior, in stark con-
trast with weakly correlated systems, where Z decreases with
�, is understood in terms of a phonon-driven attraction which
counteracts the Hubbard repulsion, and it can be quantita-
tively described within the effective picture introduced in
Sec. II:26 By increasing �, the effective repulsion decreases,
thus the system becomes less correlated, and the value of Z
increases. As mentioned above, such a reduced effectiveness
of the e-ph coupling can be associated to the freezing of
charge fluctuations, to which the phonons are coupled. Close
to Mott state, most sites are singly occupied, and doubly
occupied and empty sites are a minority. As soon as we move
away from half filling, doping, e.g., with holes, the number
of empty sites proliferates. Therefore charge fluctuations are
gradually restored, even if they are still reduced with respect
to a system without electron correlations. As a consequence,
one can expect a stronger electron-phonon signature with
respect to half filling. The behavior of Z rapidly becomes
more ordinary, namely Z decreases as a function of � �ex-
cept, as we will see below, for extremely large �0 of the
order of U� meaning that the predominant effect of the cou-
pling to the lattice is of localizing nature.

This is also consistent with a much weaker dependence of
Z on U for U�5D �in comparison with the case U�Uc at
half filling� which would depress the delocalizing effect of
any phonon-induced variation of U into Ueff.

In Fig. 1 we plot m* /m as a function of � for different
doping levels and for �0=0.2D. In the left panel we show the
uncorrelated system �U=0�. m* /m is equal to 1 for �=0, it
rapidly increases with �, eventually reaching a polaronic re-
gime, testified by an exponential growth of the effective
mass and by the development of finite lattice distortions
coupled to the electrons.32 The right-hand panel presents in-
stead a strongly correlated case �U=5D�. Here the value of
m* /m at �=0 is strongly dependent on density, since corre-
lations are more and more effective in localizing the carriers
the closer we are to half filling. In practice m* /m�2 already
for n=0.50 and it reaches more than 10 for n=0.9. The main
result is however that the e-ph interaction is not able to sub-

stantially modify this values determined by correlation, up to
�=1.0–1.5 and m* /m is almost flat in this interval, if com-
pared with the left panel. Thus, even if doped system do not
show the growth of Z with � characteristic of half filling
�close to Uc2�, the effect of e-ph coupling is anyway quanti-
tatively reduced by a sizable amount. A similar information
is brought by the location of the polaron crossover: If we
consider larger value of � than in Fig. 1, the e-ph interaction
finally becomes able to sizably affect the quasiparticle resi-
due Z. In the example shown in Fig. 2 �U=5D, n=0.9,
�0 /D=0.2�, the curve of Z as a function of � clearly displays
a crossover between a small-� linear behavior and a much
faster decrease for �
2–2.5. This is precisely the signature
of a polaron crossover, as shown by many studies for the
pure Holstein model, where a similar bending of the curve
occurs for much smaller ��0.8.32,33

An alternative marker of the polaron crossover is the pho-
non displacement distribution P�X�= ��0 
X��X 
�0�, where

�0� is the groundstate vector, and 
X��X
 is the projection
operator on the subspace where the phonon displacement

value X̂=1/�2M�0�a+a†� �M being the phonon mass� has a
given value X. This quantity therefore measures the distribu-
tion of the local distortions. At weak coupling, P�X� has only
one peak, which only broadens when the coupling increases,
but when a polaronic ground state is realized, it presents two
peaks, corresponding to different distortions associated to the
different charge states.34 The two insets of Fig. 2 show P�X�
for two sets of parameter chosen in order to highlight the
different way to realize the bimodality in the uncorrelated
system �left/larger panel� and in the strongly correlated one
�right/small panel�. The simple P�X�, shown as a shaded
area, does not allow us to distinguish the two situations.
Therefore we also plot the conditioned probability distribu-
tions projected onto the states in which the impurity has
different occupations nimp=0,1 ,2.28 For U=0 the bimodality
is associated to a large number of empty and doubly occu-

FIG. 1. �Color online� Calculated values of m* /m as a function
of � for various values of the density. In both cases of U=0 �left�
and U=5D �right� the phonon frequency �0 has been fixed to 0.2D.

FIG. 2. �Color online� Behavior of the quasiparticle weight Z
�main panel� in the crossover from weak to strong � for U=5D,
n=0.90, and �0=0.2D. In the two insets the phonon distribution
function P�X� in the polaron region are shown for U=5D �smaller
inset, �=2.8� and U=0 �larger one, �=0.875�. In both insets n
=0.70 and �0=0.2D. The �light blue� shaded area is the full P�X�
while the triangles, solid circles, and dashes represent P�X� re-
stricted to nimp=0, 1 and 2, respectively.
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pied sites �that gain more e-ph energy�, and a smaller number
of singly occupied ones. This is a signature of bipolaronic
ground state, where pairs of polarons are formed. Since we
are at finite doping the two distributions have different
shapes and heights. For U=5D the two peaks of P�X� are
instead associated to empty sites and singly occupied ones,
since the strong on-site repulsion unfavors double occupan-
cies. Exploiting the empty sites, the system can acquire po-
laronic ground state at intermediate values of �, while at half
filling this would require to completely overcome the Hub-
bard U. We finally notice that in the special half filling case
P�X� is not the ideal quantity to identify the polaronic be-
havior, which, at intermediate values of �, can only appear in
the dynamics of the excitations �e.g., the behavior of a single
hole�

To summarize the results of this section, we can conclude
that for metallic situations with finite doping it is not pos-
sible to describe the effects of the phonons on quasiparticle
properties in terms of an effective screened Coulomb repul-
sion, as it happened at half filling. It is anyway still true that
the effect of phonons on quasiparticle properties is substan-
tially weaker than for weakly correlated systems, and that the
phonon effects can be strong only in the high-energy part of
the spectra.35 The polaron crossover is found at values of �
which are sensibly larger than in the absence of strong cor-
relation.

B. Dependence on phonon frequency

As it has been discussed in many previous studies, the
coupling � is not the only parameter which controls the prop-
erties of e-ph interaction, since also the phonon frequency
plays an important role.36–38 In this section we investigate
precisely the role of this quantity in strongly correlated sys-
tems.

In Fig. 3 we report Z as a function of �, for U=5D, n
=0.70, and different values of �0. The antiadiabatic curve
�denoted by �0=�� is simply obtained for a Hubbard model
with total repulsion given by U−�D. In the region �	1,
well before any polaronic behavior, Z is almost linear in �,
with a slope strongly dependent on �0. In Fig. 4 we plot the
slope r, defined through Z /Z�=0=1+r�. For �0→�, where

the phonons only give rise to an instantaneous attraction,
which opposes the Hubbard repulsion, Z increases as a func-
tion of �, and r�0. This behavior is indeed limited to �0
�5D, while for smaller frequencies the phonons play a more
standard role, decreasing Z, as expressed by a negative r.
More interestingly, r displays a nonmonotonic behavior by
further decreasing �0. Starting from �0=0, it decreases up to
�0�0.3D, roughly independently on doping, and then rises,
remaining negative for a wide range of frequencies, and
eventually becoming positive for quite large �0 /D. While the
evolution of r from negative to positive can be simply un-
derstood in terms of a crossover from an adiabatic region,
where � acts as a localizing force, to an antiadiabatic one
where � decreases the localizing power of U, the nonmono-
tonic behavior suggests that the strongly correlated systems
displays more relevant energy scales. The same phenomenon
can be observed by plotting the effective mass m* /m as a
function of �0 at fixed �, as we do in Fig. 5 for the same
three values of the doping. The derivative of this curve is a
measure of the isotope coefficient on the effective mass 
m*.
For pure e-ph systems m* always decreases with �0 at fixed
�: In the adiabatic regime it initially decreases linearly with

FIG. 3. �Color online� Quasiparticle weight Z as a function of �
for different values of �0 /D. U=5D and n=0.70.

FIG. 4. �Color online� Coefficient r, defined as the slope of
Z /Z�=0 for small � as a function of �0 /D, for n=0.50, 0.70, and
0.90.

FIG. 5. �Color online� Quasiparticle effective mass vs. �0 for
�=0.1, 0.5, and 1.0, at U=5D in a semilogarithmic plot. The three
cases n=0.50, 0.70, and 0.90 are shown on the same scale.
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�0 while, for �0�D, it scales as 1 /�0.39 Therefore the iso-
tope coefficient 
m* = 1

2� ln�m* /m� /� ln��0 /D� is always
negative. We find instead that, in the presence of strong cor-
relation, m* can increase as a function of �0. This effect is
larger for densities close to the density-driven metal-
insulator transition: For instance, for n=0.90, the value of

m* for �0�0.1D and ��1.0 is a positive, even if quite
small, number 
m* �1–2�10−2. For values of �0 around
0.3D the effective mass becomes instead almost independent
on the phonon frequency, then 
m* changes sign and m* /m
monotonically approaches the asymptotic antiadiabatic
value. These results have an interesting consequence on the
interpretation of the experiments on strongly correlated ma-
terials: The sign and the magnitude of 
m* is very sensitive to
the values of the electron-phonon coupling and of the pho-
non frequency of the specific compound.39,40 Furthermore, a
small value of 
m* can be observed if a compound is in the
crossover region between the two regimes, but this cannot be
interpreted as a sign of applicability of the Migdal-
Eliashberg theory, despite this latter predicts indeed 
m* =0.
Turning to the cuprates, the sizable �
m* �−0.5� negative
isotopic effect for the effective mass extracted from the iso-
topic dependence of the penetration depth,14 would suggest
quite larger values of � than those studied here, putting these
materials near �or beyond� the polaronic instability. It is well
possible that the antiferromagnetic correlations, neglected in
this paper, favor a polaronic behavior at least by decreasing
doping. Indeed the experimental evidences for a polaronic
behavior in the cuprates are limited to extremely small dop-
ing, well inside the antiferromagnetic phase.41

The isotope effect has instead a different behavior at half
filling for U	Uc2. Close to the Mott-Hubbard transition m*

decreases with �0, but the absolute value of 
m* is extremely
large.26,42 This can be explained once more by the effective-
Hubbard picture with Uef f =U−��D and �=2�0 /U valid at
half filling and for U	Uc2: close to the Mott-Hubbard tran-
sition, in fact, DMFT predicts that, for a pure Hubbard model
with U=Uef f, m*�Uc2 / �Uc2−Uef f�, i.e.

m* �
Uc2

Uc2 − U + 2�0�D/U
. �4�

An increase in the phonon frequency �0 at fixed � deter-
mines then a sizable decrease in the effective mass. The final
result is 
m* �−1/Z, in other words the absolute value of 
m*

gets larger and larger, the closer one gets to the Mott transi-
tion.

Finally we notice that the bare value of r obtained in the
absence of correlations does not depend strongly on the
phonon frequency up to �0�D. In the adiabatic limit
r0=−N�EF�, where N�EF� is the noninteracting density of
states at the Fermi energy. For a semicircular density of
states and n�0.5–1, one gets r0�−0.58–0.64. Comparing
with Fig. 4, it turns out that this bare value is larger by a
factor 2–6 than the corresponding maximum values in the
interacting case. If we define an effective coupling for the
quasiparticles according to 1+r�
1+r0�ef f, we see that �ef f
is rather smaller than � and this reduction is unusually en-
hanced at small frequency �r0 will instead be maximum at

�0=0�. At the same time, as discussed in Sec. III, the po-
laronic crossover is pushed to higher values of �.

C. Fermi-liquid theory vs DMFT

One of the main results of the previous analysis is that
strong correlation tends to reduce the effects of e-ph interac-
tion, and the size of this effect depends on the phonon fre-
quency. An important question is whether or not the behavior
of the quasiparticle weight Z obtained in DMFT in the me-
tallic region away from polaronic instabilities can be cap-
tured, at least qualitatively, by a weak coupling approach to
the interaction between quasiparticles and phonons. In par-
ticular we can test the validity of a Fermi-liquid analysis in
which a clear hierarchy is supposed: electron-electron corre-
lations create heavy quasiparticles, which in turn interact
with the phonons via a renormalized density vertex. It is
understood that DMFT is not able to deal with the momen-
tum dependence of the renormalized vertex.

We divide the self-energy in two contributions

��k,�� = ��=0�k,�� + �res�k,�� , �5�

where ��=0 is the self-energy of the pure Hubbard model,
and �res contains all the additional interaction due to bare
and correlation-dressed electron-phonon processes. We can
define a quasiparticle residue Z�=0 determined only by elec-
tronic correlations �We recall that �� is the real part of �.�

Z�=0 = �1 − � ���=0� �k,��
��

�
�=0

	−1

, �6�

which is related to the full quasiparticle weight Z by

Z

Z�=0
= �1 − Z�=0� ��res� �k,��

��
�

�=0
	−1

. �7�

Z /Z�=0 may be seen as a wave function renormalization for
the quasiparticles created by U due to the additional interac-
tion, and the quantity Z�=0�res� plays the role of a phonon-
induced self-energy for those quasiparticles.

In the small-� regime, and assuming that the quasiparticle
self-energy is linear in �, Eq. �7� can be written as

Zqp =
Z

Z�=0
= 1 + r� , �8�

where r coincides with the phenomenological parameter in-
troduced in Sec. III B and plotted in Fig. 4. Within Fermi-
liquid theory we can derive an expression for r at the lowest
order in � assuming that �res only contains e-ph processes
dressed by U

Z�=0
��res�

��
= − N�EF�*V*�2 = − N�EF�Z�=0�2�D , �9�

where N�EF�*=N�EF� /Z�=0 is the quasiparticle density of
states, V*=�DZ�=0

2 is the renormalized e-ph interaction be-
tween quasiparticles, and � is the vertex which couples the
electrons to the phonons �a density vertex for the Holstein
model�. Equation �9� obviously implies r=−Z�=0�2N�EF�.
This result holds as long as one considers only those self-
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energy diagrams in which correlation dresses exclusively the
vertex.

There are only two specific limiting cases in which, mak-
ing use of Ward Identities,22,43 we are able to find explicit
expressions for the density vertex �: the static and the dy-
namic limit. These read respectively

Z�=0��q → 0,� = 0� =
1

1 + F0
s�e� , �10�

and

Z�=0��q = 0,� → 0� = 1, �11�

where F0
s�e� is the symmetric Landau scattering amplitude

due to electronic processes. Since we are considering elec-
tronic processes only, we have, in the static limit �

=��e� /�0
�e� where ��e� is the compressibility of the Fermi liq-

uid in the absence of coupling to the lattice, while �0
�e� is the

noninteracting value equal to 2N�EF�. Then Eq. �9� can be
written, in the static limit, as

Z�=0
��res�

��
= − N�EF�Z�=0���e�

�0
�e��2

�D . �12�

In the opposite dynamic limit, instead, �=1/Z�=0 and Eq. �9�
becomes

Z�=0
��res�

��
= −

N�EF�
Z�=0

�D . �13�

We are now in the position to compare the above Fermi-
liquid analysis with the DMFT results, where all the contri-
butions to the electronic self-energy are considered. In par-
ticular we focus on the small-�0 regime, where the interplay
between attraction and repulsion is more subtle, as suggested
by the data of Fig. 4. In Fig. 6 we report the coefficient r, for
�0 /D=0.2 and for two smaller values and compare them, in
the range of densities between 0.7 and 0.95 to the static limit
result r=−N�EF�Z�=0���e� /�0

�e��2 of Eq. �12�. The dynamic
limit �13� is not shown because it gives r�−1/Z�=0, thus

divergent in the limit n→1. This is evidently not comparable
with the DMFT results shown in Fig. 6, implying that this
limit does not describe the numerical results.

The DMFT results are quite close to the static limit �12�
only for the smallest frequency we considered, but they rap-
idly move away as the frequency rises, and already for �0
=0.2D the difference between the calculation and the Fermi-
liquid prediction becomes huge. This means that a standard
Fermi-liquid approach can only be applied in the extremely
adiabatic regime, and that even for small phonon frequen-
cies, there are quantitatively important corrections to the
theory.

As an attempt to provide a reference for the intermediate-
�0 regime, we considered a “mixed limit” solution, in which
the vertices � are taken as the geometric average between
the two limiting expressions �12� and �13�. As one can see in
Fig. 6 this mixed limit solution has a behavior similar to the
DMFT data. Interestingly, this heuristic choice has the ad-
vantage of staying finite for n→1, while the static limit goes
to zero and appears to be appropriate only in the extremely
small frequency limit.

IV. SCREENING OF COULOMB REPULSION BY
PHONONS

Differently from the half filled case, in the regimes con-
sidered in this paper we could not estimate Uef f from the
quasiparticle weight Z since the delocalizing effect of the
Coulomb screening turns out to be irrelevant. We can how-
ever discuss how the screening of Coulomb repulsion due to
e-ph interaction influences the behavior of the chemical po-
tential �.

At half filling � is fixed by the particle-hole symmetry
condition, while now, it needs to be determined in order to
yield a given value of the density n.

In Fig. 7 we report � vs � as obtained within DMFT in
the Hubbard-Holstein model varying the ratio �0 /D, com-
paring, for U=5D, the cases with n=0.30, n=0.50, and

FIG. 6. �Color online� Coefficient r as a function of the density
for three small values of �0 /D. The meaning of the curves labeled
as static and mixed limit is described in the text.

FIG. 7. �Color online� Behavior of the chemical potential as a
function of � for different values of �0 /D. The cases of n=0.90,
n=0.50, and n=0.30, all obtained for U=5D, are shown with the
same scale. The full and dashed black lines are described below in
the text.
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n=0.90. For all densities � decreases linearly in �, while the
role of �0 changes with the value of the density: for very
small densities the slope of � vs � monotonically decreases
with increasing �0 while it increases for n close to 1 and it is
practically constant in �0 at quarter filling �n=0.50�. Such a
behavior of the chemical potential with n can be explained
taking a closer look to the self-energy ��i�n�. The real part
of the self-energy at zero frequency shifts in fact the chemi-
cal potential in the interacting case according to �=�0
+���i�n→0�, leading to ��=��=0+�res� �i�n→0�. A first in-
dication on the behavior of ��0� and � can be derived
through the Hartree-Fock �HF� approximation. In this light it
is useful to formally integrate out the phononic degrees of
freedom in Eq. �1�. The result is a retarded phonon-mediated
interaction

V��� = − �D
�0

2

�0
2 − �2 . �14�

Including the Hubbard repulsion, the total interaction be-
tween electrons with opposite spin is then given by U
+2V���, while only V��� is present between electrons with
parallel spin. The Hartree term equals �U−2�D� n /2. The
interaction term U+2V��� between electrons with spin �
and −� contributes in fact with �U−�D� n /2 and the remain-
ing −�D n /2 comes from the term V��� between electrons
with the same spin �.

The equal-spin term gives also rise to a Fock diagram

��
Fock�i�n� = −

�D

2
� dEN�E�� �0

i�n − E − �0
�f�E� + b�− �0��

−
�0

i�n − E + �0
�f�E� + b��0��	 , �15�

where f and b denotes respectively the Fermi and Bose func-
tions, and N�E� is the density of state per spin. In the small-
�0 limit this yields the well known −�DN�EF�i�n result,44

and therefore the Hartree-Fock �HF� self-energy at zero fre-
quency is given by the Hartree term only, i.e.

��
HF�0� = �U − 2�D�

n

2
��0 → 0� . �16�

In the opposite limit, i.e. for �0→� keeping � constant, it
can be easily seen that Eq. �15� is equal to �D �n−1� /2, so
that one obtains

��
HF�0� = �U − �D�

n

2
−

�D

2
��0 → �� . �17�

It is quite obvious that the HF scheme is not expected to
hold for the large values of the Hubbard repulsion �U=5D�,
we are dealing with. For the pure Hubbard model it has
indeed been found with iterated perturbation theory solution
of the DMFT, that the Hartree-Fock U dependence can be
canceled by higher order contributions.45,46 This finding is
confirmed by ED-DMFT of the pure Hubbard model, where
the low frequency self-energy is almost independent on U for
all n�1.47

Therefore we can expect that in the antiadiabatic limit,
where the interaction is exactly a Hubbard one, the whole
U−�D factor multiplying the density in the HF self-energy
�see Eq. �17��, is equally counteracted by higher-order terms.
This is confirmed by our results of Fig. 7, where ����
−��=0�−�D /2 for all the considered densities in the antia-
diabatic regime. This value is nothing but the constant term
of Eq. �17�, which survives the cancellation of the density-
dependent term.

In the opposite adiabatic limit, we do not expect the pho-
non part of �16� to follow the same fate of the purely elec-
tronic one. In this regime, in fact, the phonon-mediated at-
traction is of a completely different nature with respect to the
instantaneous Hubbard repulsion and the terms containing �,
beyond the HF, are not forced to behave like the Hubbard
term. In other words, while for large �0 the phonons induce
a screening of the Coulomb repulsion leading to an effective
repulsion Uef f �U−�D, at vanishing phonon frequency this
effect is not present and Uef f �U. On the basis of these con-
siderations, in the limit �0 /D→0, we expect a cancellation
only of the U term in �16�, leading to ����−��=0�−�Dn.
Such a relation is confirmed by the DMFT data for small �0
and fits remarkably well with behavior obtained at all the
considered values of the density, for the chemical potential
�see the continuous line in Fig. 7�. This also clarifies the
origin of the opposite behavior displayed by � for n�1/2
and n�1/2. In fact, as it can be seen still in Fig. 7, the fully
antiadiabatic curve �denoted by �0=��,48 lays below all the
other ones for n=0.30, contrary to the case of n=0.90 in
which it lays above. Moreover, still in Fig. 7 it can be seen
that the chemical potential is almost completely independent
on �0 for n=0.50, which is precisely what is predicted by the
above considerations at quarter filling. This supports our idea
that the frequency dependence of the � contribution to �
reflects the frequency dependence of the Coulomb screening
by phonons, even though we cannot put this idea on a quan-
titative basis as we did instead near the Mott transition at half
filling.

V. CONCLUSIONS

In this paper we have studied the effects of the e-ph in-
teraction on a strongly correlated metal for filling different
from n=1. Choosing a large value of U /D the quasiparticle
properties of the system are mainly controlled by the
electron-electron correlations and polaronic features only ap-
pear at values of e-ph coupling � larger by at least a factor
two than those in the absence of correlation. However, even
if the effective e-ph coupling for quasiparticles is reduced by
the large Hubbard repulsion, we have identified a strong in-
fluence of the phonon dynamics. The quasiparticle weight Z,
which in DMFT is inversely proportional to the effective
mass, becomes very small because of the localizing effect of
the Hubbard repulsion but it is still substantially influenced
by the value of the phonon frequency and displays an un-
usual isotope effect. Specifically, since Z depends nonmono-
tonically on �0, the isotope coefficient of the effective mass
changes sign. This change of sign is a strong deviation with
respect to Migdal-Eliashberg theory, and it is not present in
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the half filled system, except for peculiar situations close to
the bipolaronic transition and for specific values of U /D.40

The effective quasiparticle e-ph coupling is particularly re-
duced in the small phonon frequency limit. From this point
of view our DMFT results bear similarities with a mean-field
calculation based on slave bosons and a variational Lang-
Firsov transformation.49 In that approach one obtains near
half filling Z /Z�=0�1−1.388��0 /D�� at large U /D and
small �0 /D. In the adiabatic limit this expression implies a
vanishingly small �ef f, while in our DMFT �ef f remains finite
for �0�0, as a result of the quantum fluctuations that are
neglected in the mean-field calculation. These values of �ef f
are however quite smaller than the bare �, in agreement with
a Fermi liquid description in terms of renormalized e-ph ver-
tices in the static limit. It is interesting to note that the same
mean-field approach predicts at large U /D a critical value
�pol�Uc /2D for polaron formation which is slightly larger
than the adiabatic value �pol�1.328 which is found for spin-
less fermions in the half filled Holstein model and somewhat
smaller than our estimates �pol�2÷2.5 at U=5D.50 For a
single hole in the t-J with J� t /3 a much smaller �pol�0.8 is
required to reach a polaronic behavior. This is understood in
terms of the prelocalizing mechanism associated with the
antiferromagnetic background.17,18,51

Beside the neglect of antiferromagnetic order and spin
correlations, our DMFT approach is limited by the inability
to capture the k dependence of the self-energy, and accord-
ingly of the quasiparticle weight. This limitations does not
allow us to describe the momentum dependence of the effec-
tive e-ph coupling that has been proposed to be induced by
strong correlations by various authors.19–21 The momentum
dependence can be restored by means of cluster extensions

of DMFT, such as the cellular dynamical mean-field theory.
It has already been shown that, for the purely electronic Hub-
bard model, a significant momentum dependence establishes
when the Mott transition is approached already for small
clusters such as a 2�2 plaquette.52

A further crucial assumption of the present work is the
Holstein form of the electron-phonon coupling term. Al-
though this kind of description has been justified for the
cuprates by explicit calculations starting from a full three-
band model,53 it must be noted that the symmetry of the
electronic degrees of freedom which are coupled by phonons
plays a very important role in the competition between the
phonon-mediated attraction and the Coulomb repulsion. In a
model for fullerenes, in fact, in which the electrons are
mainly coupled to Jahn-Teller vibrations, it has been found
that the attraction between electrons is not screened by a
strong local repulsion, giving rise to unexpected phenomena
like high-temperature superconductivity driven by strong
correlation.54–56 More specifically in those models, phonon-
mediated superconductivity is enhanced by the strong corre-
lations close to the Mott transition, due to the specific sym-
metry of the phonons, which couple with orbital and spin
degrees of freedom, as opposed to the Holstein coupling with
the electron density.
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