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We study the evolution of a Mott-Hubbard insulator into a correlated metal upon doping in the two-
dimensional Hubbard model using the cellular dynamical mean-field theory. Short-range spin correlations
create two additional bands apart from the familiar Hubbard bands in the spectral function. Even a tiny doping
into this insulator causes a jump of the Fermi energy to one of these additional bands and an immediate
momentum-dependent suppression of the spectral weight at this Fermi energy. The pseudogap is closely tied to
the existence of these bands. This suggests a strong-coupling mechanism that arises from short-range spin
correlations and large scattering rates for the pseudogap phenomenon seen in several cuprates.
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The issue of the origin of the pseudogap phenomenon
observed in underdoped cuprates lies at the center of any
theoretical explanation for high-temperature superconductiv-
ity in the cuprates and is one of the most challenging ques-
tions in condensed matter physics. The suppression of low-
energy spectral weight in the normal state of these materials
has been observed through various experimental probes.1 In
spite of many theoretical works to explain the observed
anomalies, there is no consensus at present. The lack of con-
trolled approximations to deal with the strong-coupling phys-
ics and low dimensionality inherent to these systems contin-
ues to pose major stumbling blocks towards a complete
theoretical understanding. Since the parent compounds of the
cuprates are Mott-Hubbard insulators, an understanding of
such an insulator and its evolution into a correlated metal
upon doping is crucial.

In this paper we study the two-dimensional �2D� Hubbard
model on a square lattice at and near half-filling with cellular
dynamical mean-field theory �CDMFT�.2 The CDMFT
method is a natural generalization of the single-site DMFT
�Ref. 3� to incorporate short-range spatial correlations. Since
at and near half-filling short-range spin correlations are
dominant at low energy, this method is expected to describe
additional features caused by spin degrees of freedom in the
single-particle spectrum. The CDMFT �Ref. 4� has already
passed several tests against exact results obtained by the Be-
the ansatz and density matrix renormalization group
�DMRG� techniques in one dimension, where the CDMFT
scheme is expected to be in the worst-case scenario. Long-
range order involving several lattice sites such as d-wave
superconductivity can be also described in CDMFT.5 Several
other cluster schemes have been proposed6–10 including the
dynamical cluster approximation �DCA�,7 cluster perturba-
tion theory �CPT�,8 and its variational extension �V-CPT�.9
The variational principle used in the last scheme allows one
to consider CPT, V-CPT, and CDMFT within a unified
framework.

In the CDMFT construction2,4 the infinite lattice is tiled
with identical clusters of size Nc. In an effective action de-

scription, the degrees of freedom in a single cluster are
treated exactly, while the remaining ones are replaced by a
bath of noninteracting electrons, which hybridizes with the
cluster degrees of freedom. For practical purposes, it is use-
ful to view this cluster action as arising from a cluster-bath
Hamiltonian of the form

H = �
����,�

t��c��
† c�� + U�

�

n�↑n�↓ + �
m,�

�m�am�
† am�

+ �
m,�,�

Vm���am�
† c�� + H . c . � . �1�

Here the indices � ,�=1, . . . ,Nc label sites within the cluster,
m=1, . . . ,Nb with Nb representing the number of bath de-
grees of freedom, and c�� and am� annihilate electrons on the
cluster and the bath, respectively. t�� is the hopping matrix
within the cluster, �m� is the bath energy, and Vm�� is the
bath-cluster hybridization matrix. Let us adopt a matrix no-
tation �cluster indices suppressed� for the hopping matrix t,
the cluster Green function Gc�i��, its noninteracting counter-
part G0�i��, and the cluster self-energy �=G0

−1−Gc
−1. We

start with an initial guess for the bath parameters �m� and
Vm�� which determines a starting G0�i��. With this guess the
cluster Green function is calculated by solving the cluster-
bath Hamiltonian �Eq. �1��. To close the self-consistency
loop we obtain a new G0��i�� using

G0�
−1�i�n� = � Nc

�2	�2 	 dk̃
1

i�n + � − t�k̃� − ��i�n�

−1

+ ��i�n� . �2�

The integral comes from projecting on the cluster the Green
function of an infinite lattice formed of identical clusters

located at positions R� i. The self-energy of that Green func-
tion is equal to that in a single cluster. In real space it van-
ishes for sites that do not belong to the same cluster. How-
ever, hopping between clusters is allowed in the same way as
on the original infinite lattice. Hence, the hopping matrix has
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a dependence on superlattice vectors R� i−R� j and correspond-

ingly on wave vectors k̃ that diagonalize that part of the
problem. Now to invert the relation between this G0��i�� and
the bath parameters for the next iteration we minimize

d = �
�n,�,�

��G0�
−1�i�n� − G0

−1�i�n�����2. �3�

The lattice Green function G�k , i�n� is obtained from

G�k,i�n� =
1

Nc
�
��

eik·�r��−r��� 
 � 1

i�n + � − t�k̃� − ��i�n�


��

,

�4�

where ��i�n� is the converged cluster self-energy, k is any
vector in the original Brillouin zone, and � ,� label cluster
sites. All quantities plotted in this paper are derived from this
lattice Green function. This is different from the periodiza-
tion of the self-energy in Refs. 2, 4, and 11.

Since spectra in and near a Mott insulator are expected to
be highly singular, we used the exact diagonalization
method12 to solve the cluster-bath Hamiltonian �Eq. �1�� at
zero temperature. This has the advantages of computing dy-
namical quantities directly in real frequency and of treating
the large-U regime without difficulty. The self-consistency
condition �Eq. �2�� was imposed on the imaginary frequency
axis with a cutoff frequency larger than all the bath energies.
In the present study we used Nc=4 sites for the cluster �mini-
mum number of sites reflecting the full square-lattice sym-
metry� and Nb=8 sites for the bath. Fourfold symmetry of
the cluster leads to four independent bath parameters. All
energies are measured in units of t. Results are plotted with a
broadening parameter of 0.1t.

In order to see how the Mott transition occurs in the pres-
ence of short-range correlations and how the differences be-
tween short- and long-range correlation effects evolve with
interaction strength, we present in Fig. 1 the density of states
N��� as computed from the paramagnetic �P� �solid curves�
and the antiferromagnetic �AF� �dashed curves� states at half-
filling �n=1�. The two states �P and AF� are selected by
imposing appropriate constraints on the bath parameters.
When the correlation length is larger than the size of a clus-
ter, long-range effects in the single-particle spectrum are ex-
pected to be well described by the solution with the corre-
sponding long-range order. The difference between the two
solutions at low energies is largest at weak coupling �U
=4t ,5t� and decreases at strong coupling �U�8t�. In the
weak-coupling case, N��� has only a small dip at the Fermi
energy compared to the AF solution, indicating that short-
range correlations available in a cluster of size Nc=4 are not
long enough to lead to an insulating gap.13,14 As U is in-
creased to 6t, two sharp bands begin to develop at the gap
edge and become well separated from the Hubbard bands
centered around ±U /2. At this strength of U, the two solu-
tions �P and AF� start approaching each other at low ener-
gies. When U=8t, an insulating gap is well defined between
the low-energy inner bands and long-range correlations
�dashed curve� sharpen these bands, but they stay essentially
at the same energy. Thus short-range correlations begin to

dominate the low-energy physics at intermediate to strong
coupling. At this value of U the low-energy inner bands are
clearly distinguished from the Hubbard bands coming from
purely local correlations. Since these bands are missed in the
single-site DMFT �Ref. 15� and smoothly evolve into sharp
spin-density-wave-like bands when AF spin order is allowed,
they are attributed to short-range spin correlations. When U
is further increased beyond the bandwidth of 8t �not shown�,
the size of the insulating gap increases, but the relative shape
and position of the inner and Hubbard bands are unchanged.

Next we investigate the evolution of a Mott-Hubbard in-
sulator into a correlated metal upon a small electron doping
at U=8t. It is clear at half-filling �Fig. 2�a�� that A�k� ,�� �and
also N��� in Fig. 1� shows four significant features near
�0,	� and �	 /2,	 /2�. The four-peak structure in A�k� ,��
was previously found by Moreo et al.16 and Preuss et al.17 in
their high-resolution quantum Monte Carlo �QMC� results
for the half-filled 2D Hubbard model. As will be shown
shortly, the existence of the additional bands apart from the
Hubbard ones turns out to be crucial for the systematic
physical picture of the pseudogap phenomenon.

The most striking feature of even a tiny doping into a
Mott-Hubbard insulator �Figs. 2�b� and 2�c�� is that one of
the inner bands at ��0 seems to disappear immediately
while the Fermi energy jumps to the other band that persists
at �0. Some of the weight is transferred near the Fermi
energy at ��0.18 Furthermore, one already sees here the
pseudogap phenomenon. Especially for n=0.94, one clearly
sees that the peak dispersing from low binding energy near
�	 /2,	 /2� becomes sharper close to the Fermi energy while
near �	 ,0� the corresponding peak becomes broader and less
intense. The Fermi energy tends to sit towards a minimum
instead of a maximum near that point. The suppression of
weight near the Fermi energy eventually disappears at about
20% doping. The appearance of a low-energy peak together
with one at high binding energy is consistent with exact di-
agonalization results for the t-J model.16,19 We also show

FIG. 1. Density of states N��� at half-filling �n=1� for several
values of U. The dashed curves are N��� with AF long-range order.
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clear differences between the momentum-resolved spectra of
the paramagnetic and AF states. The main differences for the
AF case at half-filling �Fig. 2�d�� are that the low-energy
bands are more intense than in the paramagnetic state �Fig.
2�a�� and that they bend back near �0,	� and near
�	 /2,	 /2�, reflecting the underlying AF symmetry. The re-
sults of Fig. 2�d� are strikingly similar to those obtained in a
ten-site V-CPT calculation.20 The more drastic differences
between the paramagnetic and AF solutions occur at finite
doping. While in both cases the Fermi level immediately
jumps to the closest low-energy band upon doping, Figs. 2�e�
and 2�f� �Ref. 21� show that, in the AF solution, the four-
peak structure is preserved and the excitations at the Fermi
energy are quite sharp.

Figure 3 shows the density of states N��� for several dop-
ings. The pseudogap found here �inset� occurs over a scale
0.3t–0.4t and vanishes for large enough doping in agreement
with previous works.22,23 However, we have checked that at
large U the scale of the pseudogap, as defined by the distance
between the peaks closest to zero in Fig. 3, is almost inde-
pendent of U in agreement with Ref. 24. It does not scale as
J, contrary to Ref. 23. Furthermore, the pseudogap size in-
creases with decreasing doping, consistent with several re-
cent experiments in the cuprates.1,25 The pseudogap feature
disappears not because the two peaks coalesce but because of
a gradual filling up of the spectral weight between the two
peaks. Note the evolution with doping of the asymmetry
about the Fermi energy. It is qualitatively consistent with
what is expected for a doped Mott insulator.18 We also wish
to point out the clear evidence of correlation between the
existence of pseudogap at the Fermi level �inset� and the
separation of the low-energy bands from the Hubbard ones.
The appearance of a pseudogap near n=0.8 found in the
single-particle spectrum coincides with the downturn of the

uniform cluster spin susceptibility �not shown�, suggesting
that the pseudogap has to do with spin-singlet formation of
correlated electrons.

The significant differences of spectral properties at n
=0.84 and n=0.74 �Fig. 3� can be understood in terms of
self-energies.24 Figure 4�a� shows the imaginary part of the
self-energy for n=0.84 at the Fermi wave vectors26 near
�0,	� and �	 /2,	 /2�. The scattering rate becomes large
near X in particular, leading to the pseudogap in the single-
particle spectral function. However, Fig. 4�b� shows much
smaller self-energy in magnitude for n=0.74, leading to-
wards the Fermi liquid at large doping. Clearly, upon doping
a Mott insulator into a metallic state, quasiparticles disappear
since the absolute value of the imaginary part of the self-
energy is a local maximum at the Fermi energy instead of
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FIG. 2. Spectral function A�k� ,�� along some symmetry directions in the paramagnetic �upper row� and the AF �lower row� states for
several small dopings with U=8t. The dashed lines represent the Fermi energy.
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FIG. 3. Density of states N��� for several doping levels with
U=8t. The solid, dotted, dashed, and long-dashed curves corre-
spond to n=0.96, 0.9, 0.84, and 0.74, respectively. The inset shows
N��� near the Fermi energy.
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minimum as in a Fermi liquid picture �see caveat27�. The
large scattering rate leading to the pseudogap found here is
reminiscent of that due to the presence of the large density of
states for scattering at the van Hove singularity in the weak-
coupling case. With a finite second-neighbor hopping t�, the
crossing of the noninteracting Fermi surface and the AF
Brillouin-zone boundary leads to additional scattering
processes.24 We now discuss this case.

We study the asymmetry of hole- and electron-doped cu-
prates in their spectral function in the t-t�-U model with
t� / t=−0.3 �Ref. 28� for 5% hole and electron doping. As in
the case of t�=0, the pseudogap shown in Fig. 5 appears in
the low-energy band caused by short-range spin correlations,
which is well separated from the Hubbard bands persisting at
high energies. However, the locations where the pseudogap
occurs are opposite for hole and electron doping. For hole
doping, A�k� ,�� is gapped near k� = �	 ,0�, while for electron
doping it is gapped near k� = �	 /2,	 /2�, in agreement with
angle-resolved photo emission spectroscopy �ARPES�
experiments.29–32 This is clearer in the corresponding density
plots in Fig. 6, which show the asymmetry of hole and elec-
tron doping at �=0 consistent with ARPES experiments.The
combination of the above two plots indicates that the
pseudogap is associated not only with the suppression of the
spectral weight, but also with its shift from the Fermi level.
Since the spectral function A�k� ,�� is obtained on a small
cluster in the paramagnetic state, short-range spin correla-
tions suffice for the pseudogap at both dopings. This is in
agreement with CPT results24 and exact diagonalizations on
the t-t�-t�-J model,33 but in disagreement with recent DCA
results34 where AF long-range order �or a large AF correla-
tion length� is needed for a pseudogap under electron doping.

It is remarkable that including only the nearest-neighbor
correlations in this two-dimensional model is enough to cap-
ture some of the details of the spectral properties that are
missed in the single-site DMFT. We stress that at weak
coupling and in two dimensions, a different mechanism
involving large AF correlation lengths causes the
pseudogap.14,24,35,36 That mechanism, relevant for electron-
doped cuprates near optimal doping, is clearly not involved
in the present strong-coupling calculations on small clusters.

Although the sizes of clusters accessible to computation limit
the resolution of the spectral properties, we expect the above
picture for the strong-coupling pseudogap to be robust with
respect to an increase in the cluster size. This is confirmed by
our recent low- �but finite-� temperature CDMFT+QMC
calculations37 where at intermediate to strong coupling a 2

2 cluster accounts for more than 95% of the correlation
effect of the infinite size cluster in the single-particle spec-
trum.

Our calculations were done at zero temperature, while the
pseudogap behavior is observed at finite temperature and
broken-symmetry states appear in most of the zero-
temperature phase diagram. Nonetheless, our present results
would be most relevant when the temperature is smaller than
the characteristic energy scale for the pseudogap or in re-
gions where broken symmetries are absent or are destroyed
at zero temperature. In fact the latter situation was precisely
realized in a series of experiments38–40 on the cuprates,
which have shown a metal-insulator crossover near optimal
�/doping by suppressing the superconducting phase with a
high magnetic field, revealing the underlying pseudogap
state at zero temperature. Recent experiments41 also show
that when superconductivity is suppressed by Ni doping, the
pseudogap survives at very low temperature in the corre-
sponding paramagnetic state. Our results could be also rel-
evant even in broken-symmetry states, as long as the sizes of
the corresponding gaps are much smaller than the character-
istic energy scale for the pseudogap. Even if we work at T
=0, the limited size of our clusters prevents long-range order
unless we add mean fields. Hence our calculation mimics the
normal state.

−1 0 1
ω

−2

−1

0
Im
[Σ
(k
F,ω
)]

n=0.84
U=8t

near X

near H

(a)

−1 0 1
ω

−2

−1

0

n=0.74
U=8t

near Xnear H

(b)

FIG. 4. Imaginary part of the self-energy for �a� n=0.84 at k�

= �0,52 /64� /	 �solid line� and �30 /64,30 /64� /	 �dashed line� and
�b� n=0.74 at k� = �0,49 /64� /	 �solid line� and �29 /64,29 /64� /	
�dashed line�. X= �0,	� and H= �	 /2,	 /2�.
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electron doping. The dashed lines represent the Fermi energy.

B. KYUNG et al. PHYSICAL REVIEW B 73, 165114 �2006�

165114-4



In conclusion, the long-standing problem of the evolution
of a Mott-Hubbard insulator into a correlated metal upon
doping has been examined in the two-dimensional Hubbard
model by using the cellular dynamical mean-field theory
which incorporates short-range spatial correlations. At half-
filling these correlations create two additional bands besides
the familiar Hubbard ones. Even a tiny doping into a Mott-
Hubbard insulator �t�=0� causes the Fermi energy to jump to
one of these bands and the spectral weight to be suppressed
immediately in a k-dependent way, such that a pseudogap
appears near �	 ,0� while a peak survives near �	 /2,	 /2�.
When AF long-range order is present at finite doping, the
picture is quite different, demonstrating that at strong cou-
pling the pseudogap in the particle-hole-symmetric model is
a short-range effect. Including particle-hole asymmetry with

a second neighbor hopping t� gives spectral weights that are
similar to those observed in hole- and electron-doped cu-
prates. This provides a systematic physical picture for the
emergence of the strong-coupling pseudogap phenomenon in
doped Mott-Hubbard insulators and the consequent non-
Fermi-liquid behavior that arises solely from short-range
spin correlations22–24 and large scattering rates, without any
symmetry breaking.
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