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A linear algebraic method named the shifted conjugate-orthogonal conjugate-gradient method is introduced
for large-scale electronic structure calculation. The method gives an iterative solver algorithm of the Green’s
function and the density matrix without calculating eigenstates. The problem is reduced to independent linear
equations at many energy points and the calculation is actually carried out only for a single energy point. The
method is robust against the round-off error and the calculation can reach the machine accuracy. With the
observation of residual vectors, the accuracy can be controlled, microscopically, independently for each ele-
ment of the Green’s function, and dynamically, at each step in dynamical simulations. The method is applied
to both a semiconductor and a metal.
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I. INTRODUCTION

Large-scale atomistic simulation with quantum mechani-
cal freedom of electrons requires manipulation of a large
Hamiltonian matrix. In order to calculate the physical quan-
tities of a system, we should obtain either eigenstates or the
density matrix of the system. The calculation of eigenstates
is usually reduced to a matrix diagonalization procedure and
this procedure results in severe computational cost for a
large-scale system.

Any physical quantity X can be evaluated by means of the
density matrix � as

�X� =� � dr dr���r,r��X�r�,r� . �1�

Even though the density matrix is of long range, only the
short-range behavior of the density matrix is necessary, if X
is a short-range operator. The energy and forces acting on an
individual atom are really this case, and the locality of the
Hamiltonian realizes this feature in large-scale calculation.
Moreover, the density matrix � can be obtained from the
Green’s function. Therefore, the essential methodology for
large-scale electronic structure calculation and molecular dy-
namics �MD� simulation is how to obtain the density matrix
� or Green’s function without calculating eigenstates.1–15

We have developed a set of methods for large-scale ato-
mistic simulation without calculating eigenstates in a fully
quantum mechanical description of electron systems.6–12

Among them, the subspace diagonalization method based on
the Krylov subspace �SDKS method� was introduced, where
the original Hamiltonian matrix H is reduced to a small-size
easily tractable one and its diagonalization leads to approxi-
mation of the density matrix of the original system.11 The
first important feature of the SDKS method is that we can
monitor numerical accuracy during the simulation using a
residual error of the Green’s function, as shown in the
present paper. The second important feature is that the SDKS

method can be used both for metallic and insulating systems.
We found, however, that the SDKS method has a numerical
instability, when the energy spectrum is calculated with a
very fine energy resolution, as discussed in the Appendix.

Then our strategy to obtain the Green’s function and the
density matrix is to solve linear equations with a given basis
�j�:

�z − H��xj� = �j� . �2�

In the present case, the Hamiltonian H is real symmetric and
�z−H� is not Hermitian but complex symmetric with a com-
plex energy �z�E+ i��. Once the linear equation is solved,
one can obtain any element of the Green’s function as

Gij�z� = �i��z − H�−1�j� = �i�xj� . �3�

Numerical energy integration is required to obtain the one-
body density matrix;

�ij = −
1

�
�

−�

�

Im Gij�E + i��f�E − �

kB�
	dE , �4�

with the Fermi distribution function f�x� and a small imagi-
nary part of the energy ��→0+ �. The chemical potential �
is determined so that the sum of the diagonal elements of the
density matrix equals the total number of electrons.

The aim of the present paper is to introduce the shifted
conjugate-orthogonal conjugate-gradient �COCG� method,
an iterative solver algorithm of Eq. �2�. The Green’s function
and the density matrix are obtained using Eqs. �3� and �4�.
The shifted COCG method shares the before-mentioned two
features with the SDKS method. Moreover, the third impor-
tant feature of the shifted COCG method, different from the
SDKS method, is the robustness against round-off error; the
calculation can reach machine accuracy.

The present paper is organized as follows. In Sec. II, the
Krylov subspace will be explained and the shifted COCG
method will be introduced. In Sec. III, the residual norm
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�RN� will be introduced to monitor the convergence behavior
of the method. The number of operations in actual calcula-
tion is also discussed. Section IV is devoted to application of
the present method to an atomic-scale reconstruction of a
semiconductor surface �silicon� and the bulk electronic struc-
ture of a metal �copper�. The conclusion will be given in Sec.
V. In the Appendix, several numerical aspects will be dis-
cussed for the shifted COCG and SDKS methods and the
difference between the two methods will be clarified.

II. SHIFTED CONJUGATE-ORTHOGONAL
CONJUGATE-GRADIENT METHOD

A. Shifted systems and Krylov subspace

Now we should concentrate the method to solve Eq. �2�
with a large matrix H and a fixed basis �j�. The method
should be iterative and not require the matrix inversion pro-
cedure of �z−H�. The problem is reduced to the linear equa-
tions Eq. �2� for a given set of energy points z=z1 ,z2 ,z3 ,¼.
These linear equations are called “shifted” linear equations
or “shifted” linear systems in mathematical textbooks, be-
cause shifted matrices �z1−H�, �z2−H�, �z3−H� , . . . appear. If
the equations are solved independently among different en-
ergy points, the total computational cost is proportional to
the number of energy points Nene. The essence of the present
method is that we should solve the equation only at one
energy point and the solutions at other energy points are
given with a moderate computational cost.

The present method is realized using the Krylov
subspace.16,17 The Krylov subspace is defined for an arbitrary
matrix A and vector �j� as the linear space spanned by a set
of states �vectors� 
An�j��:

Kn�A, �j�� � span
�j�,A�j�,A2�j�, . . . ,An−1�j�� , �5�

where n is the dimension of the KS. Iterative methods based
on the KS, such as the standard conjugate-gradient algo-
rithm, are generally called Krylov subspace methods. In the
present method, the solution vector �xj� of Eq. �2� is con-
structed within the KS of Kn�z−H , �j�� at the nth iteration.

The present method, the shifted COCG method, is a com-
bined method of two KS algorithms: �a� the conjugate-
orthogonal conjugate-gradient method18 and �b� the theorem
of collinear residuals for shifted linear systems.19 The essen-
tial point is that the KS among shifted systems gives the
same linear space

Kn�z1 − H, �j�� = Kn�z2 − H, �j�� . �6�

The actual procedures are given in the next section.

B. Shifted COCG method

Here we present the formulation of the shifted COCG
algorithm, following Ref. 19. We pick out arbitrarily one
energy point as the “reference” energy point zref�Eref+ i�.
Equation �2� at the reference energy �z=zref� is reformulated
as

Ax = b , �7�

where the matrix A is defined as A�zref−H and the suffix j
is dropped ��j�Þb , �xj�Þx�. Since the matrix A is not Her-

mitian, the matrix-vector notation is used in this section,
rather than the bracket notation. Hereafter the equation at z
=zref is called the reference system.

For Eq. �7�, we use the COCG algorithm,18 a standard
iterative algorithm for a linear equation with a complex sym-
metric matrix A.20 At the nth iteration, the solution vector xn,
the residual vector rn, and the search direction vector pn are
represented as

xn = xn−1 + �n−1pn−1, �8�

rn = rn−1 − �n−1Apn−1, �9�

pn = rn + 	n−1pn−1, �10�

respectively. Here, the coefficients �n and 	n are given as

�n =
rn

Trn

pn
TApn

, �11�

	n =
rn+1

T rn+1

rn
Trn

. �12�

The initial conditions for iteration are x0=p−1=0, r0=b,
	−1=0, �−1=1. Note here that the inner products are given as
aTb ��aHb�. When the iteration number n reaches the matrix
dimension of A, denoted M, the residual vector should be
zero and the solution vector should be exact �rM =0,xM

=A−1b�.
Eliminating pn−1 from Eq. �9� with Eq. �10�, we obtain a

three-term recurrence relation for the residual vector,

rn+1 = − �nArn + �1 +
	n−1�n

�n−1
	rn −

	n−1�n

�n−1
rn−1. �13�

The most time-consuming part of the COCG algorithm is
calculating the matrix-vector product �Apn� in Eq. �11�. This
matrix-vector product corresponds to the procedure for up-
dating the KS: Kn�A ,b�ÞKn+1�A ,b�.

Similarly, we reformulate Eq. �2� with a shifted energy
point z=zref+
 as

�A + 
I�x = b . �14�

For the shifted system, the nth solution vector xn

 and the

search direction vector pn

 are given as

xn

 = xn−1


 + �n−1

 pn−1


 , �15�

pn

 = rn


 + 	n−1

 pn−1


 . �16�

The initial values of the vectors or coefficients are chosen to
be the same as in the reference system. The equation corre-
sponding to Eq. �13� of the shifted system is

rn+1

 = − �n


�A + 
I�rn

 + �1 +

	n−1

 �n




�n−1

 	rn


 −
	n−1


 �n



�n−1

 rn−1


 .

�17�

Since the KSs of the reference and shifted systems are
equivalent �Kn�A ,b�=Kn�A+
I ,b�, as stated in Eq. �6�, one
can prove that their residual vectors rn


 and rn are collinear:
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rn

 =

1

�n

rn. �18�

which is the theorem of the collinear residual for shifted
linear systems.19 With Eq. �18�, Eq. �13� can be modified as

rn+1

 = −

�n



�n+1

 �n�A + 
I�rn


 +
�n




�n+1

 �1 + �n
 +

	n−1�n

�n−1
	rn




−
�n−1




�n+1



	n−1�n

�n−1
rn−1


 . �19�

Comparing the coefficients in Eqs. �19� and �17�, we obtain

�n

 =

�n



�n+1

 �n, �20�

	n

 = � �n




�n+1

 	2

	n, �21�

�n+1

 = �1 + �n
 +

	n−1�n

�n−1
	�n


 −
	n−1�n

�n−1
�n−1


 �22�

with the initial values of �0

=�−1


 =1. We can update the
vector rn


 and the coefficients �n

 and 	n


 using Eqs. �18� and
�20�–�22� which do not include any matrix-vector product.
Consequently, the time-consuming procedure of the matrix-
vector product is needed only for the reference system,
which reduces the computational cost drastically. The detail
of the computational cost will be estimated in Sec. III B.

We note here that the shift parameter 
 ��z−zref� is an
arbitrary complex variable in principle but we choose the
value to be real �
=E−Eref� in all the practical calculations
of the present paper. We also note that a practical electronic-
structure calculation can be parallelized with the present
method, because the original problem of Eq. �2� is indepen-
dent with respect to the basis suffix j.

III. CONVERGENCE BEHAVIOR AND COMPUTATIONAL
COST

A. Convergence behavior with residual norm

Since the shifted COCG method is an iterative solver al-
gorithm for Eq. �2�, we should establish a systematic proce-
dure to find an optimal iteration number in the context of
electronic structure calculation. In this section, such a sys-
tematic procedure is introduced by monitoring the norm of
residual vector.

At the nth iteration, we denote the solution vectors for the
reference and shifted systems as �xn

�j�� and �xn

�j��, respec-

tively. The corresponding residual vectors are written by

�rn
�j�� � �j� − �zref − H��xn

�j�� , �23�

�rn

�j�� � �j� − �zref + 
 − H��xn


�j�� =
1

�n

 �rn

�j�� , �24�

respectively. The last equality is given by Eq. �18�.
Since we need only the elements of the density matrix

among near-sited orbital pairs or of the short-distance com-

ponents in Eq. �1�, the convergence is necessary only for
these components, but not for far-distance components.
Therefore, we define a residual norm from the components
only among these near-sited orbitals ��i�� that are determined
by the interaction range of Hamiltonian:

�rn
�j��2 � �

i

Mint

��i�rn
�j���2, �25�

�rn

�j��2 � �

i

Mint

��i�rn

�j���2 = � 1

�n

�2

�rn
�j��2, �26�

where Mint is the number of interacting orbitals �i� for a basis
�j�, typically 10–102. Note that the RN is an energy-
dependent quantity.

Since the Green’s function should be integrated over the
given set of energy points to obtain the density matrix, we
need to know the convergence behavior of the RN over the
entire energy range. Then we average the RN over the energy
range �Emin�E�Emax or Emin−Eref�
�Emax−Eref�. We
call the resultant quantity the energy-averaged residual norm
�ARN�,

Rn
�j� �

1

Emax − Emin
�

Emin

Emax

dE�rn

�j��2 = �n

�j��rn
�j��2, �27�

where

�n
�j� =

1

Emax − Emin
�

Emin

Emax � 1

�n

�2

dE . �28�

Since the ARN Rn
�j� can be monitored at every iteration �n�,

the optimal number of iterations can be determined by the
value of Rn

�j�. The above determination is carried out for the
microscopic freedoms or individually among the basis suf-
fixes j.

As an example, we calculated the electronic structure in a
bulk Si system of 512 atoms with a cubic simulation cell. We
use a transferable Hamiltonian of silicon in the Slater-Koster
form of s and p orbitals.21 The matrix dimension of the
Hamiltonian H is M =4512=2048 and the number of en-
ergy points is Nene=1000. The imaginary part of the energy
�z=E+ i�� is set to �=0.002 a.u. �=0.0544 eV�. Figure 1
shows the decay behavior of the ARN. Here and hereafter,
the starting basis �j� for silicon systems is set to an
sp3-hybridized basis on an atom. We plot four cases with
different reference energy points. In the result, all the cases
follow a universal curve up to the machine accuracy, and the
choice of the reference energy point does not affect the cal-
culated ARN. The behavior within a small iteration �n
�70� is also plotted in Fig. 2. We should note that the ob-
served decay at the early stage �n�30� is important from a
practical viewpoint, since the iteration number of n�30 is
enough for the application in Sec. IV A.

The convergence behavior was studied also in bulk fcc Cu
of 1568 atoms, a metallic system. The simulation cell is a
778 supercell of the cubic unit cell. We constructed the
Hamiltonian matrix from the second-order form �H�2�� of the
tight-binding linear muffin-tin orbital theory.22 In Fig. 2, the
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ARN is plotted with the starting bases of atomic s and t2g
orbitals. Since the present method is a general linear alge-
braic theory with a short-range Hamiltonian �matrix�, the
convergence behavior shows no generic difference between
semiconductor and metal or between different starting orbit-
als. In fact, the curves in Fig. 2 behave similarly in magni-
tude with a large iteration number, for example n�60,
though differently with a smaller iteration number.

B. Computational cost within one iteration

Numbers of operations within one iteration are estimated
in Table I. Two points are found for the drastic reduction of
computational cost, when the present method is compared to
the conventional COCG method. For comparison, the case of
the conventional COCG method is shown in the row labeled
COCG, in which the conventional COCG method is applied,
independently, to all the systems �Nene systems� and the
matrix-vector product governs the computational cost. In the
shifted COCG method, on the other hand, the computational
cost of the matrix-vector product is reduced by 1/Nene
�MMintNeneÞMMint�, since the actual matrix-vector product
is carried out only for the reference system, as discussed in

Sec. II B. Then the scalar-vector products may give a signifi-
cant contribution to the computation, if all the elements �M
elements� of the vectors xn


, pn

, and rn


 are calculated for all
the systems, which is shown in the row labeled SCOCG
�total�. In the present calculation, however, we need the ele-
ments of these vectors only within the interaction range �Mint
elements�, as discussed in Sec. III A. Since the vectors xn


,
pn


, and rn

 in the shifted systems �Nene−1 systems � are up-

dated using Eqs. �15�, �16�, and �18�, the update procedure
can be carried out only for the necessary elements �Mint ele-
ments�. The calculation only for these elements gives another
drastic reduction of the computation cost �3M�Nene

−1�Þ3Mint�Nene−1�, which is shown in the row labeled
SCOCG �present�.

IV. APPLICATIONS TO ELECTRONIC STRUCTURE
CALCULATION

A. Reconstruction on Si(001) surface

The MD simulation with the shifted COCG method was
tested in a Si�001� surface reconstruction. The calculated
system is a slab of 1024 atoms constituted of 16 layers with
64 atoms on each layer. The temperature parameter of the
Fermi distribution function in Eq. �4� is set to �=0.005 a.u.
�=0.136 eV�. We use the Hamiltonian and energy function in
Ref. 21. Other methodological details are the same as in Sec.
III A. The atomic structure is relaxed, with the Hellmann-
Feynman force on atoms, from an appropriate surface atomic
configuration into the ground-state structure. Since the force
on atoms is given after the calculation of the density matrix,
the simulation is carried out by a double-loop iterative pro-
cedure. The inner loop is the iterative procedure of the
shifted COCG method for calculating the density matrix with
a given atomic configuration or a given Hamiltonian. The
outer loop is the update of the atomic configuration, with the
force on atoms, so as to minimize the energy. When the KS
dimension, or the iteration number of the inner loop, is n

TABLE I. Numbers of operations within one iteration: �i� Inner
product in Eqs. �11� and �12�, �ii� scalar-vector product in Eqs.
�8�–�10� and Eqs. �15�, �16�, and �18�, and �iii� matrix-vector prod-
uct in Apn of Eq. �11�. The parameters in the table are as follows:
M, the dimension of the original Hamiltonian matrix; Mint, the num-
ber of orbitals within interaction range for one orbital; Nene, the
number of energy points. Here, the cases of the three methods are
plotted; �1� the conventional COCG method, labeled COCG, �2� the
shifted COCG method with the calculation of all the elements of
the Green’s function and the RN, labeled SCOCG �total�, and �3�
the actual procedure in the present calculation, labeled SCOCG
�present�. See the text for details.

Method
Inner

product
Scalar-vector

product
Matrix-vector

product

COCG 3MNene 3MNene MMintNene

SCOCG �total� 3M 3MNene MMint

SCOCG
�present�

3M 3Mint�Nene−1�+3M MMint

FIG. 1. Decay behavior of the ARN for a Si crystal with 512
atoms. A universal curve appears with four different reference en-
ergy points that are placed at the band bottom �B�, in the valence
band �V�, in the gap �G�, and in the conduction band �C�. See Fig.
6�a� for the actual positions of these energy points.

FIG. 2. Early stage in the decay behavior of the ARN for a Si
crystal with 512 atoms and fcc Cu with 1568 atoms. In the Cu
system, the two cases are plotted with the starting vectors �j� of s
and t2g

bases on an atom.
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=30 or larger, the resultant surface atoms form asymmetric
dimers illustrated in the inset of Fig. 3�a�, as they should
do.23,24 The resultant tilt angle of the asymmetric dimers is
�=13.4°, which agrees with experimental values of �, be-
tween 5° and 19°.25

Figure 3�a� shows the imaginary part of the Green’s func-
tion � j − �1/��Im Gjj summed up over the orbitals within a
specific atom, which corresponds to the local density of
states �LDOS�. As a general property of the KS method, the
number of peaks in −�1/��Im Gjj equals the iteration num-
ber or the KS dimension. When the LDOSs of the surface
and bulk atoms are compared, the LDOSs of the surface
atoms have characteristic peaks within −1�E� +0.5 eV,
because the upper surface atom has an occupied surface state
and the lower one has an unoccupied surface state. The re-
production of these surface states is the reason why the cor-
rect surface reconstruction is reproduced, even with a small
number of the KS dimension �n=30�.

Figure 3�b� shows the ARN for these atoms as the func-
tion of the iteration number or the KS dimension. Here the
ARN for an atom is defined as the average of the ARN, Eq.
�27�, among the orbitals within the atom. The result shows
that the ARN for the surface atoms decays similarly, while
that for the bulk atom decays faster. Considering the fact that

the required number of iterations is n=30 to obtain appropri-
ate surface reconstruction, a practical convergence criterion
is estimated as the horizontal dotted line in Fig. 3�b� on the
order of Rn

�j� /R2
�j��10−3. If this convergence criterion is used,

the optimal number of iterations is approximately 18 for the
bulk atom, and less than that for the surface atoms �n=30�.
In other words, the optimal iteration number is determined
for microscopic degrees of freedom or independently among
atoms or bases ��j��. Moreover, the microscopic control can
be carried out dynamically, or at every step in MD simula-
tions. In short, the observation of the ARN gives a definite
way of controlling the accuracy microscopically and dynami-
cally, which is important in practical investigations.

B. Metal system: fcc Cu

We calculated also the electronic structure of bulk fcc Cu
with 1568 atoms. The technical details are already explained
in Sec. III A. The well-converged partial DOS is shown in
Fig. 4 for s, p, eg, and t2g

orbitals. The result reproduces the
essential characteristics, e.g., the resonance behavior of s and
p orbitals and the energy separation between eg and t2g or-
bitals.

Another important property for analyzing cohesion is the
crystal orbital Hamiltonian population �COHP� defined as
follows:26

CIJ:��E� = −
1

�
�
	

Im GI�,J	�E + i��HJ	,I�, �29�

CIJ�E� = �
�

CIJ:��E� , �30�

where I and J denote the atomic positions and � and 	 the
orbitals. The quantity CIJ is the COHP and we call the quan-
tity CIJ:� the partial COHP �PCOHP�. The energy integration
of the COHP �ICOHP� has the dimension of energy. The
off-site term of the ICOHP gives a quantitative measure of
the cohesive mechanism, because its negative and positive
parts are the energy gain and loss in the electronic structure
energy for cohesion, respectively.

FIG. 3. Result of a slab for the Si�001� surface with asymmetric
surface dimers. �a� Local density of states �� j − �1/��Im Gjj for
surface and bulk atoms, calculated with the KS dimension of n
=30. The surface atoms are classified into the upper and lower
atoms of the asymmetric dimer, illustrated in the inset. The “bulk”
atom is an atom on deeper layers of the present slab system. �b�
Decay behavior of ARN for the atoms that appear in �a�. The hori-
zontal dotted line is a guide for the eye for a typical convergence
criterion.

FIG. 4. Result for fcc Cu with 1568 atoms: Partial density of
states −�1/��Im Gjj for each orbital.
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Figure 5�a� shows the COHP and ICOHP for a nearest-
neighbor atom pair. The PCOHP CIJ:��E� is also shown in
Fig. 5�b� only for the orbitals ��� with major contributions.
Since a nearest-neighbor pair lies along the �011� direction in
the fcc structure, the significant values in the PCOHP come
from �=s, �py ± pz� /�2, and dyz orbitals. Figures 5�a� and
5�b� show that the two characteristic peaks of the COHP at
E�−5 and −3 eV are contributed mainly by the PCOHP of
the dyz orbital. The negative and positive peaks originate
from the bonding and antibonding coupling, respectively, of
the t2g

orbitals among the nearest-neighbor atom sites.
Though the two corresponding peaks can be seen also in the
PDOS of the t2g

orbital in Fig. 4, the COHP, unlike the
PDOS, informs us about the bonding or antibonding charac-
ter of the corresponding state. From Fig. 5�b�, we found that
contributions from s and p orbitals are also appreciable.
Moreover, the PCOHP for a second-nearest-neighbor pair is
plotted in Fig. 5�c�. Since a second-nearest-neighbor pair lies
along the �001� direction, the significant values in the
PCOHP come from s, pz, and d3z2−r2 orbitals, though their
magnitude is one order smaller than that for the first-
neighbor pair.

The present analysis demonstrates that, since the shifted
COCG method can give the Green’s function with machine
accuracy, the resultant spectra reproduce the correct cohesive
mechanism, in which the role of each orbital is well de-
scribed not only for the major contribution from the first-
nearest-neighbor coupling but also for a minor contribution
from the second-nearest-neighbor coupling.

V. CONCLUDING DISCUSSION

In the present paper, we introduced the shifted COCG
method based on the Krylov subspace and used the method
as an iterative solver algorithm of the Green’s function in
large electron systems. We analyzed the convergence behav-
ior by means of the ARN, which establishes a definite way of

controlling accuracy. The theory realizes a practical method
not only for MD simulations but also for obtaining the fine-
resolution spectra, such as �P�DOS and COHP, without cal-
culating eigenstates. The method was applied to a semicon-
ductor and a metal and the above statements were confirmed
numerically.

When the present method is compared with the SDKS
method, we conclude that the two KS methods are comple-
mentary from a practical viewpoint and we should choose
one according to the purpose. If one would like to obtain the
Green’s function in a very fine energy resolution, the shifted
COCG method should be used, because it can reach machine
accuracy. On the other hand, as is discussed in Appendix A 2,
the SDKS method is suitable for obtaining the density matrix
without numerical energy integration of the Green’s function,
which is a typical situation in MD simulations.

Finally, we point out the generality of the present theory.
Since the shifted COCG method is based on a general linear-
algebraic theory with large matrices, it is applicable not only
to electronic structure calculations with atomic orbital bases
but also to calculation with other bases. Moreover, the
method may be useful in many theoretical fields other than
electronic structure theory, if the theory is reduced to a set of
shifted linear equations.
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APPENDIX: NUMERICAL ASPECTS
OF KRYLOV-SUBSPACE METHODS

This appendix is devoted to several aspects of the two KS
methods �i� the shifted COCG method, the main subject of
this paper, and �ii� the SDKS method.11 In particular, numeri-
cal aspects will be discussed, including robustness against
round-off error. Examples are demonstrated with silicon
crystals, as in Sec. III.

1. Shifted COCG method

For the shifted COCG method, we discuss �I� the conver-
gence behavior among different energy points and �II� the
convergence behavior of the long-distance component of the
Green’s function. These discussions clarify how and why the
present method is so successful.

First, we used the conventional COCG method at all the
energy points�Nene=1000 points�, so as to investigate the
convergence behavior among different energy points. Figure
6�a� shows the imaginary part of the well-converged Green’s
function, corresponding to the density of states. The spec-
trum consists of a set of spikes with a finite width, owing to
a small imaginary part of the energy ��=0.002 a.u.

FIG. 5. Result for fcc Cu with 1568 atoms: COHP and ICOHP
for a first-nearest-neighbor atom pair �a� and PCOHP for a first- �b�
or second- �c� nearest-neighbor atom pair.
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=0.0544 eV�. The required iteration numbers with various
convergence criteria are seen in Fig. 6�b�, in which the con-
vergence criterion is set to be �rn

�j��2�10� with �=−4 to −16.
The resultant DOS profiles among these criteria are indistin-
guishable from that of Fig. 6�a�. Figures 6�a� and 6�b� indi-
cate that an energy point with a larger value of the DOS
requires a larger number of iterations, because the KS dimen-
sion should be larger in order to distinguish individuals
among densely distributed nearby states.

In Fig. 7�a�, the decay behavior of the RN is plotted for
the four chosen energy points that were already discussed in
Figs. 1 and 6�a�. When Fig. 7�a� and Fig. 1 are compared,
one can see that the decay behavior of the RN is quite dif-
ferent among the four energy points but the ARN is univer-
sal, as it should be from Eq. �18�. For example, we pick out
the case in which the reference energy is chosen as the point
labeled by B. In this case, the RN �rn

�j��2 and the shift coef-
ficient �n


 go to the extreme orders of 10−250 and 10+250,
respectively, at n=300. Even in such an extreme case, the
computational procedure works well and the ARN follows
the universal curve, as in Fig. 1.

Second, we discuss the convergence behavior of the
Green’s function including its long-distance component, un-
like in Sec. III. For monitoring the convergence behavior, we
should define the total residual norm �TRN�, instead of the
RN in Eq. �25�, as

�rn
�j��2 = �

i

M

��i�rn
�j���2, �A1�

where the elements are summed up among all the bases �M
bases�. In other words, the TRN shows the convergence be-

havior for all the elements of the Green’s function �Gij or
G�r ,r��, including its long-distance components. We should
recall that the RN in Eq. �25� is defined only for the short-
distance components. The results are shown in Fig. 7�b�, in
which the decay behavior is slower than that in Fig. 7�a� at
an earlier stage �n�30�, though the behavior is the same at
later stages. The difference at the earlier stage appears be-
cause the accurate description of the Green’s function at fur-
ther distances needs a larger number of KS bases or a larger
iteration number. Moreover, the computational cost is enor-
mous to calculate all the elements of the Green’s function, as
shown in the SCOCG �total� case of Table I. The present
discussion clarifies that only the short-distance components
of the Green’s function are required and calculated in prac-
tical applications.

2. Subspace diagonalization method

Here the subspace diagonalization method based on the
KS �SDKS� method11 is discussed for comparison with the
shifted COCG method. Though the two methods, commonly,
give the density matrix or Green’s function within the KS,
the difference between them comes from the computational
cost and the effect of numerical round-off error.

The practical procedure of the SDKS method is summa-
rized as follows. An orthogonal basis set for the KS is con-
structed by the Lanczos process, a three-term recurrence re-
lation, 
�K1

�j����j� , �K2
�j�� , . . . , �K�

�j���.11 Here the number of
bases � is the dimension of the KS, K��H , �j��. This process
creates simultaneously the reduced Hamiltonian matrix HK�j�

within the KS ��HK�j��nm��Kn
�j��H�Km

�j��, as a small tridiago-
nal matrix. Then the reduced matrix HK�j� is diagonalized and
we obtain the eigenvalues ��

�j� and the coefficients C�n
�j� ��

=1,2 ,¼ ,��, where the eigenvectors are given as �w�
�j��

��n=1
� C�n

�j��Kn
�j��. The Green’s function is given as

FIG. 6. �a� Well-converged Green’s function and �b� conver-
gence behavior at different energy points. The calculation was car-
ried out with 512 Si atoms and the top of the valence band is
located at E=0 eV �a� imaginary part of the well-converged Green’s
function �−�1/��Im Gjj�E+ i�� with �=0.002 a.u. �b� The iteration
numbers to satisfy the converge criterion �rn

�j��2�10� with �=−4 to
−16. Note that four energy points are picked out, at the band bottom
�B�, in the valence band �V�, in the gap �G�, and in the conduction
band �C�. For discussion, see text.

FIG. 7. Iteration dependence of �a� the residual norm �RN� in
the present method and �b� the total residual norm �TRN�. The
symbols B, V, G, and C indicate the energy points that are shown by
arrows in Fig. 6�a�.
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�i�G�j� Þ �
n

�

�i�Kn
�j���Kn

�j��G�
�j��j� �A2�

with the definition of

G�
�j��z� � �

�

� �w�
�j���w�

�j��
z − ��

�j� . �A3�

The density matrix can be given in a similar manner.11 The
calculated band structure energy shows a rapid convergence
as a function of the number of KS bases �, in both
semiconductor11 and metal �fcc Cu, data not shown�. In both
cases, the result is well converged, typically, with �=30. We
have simulated the reconstruction on a Si�001� surface,11 as
in Sec. IV A, and the resultant atomic positions or LDOSs
agree with the ones obtained by the shifted COCG method.

Several differences in numerical treatment are found be-
tween the SDKS method and the shifted COCG method. The
SDKS method gives the Green’s function analytically in Eq.
�A3� and its energy integration for the density matrix, Eq.
�4�, can be given also analytically, while the shifted COCG
method gives the Green’s function numerically on a given set
of energy points and its energy integration should be carried
out with a careful observation of the numerical error. More-
over, the computational cost of the SDKS method is smaller
than, typically one-half of, that of the shifted COCG method,
because the SDKS method requires only real vectors, such as
�Kn

�j�� , �w�
�j��, while the shifted COCG method requires several

complex vectors, such as �xn
�j�� , �rn

�j��.
Hereafter we discuss a crucial difference of the SDKS

method from the shifted COCG method; the SDKS method
shows a numerical instability with a very large number of KS
bases ���, owing to the accumulation of round-off error. The
above instability is analyzed by introducing the RN with Eq.
�23�. An element of the RN is given as

�i�r�
�j�� = �i�I − �z − H�G�

�j��z��j�

= �i�j� − �
�

� �i�z − H�w�
�j���w�

�j��j�
z − ��

�j�

= �i�j� − �
�,n=1

� � �i�z − H�Kn
�j��C�n

�j�

z − ��
�j�  �

m=1

�

C�m
�j� �Km

�j��j�	 .

�A4�

This quantity can be calculated with a negligible computa-
tional cost, since all the quantities in Eq. �A4�, that is, 
��

�j��,

C�n

�j��, 
�i�Kn
�j� � ��, and 
�i�H�Kn

�j���, are always calculated in
the generating procedure of the Green’s function G�

�j��z�. The
ARN R�

�j� can be defined in a similar way as in Eq. �27�. The
ARN was examined for a Si crystal in different system sizes
�512, 4096, and 32 768 atoms�, and the results are shown in
Fig. 8. Here a problematic situation appears in the cases of
512 and 4096 atoms, because the ARN begins to grow after
an appropriate value of the KS dimension �. So as to analyze
the growth of the error, the RN with the case of 512 atoms is
shown in Fig. 9 with its energy dependence. The spectrum
consists of only spikes before the growth of error ��=30, Fig.

9�a�, while a finite background appears after the beginning
of the growth of error ��=100, Fig. 9�b�.

The growth of error occurs because the loss of orthogo-
nality ��Kn

�j� �Km
�j����nm� always happens in actual calculation

after a long iteration of the Lanczos procedure, owing to the
accumulation of round-off error. In such a case, the calcu-
lated eigenvectors �w�

�j�� have a finite deviation ���
�j�� from the

true eigenvectors:

HK�j��w�
�j�� = ���w�

�j�� + ���
�j�� . �A5�

Using Eqs. �A4� and �A5�, we obtain

�i�r�
�j�� = �i�I − �z − H�G�

�j��z��j�

= �i�j� − �
�

� �i�z − H�w�
�j���w�

�j��j�
z − ��

�j�

= �i�d� + �
�=1

�

��i���
�j�� + �i��HK�j��w�

�j���
�w�

�j��j�
z − ��

�j� ,

�A6�

where we define �HK�j��H−HK�j� and use

�d� � �j� − �
�=1

�

�w�
�j���w�

�j��j� = �
n=2

�

�Kn
�j���Kn

�j��K1
�j�� . �A7�

The last equality of Eq. �A7� is given by

�
�=1

�

�w�
�j���w�

�j�� = �
n=1

�

�Kn
�j���Kn

�j�� �A8�

FIG. 8. Decay behavior of the ARN in the SDKS method for Si
crystals with 512, 4096, and 32 768 atoms.

FIG. 9. Energy dependence of the RN in the subspace diagonal-
ization method for a Si crystal with 512 atoms. The KS dimension
is �= �a� 30 and �b� 100.
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and �K1
�j����j�. The first and second terms in Eq. �A6� cor-

respond to the finite background and the spikes in Fig. 9�b�,
respectively. With a small number of bases, as in Fig. 9�a�,
the orthogonality between the bases holds exactly and we

obtain �d�= ���
�j��=0. Therefore, the energy-independent term,

the first term of Eq. �A6�, does not appear. The spikes in Fig.
9�a� appear because the reduced Hamiltonian matrix in the
KS deviates from the original one ��HK�j��H−HK�j��0�.
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