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In a one-dimensional electron gas at low enough density, the magnetic �spin� exchange energy J between
neighboring electrons is exponentially suppressed relative to the characteristic charge energy, the Fermi energy
EF. At nonzero temperature T, the energy hierarchy J�T�EF can be reached, and we refer to this as the
spin-incoherent Luttinger liquid state. We discuss the Coulomb drag between two parallel quantum wires in the
spin-incoherent regime, as well as the crossover to this state from the low-temperature regime by using a model
of a fluctuating Wigner solid. As the temperature increases from zero to above J for a fixed electron density, the
2kF oscillations in the density-density correlations are lost. As a result, the temperature dependence of the
Coulomb drag is dramatically altered and nonmonotonic dependence may result. Drag between wires of equal
and unequal density are discussed, as well as the effects of weak disorder in the wires. We speculate that weak
disorder may play an important role in extracting information about quantum wires in real drag experiments.
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I. INTRODUCTION

In recent years correlated electron systems at the nanos-
cale and in reduced dimensions have attracted much
attention.1–3 In one spatial dimension electron correlations
are expected to be enhanced, leading to the so-called Lut-
tinger liquid �LL� state.4,5 The existence of the LL state in a
one-dimensional electron system is now an established ex-
perimental fact,6–8 with direct measurements of the distinct
spin and charge velocities in momentum resolved tunneling
�as predicted by the theory� providing compelling
evidence.9,10

Another way to explore the correlations in one-
dimensional systems is in a drag experiment between two
parallel quantum wires or nanotubes.11–13 �Recall that in
most cases the bare conductance of a quantum wire is 2e2 /h
per transverse channel regardless of the electron
interactions,14,15 and so does not reveal information about
electron correlations. An exception to this quantization con-
dition is the situation discussed by Matveev in Refs. 16 and
17.� The typical drag setup involves a current driven in a
“active” wire while a voltage drop is measured in a “passive”
wire. See Fig. 1.

The quantity often taken to describe the drag effect is the
“drag resistivity” �drag per unit length� defined as

rD = − lim
I1→0

e2

h

1

L

dV2

dI1
, �1�

where V2 is a voltage induced in wire 2 �the “passive” wire�
due to a current I1 in wire 1 �the “active” wire�. Here e is the
charge of the electron, h is Planck’s constant, and L is the
length of the wire. The sign of the drag can be either positive
or negative, but it is generally positive �note minus sign in
formula� for repulsive interactions between like carriers in
the wires �either electrons or holes�.

Typically, one is interested in the dependence of rD on the
temperature, the interwire spacing, the electron density and
Fermi wave vector in each wire, the disorder, the wire length,

and possibly on an external magnetic field. Physically drag is
the result of collisions �momentum transfer� from electrons
in the active wire which tend to “push” or “pull” the elec-
trons in the passive wire. Electrons in the passive wire move
under these collisions until an electric field is built up in the
passive wire �due to a nonuniform density of electrons there�
which just cancels the force of the momentum transfer of the
electrons in the active wire. This is the physics behind the
well-known drag formulas of Zheng and MacDonald18 and
Pustilnik et al.19 �See Eq. �7�.�

While the experimental data on drag between quantum
wires are limited,11–13 a fair amount of theoretical work has
been published. Various studies have made use of LL
theory,20–24 Fermi liquid �FL� theory with25 and without19

multiple subbands, effects of interwire tunneling,26 effects
of disorder,27 shot noise correlations,28,29 mesoscopic
fluctuations,30,31 and the effects of different signs of electron
exchange interactions in the wires.32 Additionally, phonon-
mediated drag has been studied in one dimension.33,34 The
main qualitative difference that is found between the LL and
FL approaches is whether rD tends to increase �LL� or de-
crease �FL� as the temperature is reduced to the lowest val-
ues. For the case of two infinitely long identical clean wires
the following results are obtained: In a LL, electrons tend to
“lock” into a commensurate state at the lowest temperatures,
giving rise to a diverging drag, while in a FL the phase space
available for scattering tends to zero as the temperature is

FIG. 1. Coulomb drag schematic. Two quantum wires are ar-
ranged parallel to one another. A dc current I1 flows in the “active”
wire 1 and a voltage bias V2 is measured in the “passive” wire 2
when I2=0.
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lowered, implying a vanishing drag. For two nonidentical
wires the drag is usually significantly suppressed at low tem-
peratures relative to the drag in the identical case.19,20

In spite of the theoretical effort, a number of open ques-
tions remain. In particular, the drag effect is known to be
strongest when the electron density is low,11–13 which typi-
cally implies that electron interactions are strong, or equiva-
lently that rs�a / �2aB� is large with a=n−1 and aB the Bohr
radius. For very strong interactions, there is an exponential
separation of the spin exchange energy, J, and the character-
istic charge energy, EF, which at finite temperatures can lead
to incoherent �thermally excited� spin degrees of freedom
while the charge degrees of freedom remain approximately
coherent and close to their ground state.16,17 This energy hi-
erarchy at finite temperature T, J�T�EF, we refer to as the
spin-incoherent Luttinger liquid regime. Already there is
mounting understanding of how such spin-incoherent Lut-
tinger liquids behave in the Green’s function,35–37 in the mo-
mentum distribution function,38 in momentum resolved
tunneling,39 and in transport.16,17,40,41

Our goal in this work is to explore some of the implica-
tions of spin incoherence on the drag between two quantum
wires. We consider only the simplest case of a single channel
wire. We attempt to elucidate what qualitative and quantita-
tive changes one can expect for the Coulomb drag when the
temperature is much smaller or larger than J. Since J /EF is
exponentially small,16,17 a small change in the temperature
can induce a dramatic change in the temperature dependence
of the drag. Based on an earlier work of the authors,40 we are
able to discuss the drag deep in the spin incoherent regime in
terms of spinless electrons using a simple mapping between
the charge variables of the charge sector of a LL with spin
and the variables of a spinless LL.

The crossover to the spin-incoherent regime is discussed
using a model of a fluctuating Wigner solid with an anti-
ferromagnetic Heisenberg spin chain in the spin sector. Dis-
tortions of the solid couple the spin and charge degrees of
freedom. The model allows us to quantitatively address the
crossover. The main result is that as the temperature in-
creases from zero to above J for a fixed electron density, the
�already weak� 2kF oscillations in the density-density corre-
lations are rapidly lost. As a result, the drag is dramatically
suppressed �when kFd�1� since forward scattering contribu-
tions vanish in the LL model and the Wigner solid model,
and 4kF contributions are suppressed relative to 2kF contri-

butions by Ũ�4kF� / Ũ�2kF��e−2kFd for kFd�1. Here Ũ�kd�
is the Fourier transform of the interwire electron-electron
interaction, d is the interwire separation, and kF�� / �2a� is
the Fermi wave vector. See Fig. 2.

In addition to a possible dramatic suppression �depending
on various physical parameters� of the drag, a nonmonotonic
dependence on temperature may also occur, as illustrated
schematically in Fig. 2. Specifically, when T�T*, where T*

is the “locking” temperature �see Sec. II below�, we find that
the temperature dependence of the drag is given by

rD = C1T�2kFf�T/J� + C2T�4kF, �2�

where f�X→0�→1 and f�X�1��e−cX, with c a constant of

order one. The coefficients C1� Ũ�2kF� and C2� Ũ�4kF�.

The exponents �2kF/4kF
depend on the interactions in the

wires and on the presence or absence of disorder. We find

�2kF
= 2Kc − 1 clean,

=2Kc disordered, �3�

and

�4kF
= 8Kc − 3 clean,

=8Kc − 2 disordered. �4�

While it is interesting that disorder changes the tempera-
ture dependence of the drag, it may play an even more im-
portant role in the measurement of the drag effect itself in
actual experiments. The reason is that the drag effect is maxi-
mal for identical wires; any kF mismatch results in a drag
that is generally strongly diminished relative to this case,
indeed, exponentially so at low temperature. Disorder tends
to “smear” the momentum structure of the density response
that determines the drag, eliminating this exponential sup-
pression. Hence, since in a real experiment one will never
have truly identical wires, some residual disorder may actu-
ally play a key role in experimental studies of drag between
one-dimensional systems.

This paper is organized in the following way. In Sec. II
we discuss general considerations for drag between two
quantum wires with an emphasis on features relevant to the
effects of being in the spin-incoherent regime. In Sec. III we
discuss a model of a fluctuating Wigner solid with a Heisen-
berg spin chain to describe the magnetic �spin� degrees of
freedom. We derive expressions for the density fluctuations
of the electron gas by including magnetoelastic coupling that
induces 2kF density modulations at low temperatures �T
�J� and results in an instability towards a local lattice dis-
tortion favoring a spin-Peierls-like state. In Sec. IV we dis-
cuss the temperature dependence of the Fourier transform of
the density-density correlation function in detail. In Sec. V
we discuss the drag itself in detail by considering different

FIG. 2. Schematic of the possible temperature dependence of
the Coulomb drag in a wire of sufficiently low electron density that
J�EF	
�0, where �0 is the frequency of oscillations as defined in
Eq. �12�. The nonmonotonic temperature dependence shown can be

obtained for Kc�1/2 and Ũ�4kF�� Ũ�2kF�, which may be realized
for widely space wires. The temperature T* is the “locking” tem-
perature of two identical wires, below which the drag exhibits ac-
tivated behavior and Es is an energy gap associated with the “lock-
ing.” In this paper we consider only temperatures T�T* and
investigate the limits T�J and T�J, as well as the crossover be-
tween the two. When J�EF a sharp drop in the drag resistance
should be observable for T�J.
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temperature regimes, the effects of disorder, and the case of
wires with mismatched density. In Sec. VI we summarize the
main results of our paper and in the appendicies we give
some exact formulas for the density-density correlation func-
tion relevant to the spin coherent-incoherent crossover as
well as other useful formulas.

II. GENERAL CONSIDERATIONS

We assume the Hamiltonian of our system is of the form

H = H1 + H2 + H12, �5�

where Hi is the Hamiltonian in the ith wire and H12 describes
the interactions between electrons in different wires. A
proper drag situation is one in which the tunneling between
wires can be neglected. We thus assume that H12 allows only
interactions which forbid electrons to tunnel between the
wires.42 The Hamiltonian Hi in principle describes arbitrary
interactions between electrons within the ith wire; depending
on the particular situation of interest, a number of different
models have been proposed from Fermi liquid13,19,25 to Lut-
tinger liquid.20–24

The Hamiltonian H12 is a function of the interwire elec-
tron interaction which is often taken to be of the form

U12�x� =
e2




1
�d2 + x2

, �6�

where e is the charge of the electron, 
 is the dielectric con-
stant of the material, and d is the separation between the two

wires. The Fourier transform, Ũ�k�=2�e2 /
�K0�kd�, depends

on the dimensionless parameter kd and for kd�1, Ũ�k�
� 1

�k
e−kd. This exponential dependence of the interwire inter-

action leads to an exponential dependence of the drag resis-
tivity on wire separation �for large enough d� when the drag
is dominated by large momentum transfer as it is in the LL
model and the model we will discuss in this paper. The fol-
lowing drag formula �or its equivalent� has been derived by
Zheng and MacDonald18 for a disordered FL,43 by Klesse
and Stern21 for a LL, and by Pustilnik et al.19 for a clean FL:

rD = �
0

�

dk�
0

�

d�
k2Ũ12

2 �k�
4�2n1n2T

Im �1
R�k,��Im �2

R�k,��
sinh2��/2T�

, �7�

where Im �i
R�k ,�� is the imaginary part of the Fourier-

transformed retarded density-density correlation function,
Eqs. �33� and �34�, and ni is the density of the electrons in
the ith wire. Knowing the general features of the interwire
interaction U12 �see Fig. 3�, it is clear that to determine the
drag one must determine the Im �i

R�k ,��.
We will discuss the behavior of Im �i

R�k ,�� and its tem-
perature dependence in detail in Sec. IV but for now it is
sufficient to point out that most of the weight occurs near
momenta of k	0, k	2kF, and k	4kF so that one may write

Im �i
R�k,�� 	 Im �i

R,0�k,�� + Im �i
R,2kF�k,��

+ Im �i
R,4kF�k,�� . �8�

As we will see, the 2kF components of Im �i
R�k ,�� present at

low temperatures, T�J, will disappear when T�J. More-
over, once it is known that Im �i

R,0�k ,������−vc,ik� �see
Sec. IV� where vc,i is the charge velocity of the ith wire, it is
readily seen from Eq. �7� that for the LL model �or any
model possessing a harmonic bosonized theory� the k=0
contribution to the drag resistivity vanishes �in the absence
of disorder�, leaving only contributions from the higher k
=2kF ,4kF values of Im �i

R�k ,��. The higher k=2kF ,4kF val-
ues can be strongly suppressed by the interwire interaction

because Ũ12
2 �k��e−2kd when kd�1. Hence, in the limit kFd

�1 we expect a dramatic reduction in the drag and a change
in the temperature dependence of the drag �see below� when
2kF oscillations are lost and only 4kF modulations remain.
However, before we address these details, it is useful to go
over what we can say about drag deep in the spin-incoherent
regime itself.

Based on the results of earlier work,20,21we can immedi-
atly discuss the drag deep within the spin-incoherent LL re-
gime, J�T�EF. It has earlier been argued40 that the spin-
incoherent LL behaves essentially as a spinless LL by noting
that the Hamiltonian is diagonal in spin to lowest order in
J /T�1, and by demanding the equivalence of the physical
charge density in both cases. The equivalence can be sum-
marized by the simple equation K=2Kc �in the notation of
Klesse and Stern21� relating the interaction parameter of the
spinless LL theory and the interaction parameter of the
charge sector of the LL theory with spin. �Strictly speaking,
for drag the relevant interaction parameter is K=K−, the in-
teraction parameter in the odd channel of the relative density
of the two wires,20,21 but when the interwire interactions are
sufficiently weak K− is essentially equal to the corresponding
parameter of the isolated wire.� The relation K=2Kc is valid
for any particle conserving operator;40 the drag resistivity is
derived from such an operator. Hence, those general results
apply here.

As discussed in Refs. 20 and 21, drag in the spinless LL
model comes from the backscattering of electrons. As long
as the interwire interactions are sufficiently small the effects
of backscattering can be treated perturbatively. Based on
such a perturbative treatment, Klesse and Stern found21 that

FIG. 3. Momentum dependence of the quantity k2Ũ12
2 �k�

= � 2e2


d
�2�xK0�x��2 appearing in the drag formula Eq. �7� as a function

of the dimensionless variable x=kd where we have assumed the real
space interwire electron interaction �6�. Plotted is the quantity
�xK0�x��2 which has a maximum for x	0.6. For x�1, �xK0�x��2

��−�+ln�2�−ln�x��2x2 where �	0.5772 is Euler’s constant, while
for x�1, �xK0�x��2�e−2x.
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for identical wires there is a temperature scale T* that sepa-
rates high- and low-temperature drag regimes. �It is assumed
throughout this paper that T* is greater than the temperature
TL=
vc /L �with vc the charge velocity and L the length of
the wire� so that the Fermi liquid leads attached to the quan-
tum wire are not felt.� For temperatures T�T* ,TL, the drag
varies as a power of the temperature, while for temperatures
T*�T�TL, the drag resistivity shows activated behavior
with a gap of order T* itself. The physics is similar to that of
a pinned charge density wave. This result follows from an
analysis of a sine-Gordon model in the odd channel of the
coupled wire problem. Applying the equivalence rule K
=2Kc discussed above in the spin incoherent regime, we
have

�D � T8Kc−3, T � T*,TL,J , �9�

�D � eEs/T, T* � T � TL,J , �10�

where Es�T*.21 Note that for 3 /8�Kc�3/4 the tempera-
ture dependence of the spinless �fully polarized� electron gas
and the spin-incoherent electron gas exhibit very different
drag resistivity behavior with temperature when T�T*. �The
spinless case has a diverging drag resistivity as T is lowered,
while the spin-incoherent case has a suppressed drag resis-
tivity as T is lowered.� This is qualitatively similar to the
transport results found in Ref. 40 for 1 /2�gc�1.

The results �9� and �10� above were derived from a per-
turbative analysis of the sine-Gordon equation which results
from treating the backscattering in LL theory. For most real-
istic parameter values, the backscattering strength flows to
strong coupling and the resulting state is that of the two
quantum wires locked into a “zig-zag” charge pattern. The
value of T* depends on details of the quantum wire system
such as the density, wire widths, and separation d,21 but for
most realistic situations T* /EF�0.01.

It is interesting to consider how spin incoherence affects
the “zig-zag” locking pattern of the electrons in the two
wires. The relative size of J and T* will determine what the
periodicity of the “zig-zag” pattern will be for T�T*. For
J�T�T*, there is a “4kF” locking �seen easily from the K
=2Kc mapping40� since T�J ensures 2kF pieces of the den-
sity are washed out, while for T�J ,T*, there is a “2kF”
locking. Of course, for T*�J�T the locking phase is not
obtained. Throughout this paper we will assume T�T* so
that we need not be concerned with “locking” from here
forward.

Similar arguments to those given in Ref. 20 can also be
used to describe the incommensurate-commensurate transi-
tion deep in the spin incoherent regime for wires of different
electron densities. We now leave generalities behind and turn
to a detailed calculation of the drag itself in the regime of
very strongly interacting one-dimensional electrons.

III. THE FLUCTUATING WIGNER SOLID MODEL

We assume from the outset that the interactions between
the electrons are very strong, which typically means the den-
sity is low enough that we can treat the electrons in each wire
as a harmonic chain44 in the charge sector and a nearest

neighbor Heisenberg anti-ferromagnet in the spin sector:17,39

Hwire = Hc + Hs, �11�

where

Hc = 

l=1

N
pl

2

2m
+

m�0
2

2
�ul+1 − ul�2 �12�

is the Hamiltonian in the charge sector with pl the momen-
tum of the lth electron, ul the displacement from equilibrium
of the lth electron, m the electron mass, and �0 the frequency
of local electron displacements �this will depend on the elec-
tron density, the width of the wires, the dielectric constant of
the material, and other parameters such as the distance to a
nearby gate45,46�. The position of the electrons along the
chain are given by

xl = la + ul, �13�

where a is the mean spacing of the electrons. The Hamil-
tonian of the spin sector takes the form

Hs = 

l

JlSl+1 · Sl. �14�

Note that in �14� the coupling Jl between spins depends on
the distance between them. Assuming that the fluctuations
from the equilibrium positions are small compared to the
mean particle spacing, we can expand the exchange energy
as

Jl = J0 + J1�ul+1 − ul� + O„�ul+1 − ul�2
… . �15�

In this case the full Hamiltonian takes the form

H = Hc + Hs + Hs-c, �16�

where

Hs-c = J1

l

�ul+1 − ul�Sl+1 · Sl. �17�

Here Hs−c represents a magneto-elastic coupling as it couples
the magnetic modes to the elastic distortions of the lattice
that constitute the charge modes.

Our goal is to evaluate the Fourier transform of
the retarded density-density correlation function
−i��t− t������x , t� ,��x� , t���� �which appears in the drag for-
mula �7�� up to second order in J1 for T , J0�
�0, for both
T�J0 and T�J0. We use the following definition of the
electron density: ��x , t�=
l��x−al−ul�t��. An exact calcula-
tion within this model is presented in Appendix A. Here we
will pursue an approximate calculation that captures all of
the essential features of the more exact perturbative results.

A. Low-energy approach to charge fluctuations

In this work we are concerned only with energies �tem-
peratures� small compared to the characteristic lattice energy,
i.e., T�
�0, but still large compared to the “locking” tem-
perature T*. When T�J0 further approximations can be
made, but for now our only restriction will be that T�
�0.
We begin by expanding the displacement of the electron den-
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sity in a Fourier series. For low-energy distortions the k	0
component is most important, while the magneto-elastic term
�17� couples the k	� /a component to the spin operator
Sl+1 ·Sl. Thus, the displacement, ul, of the lth electron in the
harmonic chain �12� is approximately given by

ul = u0�la� + u��la��− 1�l, �18�

where u0 refers to the k	0 component of the displacement
and u� refers to the k	� /a displacement. Both u0 and u�

are assumed to be slowly varying functions of position, and
we expect u��u0.

1. Low-energy form of the action

The action for the low-density electron gas is

S = Sc + Ss + Ss-c. �19�

Using the expression �18� for the particle displacement
fields, and noting that from the phonon dispersion of �12�,
�k=2�0
sin�ka /2�
, one has for k	0 the dispersion �k

=vc
k
 with vc=�0a, while for k	� /a the dispersion �k
=2�0 is independent of k. �See Fig. 4.� In the charge sector
we then have the following action of the form Sc=Sc

0+Sc
�,

Sc =� dxd�

2�
� 1

Kcvc
�����c�x,���2 + vc

2��x�c�x,���2�

+ m�����u��x,���2 + �2�0�2u��x,��2�� , �20�

where Kc=�
 / �2amvc�. Note the lack of spatial derivative in
the u� piece of the action which results in the absence of any
k dependence in �k near k	� /a. In effect, we have de-
scribed the small k oscillations �phonons� with a Debye-type
model and the large k oscillations as an Einstein model.
Figure 4 illustrates the approximations to the full phonon
spectrum.

In the standard LL model for weakly interacting electrons
Kc=vF /vc	1, where vF is the Fermi velocity of non-
interacting electrons. In the present case of strongly interact-
ing electrons we have Kc= 
2�

2ma2
1


�0
�

EF


�0
� Kin

Pot � 1
rs

, where EF

is the Fermi energy of non-interacting electrons and rs

�a / �2aB� where aB=

2 /me2 is the Bohr radius of a mate-
rial of dielectric constant 
. Thus, in the strongly interacting
limit Kc scales roughly as the ratio of the kinetic energy to
the potential energy which itself roughly scales as rs

−1, im-
plying that very strong �long-range� interactions can lead to
small Kc. In practice, however, Kc rarely appears to be
smaller than 0.2 or so.

By making the identification El��−1�lSl+1 ·Sl→E�x ,�� in
the continuum limit, we have spin-charge coupling in the
action

Ss-c =� dxd�

2�
2J1u��x,��E�x,�� . �21�

In the special situation where T�J0, the action for the
spin sector �14� can be bosonized as47,48

Ss =� dxd�

2�
� 1

Ksvs
�����s�x,����2 + vs

2��x�s�x,���2�� , �22�

where the SU�2� symmetry of the Heisenberg model implies
that Ks=1 and the spin velocity is vs�J0a /
. �Here in-
trawire backscattering effects in the spin sector have been
neglected and a sine-Gordon term dropped. Since we are
ultimately interested in energies/temperatures much larger
than J0 or much smaller than J0, this will not affect any of
our conclusions.� However, when T�J0 the action for the
spin sector must describe more accurately the short-distance
physics of the Heisenberg chain. Nevertheless, the action
�22� will prove useful in understanding the approach to the
spin-incoherent regime in the limit T→J0 from below.

Finally, for T�J0 the coupling term in the action can be
expressed as48

Ss-c =� dxd�

2�

2J1

2��a
u��x,��sin��2�s�x,��� , �23�

where we have used the low-energy bosonized form
�−1�lSl+1 ·Sl	

1
2�� sin��2�s�x��. Here �=O�a� is a short dis-

tance cutoff of the order of the lattice spacing. At low ener-
gies this term will lead to the spin-Peierls state indicated in
Fig. 5.

2. Expressing the density

Expanding the density and making use of �18� then gives
�we have suppressed the time dependence of u0 and u� im-
mediately below for clarity of presentation�

��x� = 

l

��x − la − ul� = 

l

�„x − la − u0�la� + u��la��− 1�l
…

	 

l

��„x − la − u0�la�…

− ��„x − la − u0�la�…u��la��− 1�l� . �24�

Multiplying by ��x�− la�, integrating over x�, and using the
Poission summation identity,



l

��x� − la� =
1

a



m=−�

�

exp�i
2�

a
mx�� , �25�

the expression for the density becomes

FIG. 4. Approximate form for the phonon spectrum. There are
two relevant parts of the spectrum that enter the action Sc, the part
near k	0 and the part near k	� /a. The phonons with k	0 are
described by a Debye model while those phonons with k	� /a are
described by an Einstein model.
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��x� 	 � dx�
1

a
�„x − x� + u0�x��… 


m=−�

�

exp�i
2�

a
mx��

� �1 + cos��

a
x���x�u��x��

+ i
�

2a
��2m + 1�exp�i

�

a
x��

+ �2m − 1�exp�− i
�

a
x���u��x��� , �26�

where we have integrated by parts in the second term of �24�.
Performing the integration over x�, making use of the
approximate relation �(x−x�−u0�x��)	�(x�−x−u0�x�) / 
1
+�xu0�x�
, and assuming a�xu��x��u��x�, we find the most
important terms up to 4kF are

��x� 	
1

a
�1 − �xu0�x���1 −

2�

a
sin�2kF�x + u0�x���u��x�

+ cos�4kF�x + u0�x����
	 �0 −

�2

�
�x�c�x� − �0

2�

a
sin�2kFx + �2�c�x��u��x�

+ �0 cos�4kFx + �8�c�x�� , �27�

where �0�1/a, kF�� / �2a�, and we have made the identi-
fication u0�x� /a=�2�c�x� /�. Recall the field �c is governed
by the action �20�. This formula resembles the standard
bosonized expression for the density of a Luttinger liquid
�except for the term u� multiplying the 2kF part of the den-
sity instead of a term involving the spin fields�. As we will
now see, a formula very similar to that obtained from the
standard Luttinger liquid treatment results from integrating
out the high-energy u� phonon modes in favor of the low-
energy spin modes. To see this, consider only the 2kF part of
the density and compute ��2kF

�x ,��� to lowest order in the
action Ss−c and integrate out the u� fields to obtain a new
�2kF

eff �x ,�� independent of u�. At lowest order we find

�u��x,��� = −
2J1



� dx�d��

2�
E�x�,���

� �T�u��x,��u��x�,����Sc
�, �28�

where T� is the �-ordering operator and the �-ordered product
is evaluated in the action Sc

� given in �20�. The �-ordered
product is readily evaluated as

�u��x,��u��x�,����Sc
�

=

��x − x��

4m�0
� e2�0
�−��


e�2�0 − 1
−

e−2�0
�−��


e−�2�0 − 1
�

→

��x − x��

4m�0
e−2�0
�−��
 as ��0 → � . �29�

Recall that we are interested only in temperatures low com-
pared to the phonon energy �0 so the limit ��0→� is the
appropriate one. Here �= �kBT�−1 where kB is Boltzmann’s
constant. The integral over position in �28� is immediately
evaluated with the delta function in �29� and the remaining
integral over �� can be approximately evaluated under the
assumption ��0→�, which produces the dominant contribu-
tion at ��	� with a width in �� of order 1 / �2�0� resulting in

�u��x,��� 	 −
2J1

16�2m�0
2E�x,�� , �30�

which yields

�2kF

eff �x,�� =
1

8�
� J1

m�0
2a2�sin�2kFx + �2�c�x,��� � E�x,�� .

�31�

The result �31� is general, and valid whenever T�
�0.
However, when T�J0 one may use the expression E�x ,��
= 1

2�� sin��2�s�x ,��� which leads to the familiar looking den-
sity

�eff�x,�� = �0 −
�2

�
�x�c�x,�� −

�0

16�
� J1

m�0
2a2�

�sin�2kFx + �2�c�x,���sin��2�s�x,���

+ �0 cos�4kFx + �8�c�x,��� . �32�

The expression for the effective density �32� with the
high-energy u� modes integrated out in favor of the spin
variables is valid for T�J0 and may be compared directly
with the LL result obtained for weakly interacting electrons.5

At temperatures T�J0 �31� must be used for the 2kF density
variations. The only material difference between �32� and the
standard LL result is the dimensionless ratio of spin and
charge energies � J1

m�0
2a2 �� vs

vc
which is absent �since it is of

order 1� in the familiar LL case. When the interactions are
strong as we have assumed them to be here, then � J1

m�0
2a2 �

� vs

vc
�1, since J1 diminishes and �0 increases with increas-

ing strength of the interactions. However, starting from the
strongly interacting limit and decreasing the interaction
strength the ratio � J1

m�0
2a2 �→1. It is worth emphasizing, then,

FIG. 5. Classical Wigner solid model. The electrons are indi-
cated by solid black dots and are separated by a mean spacing
distance a. Top: A “cartoon” of the antiferromagnetic spin arrange-
ment is indicated by the arrows. The lattice has density oscillations
of smallest wave vector 4kF. Bottom: Magneto-elastic coupling al-
lows the system to lower its energy by slightly distorting the lattice
in order to gain magnetic energy. Stronger spin correlations are
indicated by the ovals which pair neighboring electrons at spacing
less than a. The lattice has density oscillations of smallest wave
vector 2kF, indicating twice the period of the undistorted lattice.
When T�J0 the �small� lattice distortion is thermally washed out,
leaving only the 4kF periodicity of the underlying Wigner solid.
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that when the temperature is low compared to both spin and
charge energies a 1-D electron gas always behaves as a LL in
the sense of the various power laws that will appear in the
correlation functions, although the overall prefactors of the
2kF pieces will be down by the ratio � J1

m�0
2a2 �. If, on the other

hand, the system is in the spin-incoherent regime J0�T
�
�0, the 2kF parts of the correlations will be washed out
from thermal effects. We now turn to an investigation of how
this happens in detail for the case of the density-density cor-
relation function and then discuss the implications for the
Coulomb drag between two quantum wires.

IV. EVALUATION OF Im �i
R
„k ,�…

Here we consider two limits of the double wire system
shown in Fig. 1: �i� clean wires without disorder and �ii�
wires with weak disorder. The case of strong disorder is un-
interesting as the electrons are all localized over the relevant
energy/length scales of the experiment. As we discussed in
Sec. II, the drag formula �7� generically contains contribu-
tions at k	0, k	2kF, and k	4kF so that Im �i

R�k ,��
	 Im �i

R,0�k ,��+Im �i
R,2kF�k ,��+Im �i

R,4kF�k ,��. We now
turn to an evaluation of each of these pieces. We have used
the two standard �equivalent� definitions

�i
R�k,�� = − i�

−�

�

dx�
0

�

dtei„��+i��t−kx…

� ��„�i�x,t� − �i,0…,„�i�0,0� − �i,0…�� , �33�

and

�i�k,�n� = − �
−�

�

dx�
0

�

d�ei��n�−kx�

� �„�i�x,�� − �i,0…„�i�0,0� − �i,0…� , �34�

where �i,0 is the average density of the ith wire, and � is a
small infinitesimal that ensures convergence of the time in-
tegral in �33�. The retarded correlation function is obtained
from �34� via the substitution i�n→�+ i�. We will use both
of the formulas above in the subsections that follow.

A. Clean wires

We first consider wires with no disorder. We will also
assume initially that T�J0 so that we may use the form of
the density �32�. �This is only an issue for the evaluation of
Im �i

R,2kF�k ,�� since Im �i
R,0�k ,�� and Im �i

R,4kF�k ,�� do not
involve the spin sector of the Hamiltonian.� As the authors
discussed in Ref. 40 the approach to the spin incoherent re-
gime from temperatures well below the spin energy can be
understood in this way. In all calculations below, recall that
we have assumed the temperature is low, T�
�0, so that the
charge sector is always in the LL regime and described by
the action Sc

0 in �20�.

1. Im �i
R,0

„k ,�…

We first evaluate the k	0 piece of the retarded density-
density correlation function. From the expression �32�, we
have

�0
eff�x,t� = �0 −

�2

�
�x�c�x,t� , �35�

whose correlation function is readily computed �see Appen-
dix B� to yield

Im �i
R,0�k,�� =

k2

a2


L

2m�k
����� − �k� − ���� + �k�� . �36�

The equation above, �36�, is the central result of this subsec-
tion and it is worth pausing to emphasize some of its fea-
tures. Most notably, while the calculation was done at finite
temperature, there is no temperature dependence of
Im �i

R,0�k ,��. Thus, the finite temperature k	0 response is
identical to the zero temperature response. This means that
temperature does not “broaden” the zero temperature
�-function reponse. Moreover, for the model at hand, at
small 
k
, �k=vi,c
k
 so that for a given k there is a unique
value of �k. This means, then, when the result �36� is substi-
tuted into the drag formula �7� the drag is identically zero.
�An exception is the measure zero point where the wires are
identical, i.e., v1,c=v2,c, and the drag response is infinite. For
real wires this precise matching is not possible and the k
=0 part of the drag generically vanishes. In fact, the unphysi-
cal divergence can be traced back to the wrong order of the
limits of vanishing curvature in the spectrum and vanishing
velocity difference between the two wires.19�

In our work here, we have assumed from the outset that
the electron interactions are very strong and a direct
bosonization of the electron operator is not valid. Instead, the
approximation we have made to obtain the action �20�,
which is formally identical to that obtained for weakly inter-
acting electrons with a linear dispersion �aside from the u�

terms�, is to treat the displacements of electrons to lowest
order in the Taylor series: �ul+1−ul� /a	�2�x�c�x� /�. In-
cluding higher derivatives would result in an interacting
bosonic theory and would likewise broaden the delta func-
tions in �36� by an amount inversely proportional to the life-
time and would yield a finite k	0 drag. The precise nature
of this contribution to the drag is still a subject of ongoing
research.19,49 It is therefore difficult to compare it quantita-
tively in theoretical calculations to the 2kF and 4kF contribu-
tions. However, we expect that it may be larger or smaller
than the latter depending upon circumstances. For instance,
the k	0 drag is clearly subdominant for drag between iden-
tical, clean wires, with repulsive interactions at the lowest
temperatures. Fortunately, for our purposes of discerning the
spin coherent to incoherent crossover at T	J, we may sat-
isfy ourselves with the observation that the k	0 drag is in
any case featureless at this temperature. Hence, it can easily
be “subtracted” by looking for strong temperature-dependent
changes in the drag in this temperature window. The “sub-
traction” procedure of course assumes that the 2kF contribu-
tion is non-negligible compared to the k	0 part which re-
quires that the exchange energy J is smaller than a crossover
temperature Tcross below which 2kF contributions dominate
the k	0 drag contributions. This temperature can be roughly

estimated19 as Tcross��0� J1

m�0
2a2� l0

l2kF

�1/�3/2−Kc�
, where l0 and
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l2kF
are the zero momentum and 2kF scattering lengths, re-

spectively.

2. Im �i
R,2kF

„k ,�…

The 2kF component of the density response and its tem-
perature dependence are the central issue in this paper and
we now turn to it in detail. We have already discussed gen-
eral features of the spin-incoherent limit T�J0 in Sec. II, and
we will discuss other more detailed and quantitative features
of that regime in the next subsection where we consider
Im �i

R,4kF�k ,��. Here, we will initially assume that the tem-
perature is low compared to the spin energies, T�J0, and use
the low-energy density expression �32�. Starting from the
low-temperature limit we show that as the temperature be-
comes of the order of the spin energy, the temperature de-
pendence of the 2kF part of the drag changes and rapidly
vanishes as J0→0 for fixed T�J0. We also show that in the
low-temperature limit we recover the temperature depen-
dence of the drag obtained by Klesse and Stern21 for elec-
trons with spin. When kFd�1 the loss of 2kF contributions
to the drag �when T	J0� implies �via Eq. �7� and Fig. 3� that
there is expected to be a dramatic reduction in the drag over
a very small temperature window when only the 4kF contri-

bution remains, as Ũ�4kF� / Ũ�2kF��e−2kFd for kFd�1.
The 2kF part of the low-energy density operator �32� is

�2kF

eff �x,t� = −
�0

16�
� J1

m�0
2a2�sin�2kFx + �2�c�x,���

� sin��2�s�x,��� , �37�

which leads to the following finite temperature result for the
2kF part of the density-density correlation function computed
from �20� and �22�:

− i���2kF

eff �x,t�,�2kF

eff �0,0���

= � �0

16�
�2� J1

m�0
2a2�2

cos�2kFx�

�Im� ��T�/vc�Kc

�sinh��T

vc
�x − vct��sinh��T

vc
�x + vct���Kc/2

�
��T�/vs�Ks

�sinh��T

vs
�x − vst��sinh��T

vs
�x + vst���Ks/2� . �38�

Here � is a short-distance cutoff of the order of the lattice
spacing. We note that in Eq. �38�—and in subsequent similar
formulas—singularities at x= ±vct, ±vst are regularized by
infinitesimal imaginary parts to the time t, which for ease of
presentation are not shown. It is worth pointing out that be-
cause of the hyperbolic nature of the correlation function at
finite temperature, a temperature-dependent “coherence
length” naturally appears in both the spin and charge sectors.
From inspection, the charge coherence length �c�T�
=vc / �Kc�T��a
�0 / �kBT�, and the spin coherence length
�s�T�=vs / �Ks�T��aJ0 / �kBT�. Strong interactions imply

vs /vc�1 �J0�
�0� so that �s�T���c�T�. Note that �s�T�
	a when T	J0.

Our task is now to substitute �38� into the integral in �33�
and evaluate the integrals over position and time. Unfortu-
nately, this integral does not appear to have a closed, analyti-
cal form. Nevertheless, its general structure is apparent. At
zero temperature the structure in the �k ,�� plane is very
similar to that of the Green’s function already computed by
Voit50 and by Meden and Schönhammer.51 Depending on the
value of Kc there are singularities or thresholds at �=vsk±
and �=vck±, where k±=k±2kF. With small but finite tem-
perature these features are smoothed out. However, as the
temperature increases towards J0, the overall weight in
�i

R,2kF�k± ,�� begins to rapidly diminish. To see this, consider
the limit T→J0 from below. Then �i

R,2kF�k± ,�� can be
bounded as

�i
R,2kF�k±,��

� � kBT

J0
�Ks

exp�− c
kBT

J0
��

−�

�

dx�
0

�

dtei��t−k±x�

� � �0

16�
�2� J1

m�0
2a2�2

� Im� ���T/vc�Kc

�sinh��T

vc
�x − vct��sinh��T

vc
�x + vct���Kc/2� ,

�39�

where c is a constant of order unity. For fixed T,
�i

R,2kF�k± ,��→0 as J0→0. This conclusion is independent of
the particular form of the operator used in the spin sector.
For example, using the more general expression �31� will
lead to the same conclusion for any E�x , t�. Thus, the already

weak �because � J1

m�0
2a2 �2

�1� 2kF density oscillations are rap-
idly suppressed with temperatures once T�J0. See Fig. 5 for
an illustration.

Having emphasized how “fragile” �i
R,2kF�k± ,�� is for T

�J0, let us now return to the low-temperature limit T�J0. In
this limit, the temperature dependence of Im �i

R,2kF�k ,��
=�i

R,2kF�k+ ,��+�i
R,2kF�k− ,�� can be readily extracted by

making the substitutions x̃=�Tx /vc and t̃=�Tt and then
computing the Fourier transform. With this substitution, we
find

rD
2kF � � J1

m�0
2a2�2

�2kF�2Ũ12
2 �2kF�T2�Kc+Ks�−3f�T/J0� , �40�

where we have used the result that at low

enough temperatures, �0
�dkk2Ũ12

2 �k�Im �1
R�k ,��Im �2

R�k ,��
	�2kF�2Ũ12

2 �2kF�Im �1
R�2kF ,��Im �2

R�2kF ,���k, where �k
�T, and used the result that the � integration in �7� for �38�
does not contribute to any temperature dependence of the
drag. The function f�X→0�→1 and f�X�1��e−cX, where c
is a constant of order unity.

The result �40� is identical to the result obtained by Stern
and Klesse21 in the weakly interacting limit of the 1-D
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electron gas when T�J0. Note that while the temperature
dependence is the same in the low-temperature limit, the
overall result is still down by a factor �� J1

m�0
2a2 �2

�1 when
the interactions are strong.

For completeness, it is worth emphasizing that in the
high-temperature regime �T�J0� the expression �31� must
be used for the 2kF part of the density. In this case, one must
compute the Fourier transform of the correlator

− i���2kF

eff �x,t�,�2kF

eff �0,0��� =
1

16
� J1

m�0
2a2�2

cos�2kFx�Im� ��T�/vc�Kc

�sinh��T

vc
�x − vct��sinh��T

vc
�x + vct���Kc/2 ��E�x,t�,E�0,0���� .

�41�

In the high-temperature regime �41� will not behave much
differently from �38� when T	J0. In particular, we expect

��E�x,0�,E�0,0��� � exp�− 
x
/�s� , �42�

where �s	a and so in the high-temperature limit the results
will be qualitatively similar to what we discussed earlier. Of
course, the detailed structure of Im �i

R,2kF�k ,�� for T	J0 re-
quires that �41� be used. This in turn requires that the dimer-
dimer correlation function ��E�x , t� ,E�0,0��� be evaluated by
a more general �perhaps numerical� method than the effec-
tive low-energy theory given in �22�.

3. Im �i
R,4kF

„k ,�…

In the previous subsection we saw that when vs /vc�1
and temperature T�J0, the 2kF contributions to the drag are
dramatically suppressed and only the 4kF contributions re-
main. In contrast to the case of the 2kF density fluctuations,
the present model �20� allows for a closed analytic expres-
sion for Im �i

R,4kF�k ,��. We begin with the 4kF part of the
density operator �32�,

�4kF

eff �x,t� = �0 cos�4kFx + �8�c�x,t�� , �43�

which leads, after evaluating the correlators at finite tempera-
ture, to

− i���4kF

eff �x,t�,�4kF

eff �0,0���

= �0
2 cos�4kFx�

� Im� ��T�/vc�4Kc

�sinh��T

vc
�x − vct��sinh��T

vc
�x + vct���2Kc� .

�44�

As in the case of Im �i
R,2kF�k ,�� the temperature dependence

at low enough temperatures can be extracted by making the
substitutions x̃=�Tx /vc and t̃=�Tt. This then leads us to
�i

R,4kF�k ,��=�i
R,4kF�k+ ,��+�i

R,4kF�k− ,�� where

�i
R,4kF�k±,�� = T4Kc−2vc�

−�

�

dx̃�
0

�

dt̃ exp i��t̃ − vck±x̃

�T
�

�
�0

2

�2 Im� ���/vc�4Kc

�sinh�x̃ − t̃�sinh�x̃ + t̃��2Kc
� ,

�45�

and k±=k±4kF. By the same arguments made in the previous
subsection �that the form �45� substituted into �7� leads to no
temperature dependence of the drag from the � integration,
and that the dominant contribution from the k integral comes
from k±	0 with �k�T�, the temperature dependence of the
4kF contribution to the drag is

rD
4kF � �4kF�2Ũ12

2 �4kF�T8Kc−3, �46�

which is identical to the result �9� obtained in Sec. II by
applying the general arguments of Ref. 40 for the mapping of
a spin incoherent LL to a spinless LL.

Fortunately, the Fourier transform �45� can be computed
exactly.52,53 This is done by making the change of variables
s1= x̃− t̃ and s2= x̃+ t̃, and using the integral result54

�
0

�

ds
eizs

�sinh�s��g = 2g−1��g/2 − iz/2���1 − g�
��1 − g/2�

�47�

to obtain

�i
R,4kF�k±,��

= −
�0

2�2

2�vc
�2�T�

vc
�4Kc−2��1 − 2Kc�

��2Kc�

�

��Kc − i
� + vck±

4�T
���Kc − i

� − vck±

4�T
�

��1 − Kc − i
� + vck±

4�T
���1 − Kc − i

� − vck±

4�T
� .

�48�
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The temperature dependence of Im �i
R,4kF�k±=1,�� for

different interaction values Kc is shown in Fig. 6. At Kc
=0.5 there is a crossover from a divergence to a threshold-
type behavior. The main effect of the temperature is to
smooth the sharper features near �=vck.

B. Weakly disordered wires

1. Slowly varying background potential

Modulation doping in quantum wire systems gives rise to
a smoothly varying background potential. Such disorder has
an important effect on the drag as it impacts the nature of the
electronic states that participate in drag.55 Since the coupling
of the density to the potential depends crucially on the Fou-
rier components k, there is an important difference in how
the charge density couples to disorder in the spin-coherent
and spin-incoherent regimes. Consider the following cou-
pling of the density to background potential modulations:

Hdis =� dxV�x���x�

	 � dx�V0�x��0�x� + V2kF
�x��2kF

�x� + V4kF
�x��4kF

�x�� .

�49�

Here V2kF
�x�=Re�V2kF

ei2kFx� and V4kF
�x�=Re�V4kF

ei4kFx�. We
can study the scaling dimensions of V2kF

,V4kF
using the ex-

pression for the density, Eq. �32�, after integrating out the
high-energy field u� in favor of the lower energy spin fields.
The scaling dimensions of the different scattering terms can
then be determined from the action �where the integration
over x has already been caried out�

Sdis
2kF �� d�V2kF

ei�2�cei�2�s + h.c., �50�

and

Sdis
4kF �� d�V4kF

ei�8�c + h.c., �51�

which gives

dim�V2kF
� = 1 −

Kc

2
−

Ks

2
, �52�

dim�V4kF
� = 1 − 2Kc. �53�

In these units SU�2� invariance implies Ks=1, so that the 2kF

piece is more relevant than the 4kF piece of the potential
whenever Kc�1/3. Thus, we expect to see strong tempera-
ture dependence of the pinning of the density whenever Kc
�1/3 as the more relevant 2kF piece will be lost for T�J0.
Moreover, if 1 /2�Kc�1, the 2kF piece is relevant while the
4kF piece is irrelevant. In this case, the effect should be most
dramatic. The regime 1/2�Kc�1 can be reached for large
but finite U in a one-dimensional Hubbard model.

2. Effects of random correlations in forward scattering
on the correlation functions

As the k	0 parts of the background potential fluctuations
are often the most important at low energies, it is worthwhile
to review5 their influence on the density-density correlation
function. The forward scattering part of the background po-
tential is

Hdis
f =� dxV0�x��0�x� = −

�2

�
� dxV0�x��x�c�x� , �54�

where we have used the result �32� and assumed
�dxV0�x��0=0. Forward scattering can be completely elimi-
nated from the Hamiltonian �action� by making the change of
variables

�̃c�x� = �c�x� −
�2Kc

vc
�x

dzV0�z� �55�

and completing the square in Eq. �20�. Assuming that the
disorder has white noise correlations given by the distribu-
tion PV0

=exp�−D−1�dz
V0�z�
2�,

V0�x�V0�x�� =
D

2
��x − x�� , �56�

where the overbar indicates a disorder average, and the con-
stant D�vc /�scatt with �scatt the typical scattering time for the
electrons. The disorder-averaged parts of the density-density
correlation function can then readily be determined:

���0
eff�x,t�,�0

eff�0,0��� = 
���0
eff�x,t�,�0

eff�0,0���
V0=0, �57�

���2kF

eff �x,t�,�2kF

eff �0,0��� = exp�− D�Kc

vc
�2


x
�
�
���2kF

eff �x,t�,�2kF

eff �0,0���
V0=0,

�58�

FIG. 6. �Color online� Frequency dependence of Im��i
R,4kF�k±

=1,���, Eq. �48�, for various interaction strengths Kc and tempera-
tures T. The charge velocity is fixed at vc=1. At Kc=0.5 there is a
crossover from a sharp peak for Kc�0.5 at �=k± to monotonically
increasing �with �� threshold-type behavior for Kc�0.5. Finite
temperature acts to smear the T=0 �=k± singularity and adds
weight to Im��i

R,4kF�k±=1,��� for ��k±.
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���4kF

eff �x,t�,�4kF

eff �0,0��� = exp�− 4D�Kc

vc
�2


x
�
�
���4kF

eff �x,t�,�4kF

eff �0,0���
V0=0.

�59�

It is evident that larger wave vectors are suppressed more by
the forward scattering with no suppression at all for the k
	0 part of the density. Treating the 2kF and 4kF backscatter-
ing contributions with white noise correlations analogous to
�56� is more involved and requires studying renormalization
group flows.56 However, we reiterate that if the disorder is
slowly varying �as expected from donor potential modula-
tions in modulation doped structures�, the 2kF and 4kF po-
tentials are relatively weak and probably negligible, at least
in the sort of structures optimized for the drag measurements
we envision here!

3. Fourier transform of disorder-averaged correlation functions

Once the Fourier transforms of the 2kF and 4kF density-
density correlation functions �38� and �44� are known, the
Fourier transforms of the disorder-averaged correlation func-
tions are readily computed from the convolution theorem

Im �i
R�k,�� = �

−�

� dq

2�

2l−1

l−2 + �k − q�2 Im �i
R�q,�� , �60�

where l−1=D�Kc /vc�2 for the 2kF pieces and l−1

=4D�Kc /vc�2 for the 4kF pieces. The main effect of the dis-
order is thus to broaden the singularities in �i

R�k ,�� by an
amount of order l−1 in momentum space. Hence, the 4kF
singularities are broadened four times as much as the 2kF
singularities.

Figure 7 illustrates the effect of weak disorder on
Im �i

R,4kF�k ,��. Qualitatively the effects of disorder are very
similar to finite temperature—there is a broadening of the
sharpest features in the response. This has implications for
the temperature dependence of the drag as we discuss in the
next section.

V. STUDY OF THE COULOMB DRAG

We have already discussed several features of the drag in
the previous sections of this paper, including the temperature
dependence �in certain limits� of the k	2kF and k	4kF con-
tributions to the drag. Implicit in those discussions was that
the wires were identical. In this section we will present nu-
merical calculations of the Coulomb drag as a function of
temperature for identical and nonidentical wires and attempt
to illuminate the crossover to the spin-incoherent regime
with semi-quantitative estimates.

A. Drag at low temperatures and in the crossover
to the spin-incoherent regime

1. The low-temperature Luttinger liquid regime

At the lowest temperatures where T�J0 we showed that
the low-energy theory �20� and �22� results in the following
temperature dependence of the drag resistivity �7�,

rD 	 A�Kc,vc��4kF�2Ũ12
2 �4kF�� T

T4kF

�8Kc−3

+ B�Kc,Ks,vs/vc�

��2kF�2Ũ12
2 �2kF�� T

T2kF

�2�Kc+Ks�−3

, �61�

where A�Kc ,vc� and B�Kc ,Ks ,vs /vc� are functions that de-
pend on the variables indicated and T2kF

−1 =�� /�vcvs and
T4kF

−1 =�� /vc are effective temperatures in the respective sec-
tors. It is evident from �61� that the temperature dependence
of the k	2kF and k	4kF contributions are different so there
is a temperature at which the two balance out:

T**

T2kF

= ��T4kF

T2kF

�8Kc−3
B�Kc,Ks,vs/vc�Ũ12

2 �2kF�

4A�Kc,vc�Ũ12
2 �4kF�

�1/�6Kc−2Ks�

.

�62�

From here on, we will assume SU�2� symmetry which im-
plies Ks=1. When Ks=1 it is clear that the 2kF contribution
to the drag is an increasing function of temperature whenever
Kc�1/2 and a decreasing function otherwise. For the 4kF
contribution the boundary between increasing and decreasing
contributions is Kc=3/8. Finally, by comparing the expo-
nents of the 2kF and 4kF terms, one finds that the 4kF pieces
dominate the drag for Kc�1/3 when T�T**, while the 2kF
pieces dominate the drag for Kc�1/3 in the same tempera-
ture regime. Note that this implies that the 2kF density oscil-
lations are more important for the drag at higher tempera-
tures when the interactions are strong enough that Kc�1/3.
This requires, of course, that the system is still at low enough
temperatures that the spin degrees of freedom can be de-
scribed by the effective low-energy theory �22�. In order to
obtain T**�J0 and for the analysis above to be reasonable,

we expect that we must have Ũ�2kF�� Ũ�4kF�.
From the results of Appendix C we can express the ratio

FIG. 7. Disorder and thermal broadening of Im��i
R,4kF�k ,�

=1��. The charge velocity is fixed at vc=1. The disorder broadening
is computed using Eq. �60�. The effects of weak forward scattering
on the 4kF density fluctuations are qualitatively similar to that of
thermal broadening—see the case of l=0.06kF. Analogous results
are also obtained for the 2kF density fluctuations.
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B�Kc,Ks,vs/vc�
A�Kc,vc�

= � J1

16�m�0
2a2�4 I2kF

�Kc,Ks,vs/vc�

I4kF
�Kc�

,

�63�

where I2kF
�Kc ,Ks ,vs /vc� and I4kF

�Kc� are given by Eqs. �C1�
and �C2�. As vs /vc→0 the crossover temperature �62� be-
comes very small because both I2kF

�Kc ,Ks ,vs /vc�� I4kF
�Kc�

and � J1

16�m�0
2a2 �4

�� vs

vc
�4

�1 in that limit. Of course, as vs

shrinks for fixed vc, the temperature range over which the LL
theory itself is valid is also shrinking and the spin-incoherent
regime �where only the 4kF density modulations remain� is
approached.

2. Crossover to the spin-incoherent regime

The hallmark of the spin-incoherent regime is the equiva-
lence of the real electron system with spin to a spinless
system40 with the exception of the Green’s function37 and
other non-particle-conserving operators. In the case of drag,
spin incoherence manifests itself as a thermal washing out of
the 2kF oscillations in the density-density correlation func-
tion �8�. When the interactions are as strong as they are here,
the weight of the 2kF oscillations are already down by a
factor �� J1

16�m�0
2a2 �2

even at zero temperature.
As we have discussed before,37 the spin-incoherent re-

gime can be understood by starting with T�J0, taking J0
→0, for fixed T and then finally taking T→0. In the present
formulation this is equivalent to fixing a finite but low tem-
perature, applying the low-energy theory �20� and �22�, and
then taking the limit vs /vc→0 as we did in the previous
section. The approach to the spin-incoherent drag regime can
be directly obtained via this procedure. One expects that as
vs is lowered, the power law �40� will first breakdown �at
temperatures it once held for larger vs� before the contribu-
tion vanishes altogether from f�T /J0�.

B. Drag in the spin-incoherent regime

In this subsection we present some numerical results jus-
tifying earlier analytical arguments for the temperature de-
pendence of the drag. We first consider identical wires and
then we study nonidentical wires.

1. Identical wires

When the wires are identical we expect the temperature
dependence of the Coulomb drag given in Eq. �61� to be
obtained at the lowest energies. However, as we have seen in
the previous sections, the 2kF oscillations are rapidly washed
out in the limit vs /vc→0 and only the 4kF oscillations re-
main. In this subsection, we provide numerical evidence that
the manipulations leading to the 4kF temperature dependence
of �61� are justified. Since these are also the same arguments
leading to the 2kF temperature dependence of rD at the low-
est temperature, these are implicitly justified as well. Figure
8 illustrates the comparison between the exact result from
�48� substituted into �7�, and the approximate power law
�46�. A disorder value of l−1=0.13kF was used in Eq. �60� to
compute the drag of the disordered system from Eq. �7�. The

drag was computed over a temperature range 0.01�0�T
�0.5�0. For kBT�
vc / l the drags of the clean and disor-
dered systems are indistinguishable, while for kBT�
vc / l
there is a crossover of the temperature dependence to another
power of the temperature. Empirically, we found the power
law

rD
4kF,disorder � T8Kc−2 �64�

to be a very good fit for any value of 0�Kc�1. This tem-
perature dependence can actually be inferred from �45�, �7�,
and Fig. 6. As we have argued several times earlier, the �
integration in �7� does not contribute any temperature depen-
dence beyond the �T4Kc−2�2 factors in front of �45� �with the
square coming from the drag formula �7��. When kBT
�
vc / l, the k integration picks up a contribution propor-
tional to T2 rather than T. Adding up the exponents leads to
rD

4kF,disorder�T8Kc−2.

2. Drag for nonidentical wires

Coulomb drag for nonidentical wires and the
incommensurate-commensurate transition has been dis-
cussed for fully coherent clean wires in Ref. 20. Via the
mapping detailed in Ref. 40 the incommensurate-
commensurate transition discussed can be ready deep in the
spin-incoherent regime. In Fig. 9 we present some numerical
results for the dependence of the drag for small density mis-
matches between the two wires. Note that weaker interac-
tions and higher temperatures lead to a more robust drag
effect between two wires of slightly different densities. Note
also that, with only a few percent change in the relative

FIG. 8. Temperature dependence of the Coulomb drag in the
spin incoherent regime where only the 4kF components of the den-
sity fluctuations contribute. The drag was computed over a tempera-
ture range 0.01�0�T�0.5�0 and the logarithms are the natural

logs. The scale of the drag resistivity is r0� h�
e2 �4kF�2Ũ�4kF�2.

Shown is a comparison between the drag formula �7� with �48�
substituted in and the approximate power law �46�. Two values of
the interaction parameter Kc are shown. A disorder value of l−1

=0.13kF was used in Eq. �60� to compute the drag from Eq. �7�. For
kBT�
vc / l the drags for the clean and disordered systems are in-
distinguishable, while for kBT�
vc / l there is a crossover of the
temperature dependence to another power of the temperature. Em-
pirically, we found the power law rD

4kF,disorder�T8Kc−2 to be a very
good fit for any value of 0�Kc�1.
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densities of the wires, the drag effect is substantially re-
duced.

The effects of disorder on the drag for density mis-
matched wires is shown in Fig. 10. When 
vc / l�kBT the
disorder has a significant effect—making the drag more ro-
bust for non-identical wires. While for small 
n1−n2
 the drag
is reduced relative to the clean limit, for larger 
n1−n2
 there
can be appreciable enhancement.

Finally, we note that, in the case of clean wires of differ-
ent charge velocities but the same Fermi wave vector �in
which case the Kc are diffferent�, the temperature depen-
dence of the drag is

rD
4kF � T4�Kc,1+Kc,2�−3, �65�

and if the temperature is also much less than J0,

rD
2kF � TKc,1+Kc,2+Ks,1+Ks,2−3. �66�

VI. SUMMARY OF RESULTS

We have discussed the Coulomb drag between two quan-
tum wires in the limit of low electron density where at finite
temperatures the energy hierarchy J�T�EF can be
obtained.57 In this limit, the spin degrees of freedom are
completely incoherent and we have shown this implies the
loss of 2kF oscillations in the density-density correlation
function. As a result, a nonmonotonic temperature depen-
dence of the drag on temperature may result. In the spin-
incoherent Luttinger liquid regime, the drag problem maps
onto the identical problem for a spinless Luttinger liquid
only with Kc−→2Kc− so that for a clean wire the drag resis-
tivity goes as �D�T8Kc−−3, where Kc− is the coupling param-
eter of the antisymmetric charge mode of a Luttinger liquid
theory with spin. We have shown this temperature depen-
dence explicitly with approximate analytical calculations and
confirmed those approximations with numerics.

Our results are based on a fluctuating Wigner solid model
appropriate to quantum wires in a very strongly interacting
regime, which typically implies low electron density. The
spin sector is modeled as a nearest-neighbor anti-
ferromagnetic Heisenberg spin chain. Without any coupling
of the spin and charge sectors, no 2kF density modulations
appear. However, including a magneto-elastic coupling term
that allows for a linear change in the nearest-neighbor spin
coupling for small distortions induces 2kF oscillations in the
density. The coupling is weak, however, and the 2kF oscilla-
tions are easily washed out by temperatures T�J.

The fluctuating Wigner solid model is studied by deriving
effective expressions for the density operator when the high-
est energy phonon modes are integrated out in favor of spin
operators. At the lowest energies �including the spin energy�
an expression is obtained equivalent to that known well in
Luttinger liquid theory except the 2kF terms contain a pref-
actor of the order of the ratio of kinetic to potential energy.
Nevertheless, in this limit all correlation functions exhibit
power law decay with the familiar exponents of the spin and
charge sectors.

These density operators are then used to compute density-
density correlation functions which are Fourier transformed
into frequency and momentum space and used in previously
derived drag formulas. Since the density operator has contri-
butions at momenta k	0, k	2kF, and k	4kF, the Coulomb
drag will generically contain contributions from each of
these pieces. We show explicitly that the k	0 piece vanishes
due to the harmonic approximation to the Wigner solid. This
is equivalent to linearizing the electron dispersion in the
standard Luttinger liquid treatment for weakly interacting
electrons. Generically, the k	2kF and k	4kF contributions
are nonvanishing and we explicitly compute their tempera-
ture dependence, T2Kc−1e−cT/J0 and T8Kc−3, in the low-
temperature regimes.

We have also considered the case of nonideal wires in
which weak disorder is present. We find that white-noise-
correlated forward scattering disorder does not affect the k
	0 result, while it tends to broaden the sharp k-space fea-
tures of the k	2kF and k	4kF density-density correlation
function in a manner similar to temperature. As a result, the
drag resistivity crosses over to a different power law, T2Kc

FIG. 9. �Color online� Coulomb drag dependence on relative
wire density at fixed temperature. We have set vc=1. The Coulomb
drag between two wires drops rapidly as a function of density mis-
match. Only a few percent change in the relative densities of the
wires results in a dramatic suppression of the drag. At higher tem-
peratures and weaker interactions the drag response is more robust
to small density differences between the wires.

FIG. 10. Coulomb drag dependence on relative wire density at
fixed temperature for different values of disorder. Here T=0.02�0

and vc=1. While for clean wires the Coulomb drag drops rapidly as
a function of density mismatch, some amount of residual disorder
allows for a more robust drag effect between quantum wires that
may have slightly different values of kF.
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and T8Kc−2, which is increased by one power of the tempera-
ture relative to the clean result. Finally, we have also studied
the reduction of the drag due to a density mismatch between
the two wires and show the drag may be substantially re-
duced with only a few percent change in the relative densi-
ties of the wires. When disorder is present the drag is more
robust to density mismatches between the two wires and this
fact is likely to play an important role in real drag experi-
ments.

We hope that this work will help to inspire further experi-
mental studies on one-dimensional drag, which to date are
quite limited.
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APPENDIX A: EXACT EXPRESSIONS FOR Š�„x ,�…�„x� ,��…‹
UP TO SECOND ORDER IN J1

The low-energy description given in Sec. III can be
treated more accurately, but in a less physically transparent
way, by applying the results of this appendix.

1. Diagonalization of Hc

The charge Hamiltonian �12� is diagonalized by the trans-
formation

ul =
1

�N



k

eikaluk, �A1�

pl =
1

�N



k

e−ikalpk �A2�

�assuming periodic boundary conditions� where the theory is
quantized by imposing �ul , pm�= i
�lm and �uk , pk��= i
�kk�.
Making these substitutions we find

Hc = 

k=k1

kN pkp−k

2m
+

m�k
2

2
uku−k, �A3�

where �k=2�0
sin� ka
2

�
	vc
k
 for small k with vc=�0a the
sound velocity of the charge modes. In momentum space the
harmonic chain is just a sum of harmonic oscillators with
frequencies that depend on the wave number k.

The Hamiltonian �A3� can be brought into a particularly
simple form via the transformation

ak =�m�k

2

�uk +

i

m�k
p−k� , �A4�

ak
† =�m�k

2

�u−k −

i

m�k
pk� , �A5�

which brings Hc to

Hc = 

k


�k�nk +
1

2
� . �A6�

For later reference it is useful to note that

ul�t� = 

k

Mk�l��ake
−�k� + a−k

† e�k�� , �A7�

where Mk�l��� 


2Nm�k
eikal and we have used �k=�−k.

2. Notation for perturbation theory

The general expression for the density-density correlation
function at finite temperature T=1/� is

���x,����x�,���� =
�U�����x,����x�,����0

�U����0
, �A8�

where

U��� = 

n=0

�

�− 1�n�
0

�

d�1 ¯ �
0

�n−1

Ĥ���1� ¯ Ĥ���n� ,

�A9�

with the operators taken in the interaction representation.
The averages �¯�0�Tr�e−�H0

¯ � where the zeroth-order
Hamiltonian is �16� taken with J1�0:

H0 = Hc + J0

l

Sl+1 · Sl, �A10�

and H� is the correction to this to be treated in perturbation
theory

H� = J1

l

�ul+1 − ul�Sl+1 · Sl. �A11�

3. Evaluation of the density-density correlation function

a. Zeroth order

At zeroth order we have J1�0 and there is no coupling
between the charge and the spin degrees of freedom. There-
fore we can completely ignore the spin sector since it traces
out trivially. Thus,

���x,����x�,�����0� = Zc
−1Tr�e−�Hc��x,����x�,���� ,

�A12�

where Zc=Tr�e−�Hc� is the partition function of the charge
sector and the density is expressed as ��x ,��=
l=1

N �(x−al
−ul���). From the Hamiltonian �A6� Zc can be readily evalu-
ated as

Zc = �
k



nk=0

�

exp − �
�k�nk + 1/2�

= �
k

exp�− �
�k/2�
1

1 − e−�
�k
, �A13�

which we will make use of later. Thus,
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���x,����x�,�����0� = Zc
−1


l,l�
� d�

2�

d�

2�
ei��x−al�ei��x�−al��

� Tr�e−�Hce−i�ul���e−i�ul������ , �A14�

where the quantities ul appearing in the exponent of the trace
can be expressed using Eq. �A7�. Using eA+B=eAeBe−�A,B�/2

�where �A ,B� commutes with both A and B separately�, we
focus on the trace and obtain

Tr�e−�Hce−i�ul���e−i�ul������

= exp�−
1

2

q


Mq
2��2 + �2��
� exp�− ��


q


Mq
2eiqa�l−l��−�q��−����
� �

k

Tr�k��exp�− �
�k�ak
†ak + 1/2��

�exp�− iC*�k�ak
†�e�−iC�k�ak�� , �A15�

where C�k��
Mk
��eikal−�k��+�eikal�−�k����. Evaluating the
trace for each k independently and using the definition of a
Laguerre polynomial of order nk,

Lnk
�− 
C�k�
2� � �nk
e−iC*�k�ak

†
e−iC�k�ak
nk� , �A16�

and then applying the important formula



n=0

�

Ln�
C
2�zn =
1

1 − z
exp�
C
2

z

z − 1
� , �A17�

we find

���x,����x�,�����0� = 

l,l�
� d�

2�

d�

2�
ei��x−al�ei��x�−al��

� exp�−
1

2
F��2 + �2��e−��G�l,l��,

�A18�

where

F � 

q


Mq
2�1 +
2e−�
�q

1 − e−�
�q
� , �A19�

and

G�l,l�� � 

q


Mq
2�ei�q�l,l�;t,t�� +
2 cos��q�l,l�;t,t���e−�
�q

1 − e−�
�q
� ,

�A20�

and �q�l , l� ; t , t��=qa�l− l��−�q�t− t��, where t=−i�. Finally,

shifting the summation variables l̃= l− l� and performing the
integrations we obtain

���x,t���x�,t����0� =
1

a



l

1

2�
� �

F − G�l�

�exp�−
�x − x� − al�2

4�F − G�l�� � , �A21�

where

F − G�l�

=
a


mvc2�
�ln��2 + �al�2 + �vc�� − ����2

�2 � + 2

n=0

�

�ln� �� + �n + 1��
vc�2 + �al�2 + �vc�� − ����2

�� + �n + 1��
vc�2 �� .

�A22�

Here � is a short distance cutoff of the order of the lattice
spacing a. Note that for finite temperatures the second sum is
cut off when the argument of the ln becomes O�1� which
occurs when n=nl���al�2+ �vc��−����2 / ��
vc�. In the limit
of T→0, �→� and the second terms drops out all together.
In this paper we are interested in the limit T�EF, so the
second term can be ignored altogether. We will not explicitly
consider finite temperatures in the first- and second-order
expressions.

b. First order

The manipulations needed here are identical to those used
to compute the zeroth-order result, so we simply quote the
result:

���x,����x�,�����1� = J1N

n
�

0

�

d�̃�Sl+1 · Sl��̃���0�

�
I�n�
2�a

�
k�0

kmax


M�k�
44�1 − cos�ka��

� �1 − cos��k�n,0;�,�����e−2�̃
�k,

�A23�

where l is arbitrary, N is the number of electrons in the
system, and

I�n� = exp
B2

4A


j=0

N ���− 1� j�2N�!
�2j�!�2N − 2j�!� B

2A
�2�N−j�

�
�2j − 1�!!

2 j A−1/2−j , �A24�
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where the n dependence enters through B� i�x−x�−an� and A�F−G�n�. It is worth noting that neither ���x ,����x� ,�����0� nor
���x ,����x� ,�����1� contain a 2kF component. This component will only appear in the second-order term, as we now discuss.

c. Second order

The second-order corrections are �where x= �x ,���

���x���x����2� = �
0

�

d�1�
0

�1

d�2
�Ĥ���1�Ĥ���2���x���x���0

ZcZs
− ���x���x����0��

0

�

d�1�
0

�1

d�2
�Ĥ���1�Ĥ���2��0

ZcZs

= �J1�2

l,l�
�

0

�

d�1�
0

�1

d�2�Sl+1 · Sl��1�Sl�+1 · Sl���2���0�

� � �Ĥc��l,�1�Ĥc��l�,�2���x���x���0

Zc
− ���x���x����0� �Ĥc��l,�1�Ĥc��l�,�2��0

Zc
� , �A25�

where Ĥc��l ,��=ul+1���−ul��� is the charge part of H�. From �A25� it is clear that when dimer-dimer correlations
�Sl+1 ·Sl��1�Sl�+1 ·Sl���2���0� are present �presumably when T	J0�, then a 2kF component appears in ���x ,����x� ,����. After
some algebra, we reach the final form

���x,����x�,�����2� = �J1�2

l,l�
�

0

�

d�1�
0

�1

d�2�Sl+1 · Sl��1�Sl�+1 · Sl���2���0�

n,m

� d�

2�

d�

2�
ei��x−an�ei��x�−am�

� exp�−
1

2

q


Mq
2��2 + �2��exp�− ��

q


Mq
2ei�q�n,m;�,����
� �

k�0

kmax


Mk
44�1 − cos�ka��2e−2��1−�2�
�k � �− 1 + �
k��0

kmax

�1 + h�k���� , �A26�

where

h�k� = 
Mk
2e−4�2
�k��2�1 −
e2�2
�kR�2ñ�
1 − cos�ka�

�
+ 2���cos�ka�l − l��� −

e2�2
�kR�ñ + m̃�
1 − cos�ka�

�
+ �2�1 −

e2�2
�kR�2m̃�
1 − cos�ka�

�� , �A27�

with

ñ = n + i�k�/�ka� , �A28�

m̃ = m + i�k��/�ka� , �A29�

and

R�s� = cos�ka�2l� + 2 − s�� + cos�ka�2l� + 1 − s��

+ cos�ka�2l� − s�� . �A30�

APPENDIX B: COMPUTING Im �i
R,0

„k ,�…

Im �i
R,0�k ,�� is computed by making use of the Fourier

expansion of �0
eff�x ,��, Eq. �35�, and the formula �34�. Con-

sider first the Fourier transform to momentum space:

�
−�

�

dxe−ikx��0
eff�x,���0

eff�0,0�� = ��0
eff�k,���0

eff�− k,0�� ,

�B1�

where translational invariance was used. The Fourier decom-
position of �0

eff�k ,�� is readily obtained by making use of Eq.
�35�, the relation u0�x� /a=�2�c�x� /�, and the representation
of u0�x� given in Eq. �A7�:

�0
eff�k,�� = −

ik

a
� 
L

2m�k
�ake

−�k� + a−k
† e�k�� , �B2�

where we have implicitly converted the discrete k sums to
integrals and L is the length of the system. It is easily verified
that this has the right units to give ��0

eff�k ,���0
eff�−k ,0�� in

�B1� the correct dimensions of inverse length. Only the ex-
pectation values of the cross terms akak

† and a−k
† a−k are non-

zero, giving

��0
eff�k,���0

eff�− k,0�� = −
k2

a2


L

2m�k

� �e−�k��1 + nB�k�� + e�k�nB�− k�� ,

�B3�

where nB�k�= �ak
†ak�= �e��k −1�−1 is the boson occupation

FIETE, LE HUR, AND BALENTS PHYSICAL REVIEW B 73, 165104 �2006�

165104-16



factor. Returning to the expression �34� and evaluating the �
integral we find

�i
0�k,�n� =

k2

a2


L

2m�k
� − 1

i�n − �k
+

1

i�n + �k
� , �B4�

which upon the analytic continuation to real frequencies
i�n→�+ i� leads directly to Eq. �36�.

APPENDIX C: EXPRESSIONS FOR I2kF
„Kc ,Ks ,vs /vc…

AND I4kF
„Kc…

The functions I2kF
�Kc ,Ks ,vs /vc� and I4kF

�Kc� defined in
Eq. �63� are given by

I2kF
�Kc,Ks,vs/vc� = �

0

� d�

T

�2kF
�Kc,Ks,vs/vc,�/T�

sinh2��/2T�
,

�C1�

and

I4kF
�Kc� = �

0

� d�

T

�4kF
�Kc,�/T�

sinh2��/2T�
, �C2�

where

�2kF
�Kc,Ks,vs/vc,�/T�

= �Im �
−�

�

dx̃�
0

�

dt̃ exp�i
�

�T
t̃�

� Im� 1

�sinh�x̃ − t̃�sinh�x̃ + t̃��Kc/2

�
1

�sinh�x̃vc/vs − t̃�sinh�x̃vc/vs + t̃��Ks/2
��2

,

�C3�

and

�4kF
�Kc,�/T� = �Im �

−�

�

dx̃�
0

�

dt̃ exp�i
�

�T
t̃�

� Im� 1

�sinh�x̃ − t̃�sinh�x̃ + t̃��2Kc
��2

.

�C4�
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