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Molecular dynamics simulations and finite element method
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The bending buckling behaviors of single-walled carbon nanotubes (SWCNTs) are systematically investi-
gated by using both molecular dynamics (MD) simulation and finite element method (FEM), to analyze the
relationships between critical bending buckling curvature, critical buckling strain and nanotube geometry
parameters (e.g., tube diameter, length and chirality). The postbuckling shape of SWCNT and the effect of
loading boundary conditions are also discussed. The comparison between MD and FEM simulations shows that
the continuum shell model provides some useful insights into the bending buckling mechanisms, yet it cannot
quantitatively reproduce the bending buckling behavior of SWCNTs, since the continuum model does not
account for the geometrical imperfections in the atomic system that are critical to the onset of buckling.
Improvements of continuum models are suggested based on the findings.
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I. INTRODUCTION

Carbon nanotubes (CNTs) have been subjected to inten-
sive study since their discovery in 1991 due to their unique
combinations of mechanical, electrical and chemical
properties.!= In order to fulfill their promising applications
such as nanostrain sensors and actuators, nanofluidic compo-
nents, and carbon nanotube-reinforced composites, the me-
chanical properties of CNTs must be fully understood. A
variety of experimental works have been put together to in-
vestigate the elastic properties of CNTs, focusing on Young’s
moduli. Treacy and co-workers have pioneered the measure-
ment of thermally induced vibration amplitudes of CNT can-
tilevers from 20 to 800 °C: for multi-walled carbon nano-
tubes (MWCNTs) and single-walled carbon nanotubes
(SWCNTs), the effective Young’s moduli of reported to be in
the ranges of 0.40—4.15 TPa® and 0.9-1.9 TPa,’ respec-
tively. Alternatively, by using an atomic force microscope
(AFM) tip to bend a MWCNT cantilever, the Young’s moduli
of MWCNTs are found to be 1.28+0.59 TPa.?

Besides the studies of CNT elastic properties at small de-
formation, the mechanical response of CNTs under large de-
formation has begun to receive wide attention: in particular,
the buckling behaviors of CNTs subjecting to excess defor-
mation have been observed.!>!% Experimental investigations
have also shown that the buckling deformation of CNTs un-
der very large strain can be completely recovered after
unloading.”!"!2 It is found that the physical properties such
as conductance of CNTs are strongly influenced by the oc-
currence of buckling.!? Thus, the reversible transformation
between the buckled state and normal state of CNTs may
lead to potential applications such as nano-electronic devices
(nano-transistors),’* nano-fluid components (nano-valve)'*
and reversible elements in nano-electromechanical systems.
In view of both mechanical integrity and application, it is
very important to understand the buckling mechanisms of
CNTs.

The experimental investigation of buckling behavior of
CNTs remains a challenge because of difficulties encoun-
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tered at the nano-scale.® For that matter, both theoretical and
numerical approaches have been used to explore the buck-
ling behavior of CNTs, which can be divided into three main
categories: (1) Atomistic simulations based on the molecular
dynamics (MD);'%15-22 (2) continuum mechanics modeling
where the CNTs are effectively modeled as continuous
beams or thin shells with a fixed wall thickness, Young’s
modulus and Poisson’s ratio;'>?3-30 (3) analytical modeling
based on molecular structural mechanics,>!=33 discussed be-
low.

With the development of more accurate force field and
numerical algorithms, MD simulations have been shown to
play an important role in revealing the mechanical behavior
of CNTs. Yakobson, Brabec, and Bernholc! studied the
buckling behavior of SWCNTs under axial compression,
bending and torsion. Their results suggested that the critical
buckling strain under axial compression is inversely propor-
tional to the tube diameter, and the critical bending buckling
curvature under bending deformation varies as inverse
square of the SWCNT diameter. The critical buckling strains
of bending and axial compression are assumed to be equal in
Yakobson’s study,’> examined in detail below. Buehler,
Kong, and Gao'” investigated the length dependence of criti-
cal buckling strain of SWCNTs under axial compression and
reported that the buckling behavior depends strongly on tube
length: the critical buckling strain decreases with increasing
CNT length/diameter aspect ratio. Iijima et al.'® simulated
the bending behavior of SWCNTs with varying lengths, di-
ameters and chiralities and showed that the critical bending
buckling curvature is independent of the tube length. Liew et
al.'® investigated buckling behavior of SWCNTs and
MWCNTs (including two-, three-, and four-walled nano-
tubes) under axial compression and compared different buck-
ling behaviors between SWCNTs and MWCNTs. Srivastava
and Barnard?? studied axial buckling of a (10,10) SWCNT
and a (5n,5n),.47 MWCNT by MD. At present, most MD
simulations of buckling behavior of CNTs are focused on
axial compression. A systematic MD study on the bending
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buckling behaviors of CNTs is still lacking. Furthermore,
compared with axial compression, bending buckling is much
easier to realize and control in practical applications, such as
nano-valve'# or nano-transistor.'® This is the main motivation
of the present study.

Although MD simulations yield explicit results in many
cases, due to the limitation in time scales (typically several
ns or less) and length scales, they become less practical in
investigating the buckling characteristics of long CNTs,
MWCNTs, or CNT bundles involving a large number of at-
oms. As an alternative, the simple continuum shell model is
used to investigate buckling behavior of CNTs,'>?33! which
includes both analytical solution of thin shell buckling and
FEM analysis of the tube response under large compressive
strain. Since the phenomenological shell model does not in-
corporate discrete atomic features, analytical models based
on the molecular structural mechanics have also been devel-
oped to study the mechanical behaviors of CNTs.3!-33 This
method is based on equating the molecular potential energy
in MD with mechanical strain energy in an equivalent con-
tinuum or structural mechanics model. It still remains un-
clear whether these continuum or structural mechanics-based
models may accurately predict the critical strain of CNT
bending buckling.

A systematic and relatively complete set of MD simula-
tions on the bending buckling behaviors of SWCNTs would
provide critical insights into the buckling mechanisms and to
improve the continuum mechanics modeling. For instance,
Yakobson, Brabec, and Bernholc!® have argued that the snap
buckling during bending is a “local” shell-like behavior,
thus, the critical buckling strain under bending deformation
should be equal to that under axial compression—this as-
sumption, however, has not yet been verified. Is bending
buckling merely a local behavior that is equivalent to axial
compression? How do the critical bending buckling curva-
ture and postbuckling shape vary with the length, diameter
and chirality of SWCNTs? Can the continuum model be em-
ployed to predict the onset of bending buckling? These are
all important questions that need to be addressed.

In this study, the buckling behaviors of SWCNTs under
bending deformation are investigated by comprehensive MD
simulations and FEM analyses based on the thin shell model.
The effects of tube length, diameter and chirality are system-
atically studied. The relationships between critical bending
buckling curvature and geometrical parameters of SWCNTs
are established. Comparisons between MD and FEM results
yield important insights into the buckling mechanisms, effect
of loading boundary conditions, and disadvantages of con-
tinuum modeling. The findings of this paper may provide
useful information for the mechanical integrity and applica-
tion of buckled CNTs in practice.

II. COMPUTATION METHODS
A. Molecular dynamics simulations

With the recent development of more accurate force field,
molecular dynamics (MD) becomes a powerful tool to simu-
late CNT behaviors at the nano-scale. In this paper, atomic
interactions in the CNT system are modeled by using the
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COMPASS force field, (condensed-phased optimized mo-
lecular potential for atomistic simulation studies), the first
and only ab initio force field that enables an accurate and
simultaneous prediction of various gas-phase and condensed-
phase properties of organic and inorganic materials.’* All
computations are carried out at 0 K.

In the present work, eight different armchair and zigzag
SWCNTs with the same length are selected to study the ef-
fect of tube diameter on bending buckling behaviors. In or-
der to explore the effect of chirality, we choose pairs of arm-
chair and zigzag types of nanotubes with radii that are
closely matched with each other. The armchair-type nano-
tubes used in this study are (5,5), (10,10), (15,15) and
(20,20), respectively, and the zigzag type nanotubes em-
ployed are (9,0), (17,0), (26,0) and (35,0), respectively. The
lengths of all SWCNTSs are set to be roughly equal, about
24 nm. The armchair tubes include 100 periodic lengths, and
zigzag tubes include 58 periodic lengths; there is about less
than 0.5% of tube length difference between armchair and
zigzag tubes due to their different periodic lengths.

In order to show the effect of nanotube length on the
buckling characteristics, we studied the buckling of (9,0) and
(5,5) SWCNTs under axial compression and bending defor-
mation, with their lengths varying from about 4 to 35 nm.
Note that the radius of (9,0) and (5,5) are very close, thus,
the comparison between them also infers the influence of
chirality.

Within the Cartesian coordinate system, the axis of the
SWCNT is aligned with the x, axis, and bending occurs
within the x;-x, plane (cf. Figs. 5 and 6). Prior to deforma-
tion, the initial atomic structure of SWCNT is optimized by
the molecular mechanics method, such that the total potential
energy is minimized and forces between atoms are zero. To
apply bending deformation, rigid body translation is applied
to the atoms in both end layers of SWCNT, such that both
end sections remain circular and are kept perpendicular to
the deformed axis in each displacement increment; the length
of the deformed tube axis remains unchanged and its curva-
ture is essentially uniform throughout deformation. Such
displacement-controlled loading is widely used in literature
to simulate the pure bending deformation of SWCNTSs in
MD.!%!5:18 Dyring each small displacement increment, the
carbon atoms in both end layers are first moved to and fixed
at their new positions, then, all other carbon atoms relocate
to their new equilibrium positions by minimizing the poten-
tial energy of the whole system.

In order to pinpoint the critical bending buckling curva-
ture, the system strain energy computed from MD simula-
tion, U)'P  is a function of the bending angle (i.e., the angle
corresponding to the deformed arc of the tube axis), 6. With
the increase of 6, initially, U)'>, scales with ¢*. Once snap
buckling is initiated, the derivative of U}'>, with respect to @
decreases abruptly. Denote the critical angle by 6,,, the criti-
cal bending buckling curvature of deformed axis computed
from MD is «,=«2)  =6.,/L, with L the SWCNT length.
When the tube deformation is pure bending, the axial strain
is uniform along the longitudinal line with largest curvature,
and the critical bending buckling strain is sczsﬁf_’;mbmd
=MD -d/2 with d the tube diameter. Both critical bending
buckling curvature and strain are used to describe the thresh-
old of bending buckling, discussed below.
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B. Continuum shell modeling

The buckling behaviors of SWCNTs under axial compres-
sion have been investigated by using the continuum shell
model and beam model.">!7 When the aspect ratio of
SWCNT, which is defined as the ratio between the tube
length, L, and the tube diameter, d, is larger than 50, the
mechanical behavior of SWCNTs approaches that of a beam.
The critical buckling strain of a compressed beam with both
ends clamped is

gheam = (md/L)*/2, (1)

cr-comp

which is independent of the tube wall thickness, r (1<<d).
With increasing tube length, the critical compressive buck-
ling strain decreases rapidly. On the other hand, for SWCNTs
with small aspect ratio, their mechanical behaviors are close
to that of thin shells. The critical compressive buckling strain
of a cylindrical thin shell under axial compression can be
described as*

2 t t
shell
Ecrcomp™ o o g 1.176-, (2)
e \3(1-47)d d

where the Poisson’s ratio of graphite, »=0.19, is taken for
the CNTs. The critical compressive buckling stain of an ax-
ishell is proportional to shell thickness and independent of
the tube length.

The snap buckling behavior of SWCNTs under bending
deformation is more complicated. Snap buckling does not
occur in beams; for thin shells, Yakobson, Brabec, and
Bernholc!® assumed that the local critical strain of snap
buckling equals the critical buckling strain of axial compres-
sion (2). Under such assumption, the critical bending buck-
ling curvature can be described as

Koo = 2g !l Jd =2.352 - tld”. (3)

cr-bend

The critical bending buckling curvature is independent of the
tube length and it scales with ¢/d. By studying the elastic
properties of a (13,0) SWCNT with length 8 nm and diam-
eter 1 nm, Yakobson, Brabec, and Bernholc!'® have obtained
an effective shell thickness, rt=0.066 nm.

In order to gain more insights into the buckling mecha-
nisms and to explore whether the continuum shell model can
be applied to quantitatively predict the critical bending buck-
ling curvature, in this paper, FEM analyses are also em-
ployed to study the bending buckling behavior of thin cylin-
drical shells with varying length, radius and wall thickness.
In finite element simulation, the general-purpose shell ele-
ment (S4R) is adopted in ABAQUS analysis, which provides
robust and accurate finite strain solutions in all loading con-
ditions regardless of the thickness of the shell.’® A typical
mesh of SWCNT comprises more than 10 000 four-node el-
ements with reduced integration. Convergence analyses have
been used to justify the mesh density in all simulations. An
effective Young’s modulus 6.85 TPa is used in FEM simula-
tions based on our recent work?®—it should be noted that
from dimensional analysis, it is straightforward to show that
both critical bending buckling strain and curvature are inde-
pendent of the elastic modulus of the tube. The bending is
displacement controlled and the boundary conditions are
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FIG. 1. (Color online) The relationships between critical bend-
ing buckling curvature and nanotube diameter. Results computed
from MD and FEM analyses are compared with the model by
Yakobson and co-workers.!> The tube length is fixed at 24 nm.

identical to those applied in MD simulation. Again, the de-
formed tube axis is within the x;-x, plane (cf. Figs. 7 and 8).
In FEM analyses, the critical bending buckling strain sCFEM
(in the deformed axial direction) and critical bending buck-
ling curvature Kf EM are computed in a way that is similar to
the MD procedure described above, and compared with their
MD counterparts €, and k., respectively.

III. RESULTS AND DISCUSSIONS

A. Effects of diameter and chirality on critical bending
buckling curvature

From MD simulations, the relationships between the criti-
cal bending buckling curvature () and nanotube diameter
(d) are shown as open symbols in Fig. 1, all tubes with the
same length, L=24 nm. The relationship between critical
bending buckling curvature and nanotube diameter can be
fitted as

k.=ald* with a=0.0738 nm, (4)

where the unit of d is nanometer and the unit of k. is 1 nm;
the fitted function is plotted as solid line in Fig. 1. It can be
readily seen that for all different SWCNTs with same length,
k. drops off as inverse square of the tube diameter and such
relationship is insensitive to the chirality of nanotube. The
effect of tube length will be investigated in the next section.

Equation (4) is fitted from MD simulations, which has a
very similar functional form as the one proposed by Yakob-
son and co-workers,'? i.e., Eq. (3). With r=0.066 nm, Eq. (3)
can be rewritten as k'“??"=q"/d* (1 nm) with a different
coefficient, a'=0.155 nm which is about twice our result.
This is also plotted in Fig. 1 as the dash-dot curve—
comparing with out MD results, Yakobson and co-workers'>
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FIG. 2. (Color online) The comparison between the critical
buckling strains of bending and axial compression of SWCNTs with
same length (24 nm). Both MD and FEM results are presented and
compared with the axishell theory for compression.

have significantly overestimated the critical bending buck-
ling curvature. In Yakobson’s model, since the critical bend-
ing buckling strain was set to be equal to the critical buckling
strain of axishell compression (2), the derived critical bend-
ing buckling curvature (3) is strictly independent of tube
length. However, by using MD simulation, Liew et al.'® have
studied the critical buckling strain of (10,10) SWCNT under
axial compression, and their results showed that the critical
compressive buckling strain decreases when the tube length
is increased from 2.46 to 14 nm. This evidence suggests that
it is problematic to assume the critical bending buckling
strain equals the critical compressive buckling strain.

To further examine the relationship between critical buck-
ling strains of bending and axial compression, we also simu-
lated the buckling behaviors of all eight different tubes under
axial compression (with both ends “clamped”) using MD
simulation. Figure 2 compares the axial compression and
bending critical buckling strains of armchair and zigzag
tubes with the same length. When tube diameter is relatively
large, d>1.3 nm, the ratio between the critical bending
buckling strain sCEs%_Dpwbend and the critical compressive
buckling strain sg_mmp is nearly a constant, about 0.6. On the
other hand, for smaller SWCNTs such as (5,5) and (9,0),
s%_l;mbwd/ sZ_Dwmp increases to about 1.2—the effect of as-
pect ratio L/d will be discussed in next section. Therefore,
the critical buckling strains of bending and compression are
distinct.

In order to gain more insights, we have also carried out a
set of FEM simulations to explore the buckling characteris-
tics by varying the nanotube diameter, d. The length of cy-
lindrical shell is fixed at L=24 nm. To compare with the
work by Yakobson and co-workers, !5 the shell thickness is
taken to be #=0.066 nm. The relationship between «*" and
d is plotted in Fig. 1 as solid symbols, which can be readily
fitted by the dash curve
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FEM
K" — aFEM/dZ

with a"*" =0.1076 nm. (5)
Compared with MD, the FEM simulation also overestimates
the critical bending buckling curvature. The reason is the
following: in FEM analysis, the tube is a perfect cylindrical
continuum shell without any imperfection, whereas in the
MD simulation, the SWCNT is a cluster of discrete carbon
atoms that are distributed on a cylindrical surface. The pre-
cise coordinates of every carbon atom in SWCNT are deter-
mined by the minimization of the total potential energy. Due
to the complicated force field, the energy minimization may
not lead to a perfect symmetric distribution of all atoms, and
small local geometrical imperfections are inevitable. Note
that such geometrical imperfections (with respect to an ideal
perfect cylindrical shell) are uniformly distributed in the
nanotubes, which is also one of the intrinsic geometrical
characteristics of the SWCNTs. Therefore, the geometrical
imperfections, which are fundamentally different than the de-
fects such as atomic vacancies or the Stone Wales defect
(i.e., pentagon and heptagon pair by rearrangement of the
bonds), do not tend to cause any unpredictable experimental
results. Nevertheless, owing to the fact that the onset of
buckling is very sensitive to the perturbation imposed by
small imperfections, the critical bending buckling curvature
obtained from MD simulation is smaller than that from FEM
analysis. Therefore, the imperfection-free continuum model
cannot be used to accurately determine the critical bending
buckling curvature.

We note that the imperfections are important only during
the buckling bifurcation analysis involving large strains,
whereas the effect of structural imperfection is negligible in
most small strain applications. Therefore, the simple con-
tinuum shell model can be applied to describe the CNT ten-
sion, bending, and torsion behaviors at small deformation,
from which the nanotube elastic properties such as the
Young’s modulus can be readily obtained—the success of
such have been demonstrated by many previous
studies.!>?3-3! Despite its inherent disadvantage, with refer-
ence to Fig. 1, the continuum shell model is still capable of
predicting that the critical bending buckling curvature scales
with 1/4°. This implies that the overall effect of geometrical
imperfection can be reduced into a factor, which equals to
ell=q/a"™™M=().686. After incorporating such correction
factor, the critical bending buckling curvature computed
from the continuum analyses becomes e/a"*™ /4%, which
agrees well with MD simulation when the tube length is
fixed at 24 nm. The effects of SWCNT length will be dis-
cussed below.

FEM simulations of axial compression of nanotubes (with
fixed L and 1) are also performed, and the calculated critical
buckling strains of bending and compression are compared
in Fig. 2: both are higher than MD results where the imper-
fections are playing a critical role. For axial compression, the
critical buckling strain computed from FEM (s‘ffé‘zmp, solid
diamond) is very close to the axishell theory, i.e., Eq. (2)

‘z?_eg}mp, the dash-dot curve). Within the framework of the
imperfection-free continuum model, the critical bending
buckling strain is about 69% of its compressive counterpart
for all tube diameters studied in this paper, which indicates
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that bending buckling is much easier to occur than the com-
pressive bucking of axishell. Indeed, these two are distinct
bifurcation modes: the postbuckling shape of axishell under
compression remains axisymmetric and all cross sections re-
main circular; by contrast, the tube sections away from the
end become elliptical during bending. Moreover, the com-
pressive axial stress is applied uniformly on the cross section
of an axishell, whereas during bending the gradients of both
axial and hoop stresses across the tube section are large—all
these factors make the tube much easier to buckle under
bending (with respect to the long axis of the deformed ellip-
tical section).

When the tube is modeled as a cylindrical shell with fixed
length, the critical bending buckling curvature is smaller if
the wall is thicker. Since x"*=a"/d?, from dimensional
analysis, a’® must be proportional to ¢, which leads to

shell
K, =

KM = br/d*  with b =1.63. (6)

This universal relationship for cylindrical shells will be veri-
fied by FEM analyses with varying ¢ and L in the next sec-
tion. When £=0.066 nm,"> br=0.1076 nm. On the other
hand, in order to match the continuum analysis with MD
simulation, the effective shell thickness should be "=a/b
=0.045 nm. In the previous continuum shell models known
to the authors, the effective SWCNT wall thickness is re-
ported in the range from 0.066 to 0.089 nm,!-2428.37-39
Therefore, when compared with MD benchmarks, even the
smallest wall thickness in the literature (¢=0.066 nm) will
cause about 45% error of critical bending buckling curvature,
and such error may be overcome by using the correction
factor to account for the effect of geometrical imperfections,
discussed above.

B. Effect of nanotube length on critical
bending buckling curvature

From MD simulations of the bending of SWCNTs with
varying lengths, diameters and chiralities, Iijima et al.'® re-
ported that the critical bending buckling curvature is inde-
pendent of the tube’s length L. However, the work by Liew
et al. on axial compression,16 as well as our MD results on
bending in Fig. 2, suggest that the length/diameter aspect
ratio of SWCNTs also affects the critical buckling behavior.
In this section, we first study the bending buckling behavior
of (9,0) SWCNTSs with different lengths by using MD simu-
lation, and the variation of k. with L/d is shown in Fig. 3.
The results show that the variation of «, is less than 4%
when the nanotube aspect ratio L/d=10-50, which is essen-
tially length insensitive; on the other hand, when L/d <10,
k. decreases for about 20% when L/d reduces from roughly
10 to 6. Note that the aspect ratio used in the work of
Yakobson, Brabec, and Bernholc,'® L/d=8, is within such
length-dependent region. Whereas, the aspect ratio of
SWCNTs used in the work of Iijima et al.'® may be inside
the length-insensitive region since they did not specify the
aspect ratio used in their work.

In order to further explore the effect of chirality, the bend-
ing buckling behavior of armchair SWCNT (5,5) is studied
next, with varying tube lengths. The «.~ L/d relationship of
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FIG. 3. The length dependence of critical bending buckling cur-
vature of (5,5), (9,0) and (10,10) tubes.

(5,5) SWCNT has the same trend as that of (9,0) tube, where
k. becomes length dependent once L/d <10 and such prop-
erty is not affected by the chirality. Thus, a threshold aspect
ratio of about 10 is found when d=0.7 nm.

The inset of Fig. 3 shows the length dependence of criti-
cal bending buckling curvature for tube (10,10). Although
the trends are similar, with decreasing L/d, the magnitude of
Kk, reduction of (10,10) is less than that of (5,5): for (10,10),
k. is reduced about 10% when L/d reduces from 14 to 7.
Moreover, the threshold aspect ratio is about 14 for (10,10)
SWCNT, which is larger than that of (5,5) and (9,0) tubes.
Therefore, the threshold L/d below which «, becomes length
dependent, is governed by the tube radius and not by chiral-
ity: for tubes with large radii, such threshold aspect ratio is
larger, and the reduction of «, is less apparent, as demon-
strated in Fig. 1. To better understand the mechanism of the
length-dependent . when L/d is below a threshold, the geo-
metrical structure of pre- and postbuckling SWCNTs needs
to be explored, elaborated in the next section.

Systematic FEM analyses are also carried out on SWCNT
bending buckling by varying the aspect ratio, L/d, wall
thickness, ¢, and the Young’s modulus, E. The results are
presented in Fig. 4. It is found that the critical bending buck-
ling curvature «, is insensitive to the tube length within the
framework of shell model. For the wide range of parameters
used in this study, the universal continuum relationship Eq.
(6) fits all numerical results. On one hand, since the con-
tinuum shell model has no length dependence, it may not be
used to accurately represent the buckling characteristics of
all SWCNTs. On the other hand, if the tube radius is rela-
tively large, the length dependence becomes less obvious;
thus, when either the correction factor e (with ¢
=0.066 nm) or the effective shell thickness 1%/=0.045 nm is
used, the phenomenological shell model still does a reason-
ably good job of describing the overall bending buckling
behavior of nanotubes.
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FIG. 4. (Color online) The relationship between critical bending
buckling curvature and nanotube geometrical parameters estab-
lished from FEM analysis.

C. Geometrical structure of buckled SWCNTs

From the results displayed in Fig. 3, we can see that «,
sharply decreases when the aspect ratio, L/d, of (9,0) de-
creases from 10.5 to 8.7. The geometrical structure of (9,0)
tubes at the onset of buckling, with L/d=8.7 (L=6.11 nm)
and L/d=10.5 (L=7.36 nm), are shown in Figs. 5(a) and
5(b), respectively. The buckled structures are distinct: there
is only one snap buckle located in the middle of the tube for
L/d=8.7, whereas two symmetrical snap buckles are found
simultaneously near the end of SWCNT with L/d=10.5: the
distance between the buckle and the end is about 5 periodic
lengths (2.08 nm).

By contrast, two longer (9,0) tubes with aspect ratios
L/d=25.2 (L=17.78 nm) and L/d=49.5 (L=34.86 nm) are
shown in Figs. 5(c) and 5(d), respectively. For L/d=25.2,
there are also two symmetrical snap buckling positions that
are about 5.5 periodic lengths (2.29 nm) from the end. Thus,
for tubes with two snap buckling positions, the distance be-
tween the kink and tube end increases slightly with increas-
ing L. For the longest tube with L/d=49.5, five buckles ap-
peared at the same time: one of them is located in the middle
of the tube, and the other four are biased to the end. The
distance between the nearest and next nearest buckling posi-
tions and the tube end is about 8 periodic lengths (3.33 nm)
and 18 periodic lengths (7.5 nm), respectively.

For (9,0) SWCNT, when L/d is reduced from 10.5 to 8.7,
the buckled shape changes from two kinks [Fig. 5(b)] to one
kink [Fig. 5(a)], which may have caused the critical bending
buckling curvature to sharply reduce (Fig. 3). It appears that
the critical bending buckling curvature of (9,0) SWCNT is
sensitive to tube length if only one snap buckle is developed,
and k. becomes length insensitive if the buckled geometry
contains more than one kink. Further MD geometry analyses
show that the buckled structure of (9,0) tube has one kink
when L/d=<28.7, and two kinks when L/d=10.5. More kinks
will likely develop for tubes with large L/d: for instance, five
kinks are found when L/d=49.5 [Fig. 5(d)], yet that does not
affect «, in a significant way (Fig. 3).
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(b)

(d)

FIG. 5. The geometry of (9,0) tubes at the onset of bending
buckling with different lengths: (a) L=6.11 nm, (b) L=7.36 nm, (c)
L=17.78 nm, and (d) L=34.86 nm.

The configurations shown in Fig. 5 are recorded at the
onset of buckling. With further increase of the bending cur-
vature of (9,0) tube, if L/d<8.7, the postbuckling shape will
change from one snap buckle in the middle to two symmetric
kinks near the end; meanwhile, for tubes with moderate
length (L/d=10.5), an extra kink will appear at the middle
following the formation of two snap buckles near the end.

When the postbuckling shapes of SWCNTs with different
diameters and same length (L=24 nm) are compared in Fig.
6, it is found that (35,0) and (26,0) tubes have one kink in the
middle, but the smaller (17,0) and (9,0) tubes have two sym-
metrical snap buckles near the end. Therefore, it is confirmed
that the buckled geometry is governed by the aspect ratio of
tube, L/d. In general, if L/d is less than 10 or so, the post-
buckling shape has one kink, and two or more snap buckles
are likely to develop in tubes with larger aspect ratios. Fur-
ther studies have shown that the armchair SWCNTs have
similar characteristics to those shown in Figs. 5 and 6 or
zigzag nanotubes. For simplicity, we just show the results of
zigzag tubes.

These observations are in general agreement with the lit-
erature. lijima et al.'” also reported that upon further bending
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(b}

FIG. 6. The geometry of zigzag tubes at the onset of bending
buckling with fixed length (L=24 nm) and different radii: (a)
(35,0), (b) (26,0), (c) (17,0), and (d) (9,0).

of a double-walled CNT, there is a sharp transition from a
single kink in the middle to two symmetric kinks near the
end. The formation of secondary kink was attributed to the
excessive strain buildup caused by the mismatch in the com-
pressive sides of the two CNT layers. Wang et al.*® studied
the bending instability of a double-walled tube and found
that with increasing tube length, the postbuckling shape
changes from only one kink at the middle to two symmetric
kinks near the end. They related such phenomenon to the van
der Waals interaction between two layers. However, the same
buckling characteristics are also found in the SWCNTSs stud-
ied in this paper, which indicate that the buckling mecha-
nisms are not dictated by the van der Waals interaction. In-
stead, we propose that these phenomena may be related to
the displacement boundary condition imposed during bend-
ing deformation, whose effect will be examined in the next
section.

FEM simulations also show similar buckled geometries of
SWCNTs, shown in Fig. 7 for a (10,10) tube with fixed wall
thickness (#=0.066 nm) and different lengths. If the aspect
ratio L/d is small, the buckled shape has one kink in the
middle [Fig. 7(b)], and the postbuckling shape will change to
two symmetric kinks near the end with further bending. For
tubes with moderately large aspect ratio, two symmetric snap
buckles form near the end [Fig. 7(d)], and one extra kink will
appear in the middle of tube with further deformation. In this
sense, the bending buckling mechanisms of SWCNTs are
similar to those of cylindrical thin shells. It is reminded that
these FEM simulations provide only qualitative insights,
since they fail to predict the reduction of critical bending
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FIG. 7. (Color online) The effect of boundary condition simu-
lated by FEM. (a) The ideal distribution of axial strain of pure
bending. For (10,10) tube with L=6.2 nm and t=0.066 nm: (b) The
contour plot of axial strain &,, just before buckling, and (c) the
subsequent buckled geometry. For (10,10) tube with L=12.5 nm
and 7=0.066 nm: (d) The contour plot of axial strain &,, just before
buckling, and (e) the subsequent buckled geometry.

buckling curvature when the buckled geometry is changed
(Fig. 4).

D. Effect of boundary condition on bending
buckling of SWCNTs

In most similar MD simulations known to the authors,
bending is displacement controlled'®!>!® which imposes
rigid-body translations on the carbon atoms in both end lay-
ers, such that the end sections remain circular and perpen-
dicular to the deformed axis. For a given bending angle, the
new positions of the atoms in the end layers can be calcu-
lated by assuming that the axis deforms into an arc in x;-x,
plane with fixed length. Ideally, in pure bending situation, the
curvature and axial strain are both uniform along the longi-
tudinal direction; moreover, the distribution of axial strain
£y, (in the deformed system) is linear across the cross sec-
tion, as sketched in Fig. 7(a). The maximum compressive
axial strain of the entire tube is &), % =—«d/2, which is
distributed uniformly on the rightmost longitudinal line [blue
in Fig. 7(a)], where « is the curvature of deformed tube axis.
Likewise, the maximum tensile &, is eloropor = kd/2 on the

pureben
leftmost longitudinal line [red in Fig. 7(a)]. €570 M3% is the

purebend
key for buckling when the deformation of tube is pure
bending.

However, due to the displacement boundary condition im-
posed during the simulation, the end layers remain circular
and that imposes extra constraints since the sections away
from the end become elliptical during bending. Thus, the
curvature (k) and axial strain distribution (g,,) are nonuni-

form along the longitudinal directions as a consequence of
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FIG. 8. (Color online) The effect of boundary condition simu-
lated by FEM. For (20,20) tube with L=25 nm and t=0.066 nm: (a)
The contour plot of axial strain &,, just before buckling, and (b) the
subsequent buckled geometry. For (20,20) tube with L=50 nm and
t=0.066 nm: (c) The contour plot of axial strain &,, just before
buckling, and (d) the subsequent buckled geometry.

such boundary condition, i.e., the deformation deviates a
little from pure bending. Helpful insights can be obtained
from FEM simulations of cylindrical shells in bending with
the same displacement boundary condition. Two examples of
contour plots of the actual distribution of axial strain &,, are
shown in Figs. 7(b) and 7(d), respectively, for (10,10) tube
with L=6.2 and 12.5 nm. The maximum compressive axial
strain of the whole tube which occurred in practice is de-
noted by &fonP"": In the longer tube [Fig. 7(d)], it is appar-
ent that near each end of the tube, the nonuniform curvature
along the longitudinal directions has lead to two prominent
compression zones. Subsequently, two snap buckles develop
right at the symmetric locations with maximum compressive
strain g0 " [Fig. 7(e)]. In the shorter tube, the two promi-
nent compression zones overlap and make o, occur-
ring right in the middle of the tube [Fig. 7(b)], which also
coincides with the subsequent kink [Fig. 7(c)].

From FEM simulation, two more examples of the axial
strain field and buckled geometry are given in Figs. 8(a),
8(c), 8(b), and 8(d), respectively, for (20,20) tubes with
lengths 25 and 50 nm. In Fig. 8(c), the prominent compres-
sion zones are found near both ends of the tube, and the
location of 57" coincides with the subsequent kink [Fig.

realbenfi . X
8(d)]. Both the size of compression zone and the distance
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between &0, "™ and end are larger than that shown in Fig.

7(d); thus, the size and location of the prominent compres-
sion zone scales with the tube radius. Same characteristics
are observed in Figs. 8(a) and 8(b). The effect of displace-
ment boundary condition becomes larger for tubes with
larger radii.

For a SWCNT with given chirality and length, there are
two main questions for bending buckling: (1) where is the
location of kink? and (2) what is the critical condition for
bending buckling?

(1) In all cases, the location of the kink is dominated by
the local maximum compressive axial strain found in prac-
tice, eromb- . At that point, snap buckle occurs with respect
to the long axis of the deformed elliptical cross section,
which has a smaller moment of inertia compared with the
short axis.

(2) The exact critical state for bending buckling is af-
fected by the actual distribution of strain field components,
including both axial and hoop strains, which are conse-
quences of the boundary condition. An exact bifurcation so-
Iution of a tube with the aforementioned displacement
boundary conditions is complicated and unnecessary. In-
stead, a phenomenological threshold is established on the
equivalent pure bending configuration: the bending buckling
occurs once &, "0 in the equivalent pure bending configu-
ration reaches a critical value—the critical bending buckling
strain is described as &/ in the continuum model and &, in
MD analyses. Thus, stM or g. do not exactly equal the
maximum axial compressive strain observed in practice. This
phenomenological formulation is proven effective and con-
sistent with the literature.

IV. CONCLUSION

In this paper, extensive MD analyses are carried out to
investigate the buckling behaviors of SWCNTs under bend-
ing deformation. Explicit relationships are established be-
tween the critical bending buckling curvature and the geom-
etry parameters of SWCNTSs, such as tube diameter, length
and chirality, and the results are correlated with the buckled
geometry. In addition, parallel FEM simulations based on the
continuum shell model are also used to study the bending
buckling characteristics of SWCNTs. Critical insights into
the buckling mechanisms, critical buckling strain of bending
versus axial compression, and the effects of boundary condi-
tion are obtained. Improvements on continuum modeling are
suggested.

When the SWCNT length is fixed, the critical bending
buckling curvature decreases as inverse square of the tube
diameter (Fig. 1), and the critical bending buckling strain is
proportional to the inverse of the tube diameter (Fig. 2).
These results are not sensitive to the chirality of tube. Similar
diameter dependence is observed in FEM simulations, al-
though the computed critical bending buckling curvature is
larger than that found in MD studies. Such difference is
caused by the geometrical imperfections in MD simulations
(which is an intrinsic characteristic of the CNT) during the
minimization of atomic system potential energy. The onset of
buckling is very sensitive to imperfections, which reduces
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the critical buckling load. Thus, the critical bending buckling
strain (or curvature) of the imperfection-free shell model in
FEM analyses is much higher than that of an imperfection-
containing structure used in MD simulations (Figs. 1 and 2).
On the other hand, the overall effect of geometrical imper-
fections in MD simulations can be represented by either a
correction factor or an effective shell thickness, which makes
the critical bending buckling curvature computed from FEM
agree with MD.

In the continuum model, the critical bending buckling cur-
vature is essentially independent of the tube length (Fig. 4).
Whereas, in MD simulations (Fig. 3) it is found that when
the tube aspect ratio is less than a threshold value, there is a
sharp reduction of critical bending buckling curvature. The
threshold aspect ratio is slightly larger and the critical curva-
ture reduction becomes smaller for tubes with larger radii.
From postbuckling geometries of MD simulations (Figs. 5
and 6), it is found that such threshold is related to the tran-
sition of buckled geometry: below the threshold aspect ratio
only one kink is found in the middle of the tube, and above
such threshold two symmetric kinks develop near the end of
the tube. Similar trend has been observed in FEM simulation
(Figs. 7 and 8), yet the transition of buckled shape does not
agree with MD simulation, and variation of critical bending
buckling curvature is not obvious with such transition.

Although FEM simulations are phenomenological and
qualitative in many aspects, they provide critical insights into
several key issues for bending buckling of SWCNTs: (1) the
key relationships x,~ 1/d* and &,~ 1/d hold for most tubes
investigated by MD simulations, except for those with very
small aspect ratios and of less practical value. (2) The FEM
buckled geometry (Figs. 7 and 8) qualitatively agree with
MD simulation (Figs. 5 and 6), where the number of kinks
are increased with increasing aspect ratio. (3) By comparing
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the critical buckling strains occurring under bending and
axial compression (Fig. 2), it is confirmed that these two
modes are distinct and the critical buckling strains are not
equal. Therefore, the assumption that the critical bending
buckling strain simply equals to critical compressive buck-
ling strain' is problematic. (4) The contour plots of axial
strain (Figs. 7 and 8) show that due to the displacement
boundary condition imposed under bending deformation, the
curvature is not as uniform as expected. Instead, at some
distance away from the end, prominent compression zones
are developed and the snap buckles occur subsequently right
at the locations of maximum compressive axial strain. For
longer tubes, the prominent compression zones are apart and
they overlap for shorter SWCNTs, and the resulting promi-
nent compression zone is larger for tubes with larger radii.
Thus, the number of kinks developed during buckling, as
well as their positions, are dominated by these prominent
compression zones.

Without losing generality, the bending buckling behavior
of SWCNTs can still be simulated as thin cylindrical shells,
where the effect of geometrical imperfections on the critical
bending buckling curvature may be represented by a correc-
tion factor. The studies in this paper may provide important
information on the buckling mechanisms of SWCNTs, and
become useful in practical applications where buckled CNTs
are used in nano-electromechanical systems as nano-valves
or switches.
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