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We develop an efficient method for the calculation of dynamical dipoles and frequencies of vibrational
transitions in the framework of density-functional theory with periodic boundary conditions. It augments
previous approaches by accounting for the substrate influence on the vibrations of the adsorbate. It allows one
to reproduce and predict optical infrared and electron energy loss spectra including the correct relative oscil-
lator strengths while still staying in the familiar picture of normal modes so that an intuitive physical inter-
pretation of experimental results is possible.
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I. INTRODUCTION

Vibrational spectroscopy is one of the most powerful ex-
perimental techniques for the characterization of materials.1,2

There is such a wealth of information on the spectroscopic
properties of molecules and adsorbate complexes that, over
the decades, a large database of wave numbers and eigenvec-
tors of molecular vibrations has become available to re-
searchers working in both chemistry and physics. The use-
fulness of these data lies in the fact that the vibrations can be
classified according to a relatively simple scheme consisting
of only a few number of characteristic types of vibrations—
e.g., bending, stretching, rocking, and wagging modes—each
of which have, depending on the species of the involved
atoms, characteristic frequencies. Thus vibrational spectros-
copy not only probes the symmetry and geometry of the
atomic arrangement in question, but also, to a certain extent,
the chemical composition. Thereby it provides insight into
such complex issues as bonding mechanisms and adsorbate-
substrate interactions.

The most prominent experimental techniques subsumed
under the generic term “vibrational spectroscopy” are optical
infrared �IR� spectroscopy, where light in the infrared region
is shone on the sample, or high-resolution electron energy
loss spectroscopy �HREELS�, which probes the vibrations at
the surface with a low-energy electron beam. The underlying
physical process of IR spectroscopy is the coupling of the
incident electric field to the dipoles accompanying the exci-
tation of vibrational modes. This gives rise to resonant ab-
sorption peaks in dependence on the primary photon energy.
In the case of normal incidence only in-plane dipoles are
probed. Typical IR spectrometers are limited to an energy
range between 10 and 1000 cm−1, but provide an energy
resolution of better than 1 cm−1. HREEL spectroscopy ex-
ploits the effect of inelastic scattering of the incident elec-
trons from the long-range dipole field above the crystal. The
scattering is strongest in the forward direction.3 Due to the
grazing incidence geometry in which HREEL experiments
are mainly carried out, this method dominantly probes vibra-
tional dipoles perpendicular to the surface. HREELS covers
a wider spectral range, but at the cost of a lower resolution of
10–30 cm−1. Common to both kinds of spectroscopy is that

excitations of vibrational modes are associated with vanish-
ing or small momentum transfer so that zone-center optical
modes can be observed, although larger phonon wave vec-
tors may be studied by varying the scattering angle in the
HREEL experiment. Both IR and HREELS are subject to the
same selection rules4 and can therefore conveniently be
treated together.

Because of the complexity of either an IR or an HREEL
spectrum the assignment of vibrational modes is usually not
straightforward. However, knowledge of vibrational eigen-
frequencies and eigenvalues from theory permits the inter-
pretation of the peak structures of an experimental spectrum.
This is where density-functional-theory �DFT� calculations
have been proven helpful. The determination of vibrational
frequencies within the harmonic approximation is a common
task within the DFT method of calculating total energies for
given atomic positions: Using advanced exchange-correla-
tion functionals experimental wave numbers are usually re-
produced within an error bar of less than 4%. The errors
become larger the more complicated the involved vibrations
are. The validity of the harmonic approximation may then
become questionable due to strong anharmonic and long-
range electric forces.

In addition to the frequencies the intensities of the vibra-
tional transitions are crucial for the identification of charac-
teristic features in a spectrum. These intensities are directly
related to a dynamical dipole which corresponds to the
change of the total dipole moment of the system as a re-
sponse to a distortion along a certain normal mode. In
DFT implementations using a localized basis set—e.g.,
GAUSSIAN5—the intensities of fundamental IR transitions are
routinely calculated, but we are aware of only one paper6

dealing with the calculation of parts of an HREEL spectrum
within the framework of DFT with periodic boundary condi-
tions.

The paper is organized as follows. Section II starts with a
general overview of the used DFT implementation and pro-
ceeds with the details of the calculation of IR intensities. In
Sec. III we present calculated IR spectra for the isolated
molecules ammonia �NH3� and benzene �C6H6� to test the
reliability of our method. After that we show the calculated
HREEL spectrum for the benzene-adsorbed Si �001� surface.
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This system has been extensively studied experimentally
during the last decades7–12 and thus serves as an attractive
benchmark for our method of calculation of vibrational spec-
tra of complex systems. Section IV concludes with a sum-
mary.

II. COMPUTATIONAL METHODS

A. Total-energy calculations and modeling

The total-energy and electronic-structure calculations are
performed using the Vienna ab initio simulation package
�VASP� implementation13 of the gradient-corrected �PW91�
�Ref. 14� DFT. The electron-ion interaction is described
within in the projecter-augmented wave �PAW� scheme
pseudopoten-
tials,15,16 allowing for an accurate quantum-mechanical treat-
ment of first-row elements with a relatively small basis set.
We expand the electronic wave functions into plane waves
up to an energy cutoff of 25 Ry, which has been demon-
strated to be sufficient in previous studies on small organic
molecules in the gas phase17 and adsorbed on Si �001�.18,19

Our calculations employ the residual minimization/direct
inversion in the iterative subspace �RMM-DIIS� method 20,21

to minimize the total energy of the system. The molecular
atomic structure is considered to be in equilibrium when the
Hellmann–Feynman forces are smaller than 10 meV/Å. Ac-
cording to our tests this value is small enough to account for
accurate forces and dipole moments. We apply artificial
translational symmetries to describe both molecules in the
gas phase and molecules adsorbed on solid substrates. The
isolated molecules ammonia and benzene are arranged in cu-
bic and hexagonal supercells, respectively, with edge lengths
of 20 Å. Our test calculations have shown that this size is
necessary to get rid of spurious interactions between the pe-
riodically repeated images of the molecules. The Si �001�
surface with the 2�2 reconstruction is modeled with peri-
odically repeated slabs where each supercell consists of six
Si double layers plus adsorbed benzene molecules and a
vacuum region equivalent in thickness to eight double layers.
The corresponding slab bottom layer is hydrogen saturated
and kept frozen during the structure optimization whereas all
other atoms are allowed to relax. All surface calculations are
performed with the calculated Si lattice constant of aSi
=5.470 Å in an orthorhombic supercell with basis vectors
a=a��2,0 ,0�, b=a�0,�2,0�, and c=a�0,0 ,5�. The
Brillouin-zone integrations are carried out using only the �
point in the case of isolated molecules and two k points in
the irreducible part of the Brillouin zone in the case of sur-
face calculations. For the determination of dipole moments a
method introduced in Refs. 22 and 23 is used which essen-
tially accounts for additional terms to the total energy for
systems with a net dipole.

B. Calculation of eigenfrequencies and dynamical dipoles

A system with atoms in equilibrium positions responds to
geometrical distortions with resulting forces which can be
easily calculated by the Hellmann–Feynman theorem24 as
derivatives of the total energy with respect to �Cartesian�

atomic coordinates. The linearization of these forces in the
atomic displacements generates a 3N�3N matrix �N is the
number of atoms� called the Hessian or dynamical matrix of
the system constructed as follows. Let F��

��,± denote the �th
Cartesian component of the resulting force on atom � due to
a displacement of the �th atom in the positive �+� or nega-
tive �−� Cartesian direction �. These forces build up the
matrix �K��

���

K��
�� =

1

2

F��
��,+ − F��

��,− + F��
��,+ − F��

��,−

2d
, �1�

which is symmetric with respect to a simultaneous change of
� ,� and � ,�. The displacement d is to be chosen small
enough to ensure harmonicity of the vibrations on the one
hand and large enough to avoid numerical problems on the
other. Empirically, values between 0.02 and 0.05 Å turn out
to be well suited. In the end, of course, the result must be
independent of the choice of d. The Hessian is defined as the
quadratic matrix H with

Hij � H3��−1�+�,3��−1�+� = K��
�� . �2�

Obviously, as 1�� ,��N and 1�� ,��3, the indices of
the Hessian cover the range 1� i , j�3N. The generalized
Newtonian equations of motion thus read

Mü = − Hu , �3�

with the matrix M of atomic masses,

M = diag�m113,m213, . . . ,mN13�, 13 = diag�1,1,1� , �4�

and the displacement vector

u = �u1,u2,. . .,u3N�T. �5�

If a harmonic time dependence of the displacement vectors
�u=zei	t� is assumed, the equations of motion reduce to the
generalized eigenvalue problem

Hz = 	2Mz . �6�

The resulting eigenvectors are M-orthogonal; i.e., the matrix
Z= �z1 , . . . ,z3N� of eigenvectors satisfies

ZTMZ = 1 . �7�

If the eigenvectors zi, i=1, . . . ,3N, are scaled according to
qi=M1/2zi where qi is called normal coordinate, then the ki-
netic energy T and the potential energy V of the vibrating
lattice are strictly quadratic in q̇i and qi, respectively:

T =
1

2�
i=1

3N

q̇i
2, V =

1

2�
i=1

3N

	i
2qi

2. �8�

By means of a basis change derivatives of a physical quan-
tity A with respect to the normal coordinates can be ex-
pressed as derivatives with respect to Cartesian coordinates
x
 by
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�A

�qi
= �

�=1

N

�

=1

3
�A

�x


zi,3��−1�+
, i = 1, . . . ,3N . �9�

A central quantity derived from the changes of the system’s
dipole moment � with respect to the Cartesian coordinates of
the �th atom is the atomic polar tensor �APT� A���, defined
by its matrix elements as

A�

��� �

���
���

�x


, �,
 = 1,2,3. �10�

According to Wilson, Decius, and Cross,25 the intensity of
the ith normal mode in an infrared spectrum is given by

Ii � � ��

�qi
�2

, �11�

where we suppress any prefactors that depend on the mea-
surement conditions because we are later mainly interested
in relative intensities. By combining Eqs. �9� and �10� the
relation between changes of the system’s total dipole mo-
ment along the ith normal mode and the atomic polar tensors
is established as

���

�qi
= �

�=1

N

�

=1

3
���

���

�x


zi,3��−1�+
 �12a�

= �
�=1

N

�

=1

3

A�

���zi,3��−1�+
, � = 1,2,3. �12b�

The numerical implementation with a finite-difference ap-
proach to the calculation of changes of the dipole moment is
straightforward within a central-difference scheme,

���
���

�x


=
���x


��� + d� − ���x

��� − d�

2d
, �13�

where ��
��� indicates the �th component of the total dipole of

the system that results from the displacement of the �th atom
in the 
th Cartesian direction.

There are three technical points to address. First, the con-
struction of the full Hessian for N atoms within the central-
difference scheme requires 2�3N=6N fully self-consistent
calculations if no symmetry arguments help to reduce the
computational cost. The demand in computing time can thus
be high, depending on the system size. However, because the
distortions from the equilibrium geometry are small, the
electronic self-consistency cycle usually finishes after a few
steps if it starts with the already converged electronic wave
functions of the equilibrium configuration. As Eq. �13� is
structurally the same as Eq. �1� the elements of the Hessian
and dipole moment can be calculated accompanyingly. Sec-
ond, especially in slab geometry, the number N of atoms
chosen to include in the calculation determines to some ex-
tent the attainable range of the vibrational spectrum. If the
adsorption of molecules on surfaces is studied, then the high-
frequency region will be dominated by the adsorbate vibra-
tions whereas the low-frequency part—say, below 300
cm−1—is mostly the domain of lattice vibrations. If deeper-
lying substrate atoms have to be included in the calculation,

one will fall in the range of phonons where the validity of the
above-mentioned method of calculation of intensities be-
comes questionable. The lattice dynamics is then more ap-
propriately treated in the closely related so-called ab initio
force constant method26 or the density-functional perturba-
tion theory27 which allows for the calculation of the full pho-
non dispersion curves.

Third, in the case of vibrations of adsorbates at surfaces
the absolute values of the calculated in-plane dipole moment
components are less useful due to the periodic boundary con-
ditions. Nevertheless, when related to a common point of
reference, our test calculations have shown that the respec-
tive changes of these values can be used for the calculation
of vibrational intensities in the same way as in the case for
isolated molecules.

III. RESULTS AND DISCUSSION

A. Ammonia

Ammonia �NH3� has been described and geometry-
optimized in a 20�20�20 Å3 cubic unit cell with the three
N-H bonds aligned parallel to the corner-to-corner diagonals
of the cube. This arrangement results in identical N-H bond
lengths of 1.020 Å and a H-N-H angle of 107.6°, both in
close agreement with the values of 1.012 Å and 106.7° from
Ref. 28. If the molecule, on the other hand, is aligned in such
a way that the nitrogen lone pair orbital points in a direction
parallel to one of the unit cell axes, the supercell arrange-
ment breaks the C3v symmetry of the isolated ammonia mol-
ecule by pushing one H atom 0.1 Å �0.05 Å� off the plane of
the other two H atoms when put into a 10�10�10 Å3 �20
�20�20 Å3� supercell. We thus find a strong finite-size ef-
fect as an artifact of the supercell approximation that directly
affects the geometry and the symmetry. This could be alle-
viated �theoretically� only by increasing the box size to in-
finity. The problem may become even more apparent when
treating systems that are inherently incommensurate with any
possible supercell—e.g., in the case of a structure with a
fivefold symmetry which, of course, is not allowed in infi-
nitely extended crystals. This is a critical point because the
symmetry controls the �potential� degeneracies of vibrational
and electronic states. If the symmetry is erroneously broken,
also these degeneracies will be erroneously lifted. A further
illustration of this problem can be found in Ref. 29.

Ammonia has a computed permanent dipole moment of
1.470 D, very close to the experimental value28 of �expt
=1.471 D. During the calculation of the IR intensities as
described in Sec. II B with displacements of 0.05 Å in the
positive and negative Cartesian directions it is changed by
about 0.03 D. The C3v group to which ammonia belongs
consists of the identity operation E, two threefold rotation
axes C3, and three vertical mirror planes �v, in total three
classes and therefore three irreducible representations. As
each normal mode of vibration forms a basis for an irreduc-
ible representation of the point group of the molecule, the
symmetry of the normal modes can be identified beforehand
without knowing their shape. To this end it is convenient to
determine the action of the symmetry elements of the respec-
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tive point group on the atoms constituting the molecule in a
Cartesian basis. With a Cartesian coordinate system attached
to each atom of the molecule, this leads to a �in general�
reducible representation in the form of a 3N�3N matrix.
The characters of these representation matrices under the
symmetry operations of the point group C3v read, for ammo-
nia,

�E = 12, �C3
= 0, ��v

= 2. �14�

Employing the standard notation of the C3v character table,30

this representation reduces to

�tot = 3A1 + A2 + 4E . �15�

As we are interested in pure vibrations only, we have to
subtract the representations corresponding to pure transla-
tions and pure rotations. Doing this, we finally obtain

�vib = 2A1 + 2E . �16�

Thus the six possible pure vibrations of the ammonia mol-
ecule belong to two one-dimensional and to two two-
dimensional representations. Further inspection of the char-
acter table shows that all of them are symmetry-allowed—
i.e., are IR active—and thus may also occur in an electron
energy loss spectrum.

From the solution of the eigenvalue problem �6� of the
vibrating lattice we not only obtain frequencies and mode
intensities of a certain spectrum in an easy way, but also the
displacement patterns of the normal coordinates. That means,
above a quantitive analysis, we can also graphically describe
the vibrations. The vibrational modes of ammonia are de-
picted in Fig. 1. They clearly reflect the symmetry of the C3v
point group. The symmetry classification according to the
irreducible representations is done as follows: If a normal
mode—say, qi—belongs to a one-dimensional representa-
tion, any symmetry operation S of the group will carry qi on
itself or its negative self:

Sqi = ± qi. �17�

The symmetry operation can be expressed in a 3N�3N
matrix �which already exists from the above determination of
the symmetry species of the normal modes� and applied to
the respective eigenvector. The resulting signs for S running
through the symmetry operations are collected and compared
to the character table. If, on the other hand, an eigenvalue—
say, 	k—is twofold degenerate, the corresponding eigenvec-

tors qk1 and qk2 span a two-dimensional subspace in the
eigenspace. Thus any symmetry operation S of the group
applied to one of the qkj will result in a linear combination of
these two:

S�qk1

qk2
� = ��1 �1

�2 �2
��qk1

qk2
� . �18�

The traces of the coefficient matrices for S running through
the symmetry elements are exactly the characters of the two-
dimensional representation to which qk1 and qk2 belong. In
other words, qk1 and qk2 together generate a certain represen-
tation or, put in a third way, qk1 and qk2 together transform
according to the two-dimensional representation. This last
mode of speaking becomes clear when looking at the E
modes of ammonia: neither one nor the other vibration alone
transforms according to the elements of the C3v point group.

Due to the symmetry-induced degeneracy of the E vibra-
tional modes, the spectrum in Fig. 2�a� consists of only four
peaks of which, accidentally, the transition �in parentheses:
experimental values from Ref. 31� at 3330 cm−1 �3337 cm−1�
has, though symmetry allowed as the corresponding normal
mode belongs to the A1 representation, a very low oscillator
strength. The first peak at 1004 cm−1 �968 cm−1� corresponds
to the normal mode which may be pictorially imagined as the
totally symmetric bending or “umbrella” mode, Fig. 1, and
as such belongs to the totally symmetric A1 representation.
The second peak is due to the collective excitation of the
normal modes belonging to the twofold-degenerate fre-
quency of 1601 cm−1 �1628 cm−1�; the eigenvectors in the

FIG. 1. Graphic representation of the normal modes of ammonia
and their symmetry classification. N �H� atoms are shown as large
�small� circles. The out-of-plane umbrella mode is depicted in such
a way that atoms bearing dots �crosses� are displaced forwards
�backwards�. For the in-plane modes arrows �to scale for each
mode� indicate atomic displacements in the paper plane. Infrared-
active modes are labeled with an asterisk.

FIG. 2. Infrared spectrum of gas-phase �a� ammonia �NH3� and
�b� benzene �C6H6� calculated using the computed eigenfrequencies
from Eq. �6� and the relative intensities from Eq. �11�. For ammonia
the total intensity contributions is drawn as a solid line; for benzene
the in-plane �out-of-plane� intensity contribution is drawn as a solid
�dash-dotted� line. A Lorentzian broadening of 20 cm−1 has been
applied.
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corresponding subspace together transform according to the
E representation. Each such an eigenmode consists of a bond
stretching and a bond bending. The totally symmetric A1
stretching mode at 3330 cm−1 does not show in the spectrum.
The fourth peak is a result from the excitation of the two
degenerate E eigenmodes with a frequency of 3428 cm−1

�3414 cm−1�, consisting of bond stretches and contractions.
We state an excellent agreement between calculated and
measured vibrational frequencies for ammonia: The spectral
distance of the A1 �E� modes is slightly underestimated
�overestimated� by 1.8% �2.3%�. The absolute differences
vary between 3.7% for the lowest A1 mode and 0.4% for the
highest E modes.

B. Benzene

Benzene �C6H6� has been calculated and geometry-
optimized using a hexagonal supercell with primitive basis
vectors a=a�1,0 ,0�, b=a�−1/2 ,�3/2 ,0�, and c= �0,0 ,c�
with a=c=20 Å. The molecule plane was aligned parallel to
the a-b plane and two C-C bonds parallel to the a and b axes.
This arrangement results in C-C bond lengths of 1.398 Å
and C-H bond lengths of 1.095 Å �experimental values from
Ref. 28 are 1.399 and 1.101 Å, respectively�. The correct
D6h symmetry demanded by the Kekulé structure is indeed
determined by the internal symmetry analysis routine of the
employed ab initio code VASP.

The vibrations of the benzene molecule can be classified
according to the irreducible representations of the D6h point
group. Employing the above-mentioned strategy of determin-
ing the �reducible� representation in a Cartesian basis, reduc-
ing it, and omitting pure translational and pure rotational
contributions, we end up with in total 30 vibrational modes,

�vib = 2A1g + A2g + 2B2g + E1g + 4E2g

+ A2u + 2B1u + 2B2u + 3E1u + 2E2u. �19�

All the vibrational modes of benzene are graphically repre-
sented in Fig. 3. This figure also indicates their symmetry
classifications and the corresponding eigenfrequencies. Only
those modes in Eq. �19� belonging to the A2u or E1u repre-
sentation are IR active. These modes show up in the spec-
trum in Fig. 2�b�: The A2u out-of-plane mode �in parentheses:
experimental values from Ref. 31� excited at 677 cm−1

�673 cm−1� is indeed antisymmetric with respect to a C2 axis
perpendicular to the principal axis. The remaining three
peaks in the spectrum at 1048 cm−1 �1038 cm−1�, 1477 cm−1

�1484 cm−1�, and 3110 cm−1 �3048 cm−1� are due to excita-
tions of normal modes which transform according to the E1u
representation of the D6h point group.

The typical variation between the computed and measured
eigenfrequencies amounts to 0.7%. Only for the highest al-
lowed modes does this discrepancy slightly increase to 2%.
Again we may state an excellent description of the vibra-

FIG. 3. Graphic representation of the normal modes of benzene and their symmetry classification. C �H� atoms are shown as large �small�
circles. Out-of-plane modes are depicted in such a way that atoms bearing dots �crosses� are displaced forwards �backwards�. For the
in-plane modes arrows �to scale for each mode� indicate atomic displacements in the paper plane. Infrared-active modes are labeled with an
asterisk.
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tional problem of the gas-phase benzene molecule within the
developed supercell approach. Together with the good results
obtained for other molecules, here shown for ammonia in
Sec. III A, we suggest that the presented method should be
also applicable to more complex systems—i.e., molecules
adsorbed on solid substrates.

Here two remarks are appropriate concerning the method.
First, of course numerical errors are inevitably introduced by
the applied finite-difference approach to molecular motion.
This leads to a small numerical lifting of degeneracies where
the frequency differences between analytically degenerate
modes increase the higher the vibrational energy becomes.
The low-frequency E2u modes at 395 cm−1, e.g., are numeri-
cally degenerate within 1 cm−1 whereas the high-frequency
E1u modes at 3110 cm−1 are seemingly separated by
10 cm−1. Despite this error, the symmetry analysis applied to
the calculated normal-mode vectors indeed recovers all the
irreducible representations noted in �19� correctly.

Second, due to the extremely high symmetry of the ben-
zene molecule, the force constant matrix only has very few
independent elements, so in principle it would suffice to dis-
place one H and one C atom to obtain the full matrix with
symmetry considerations. This could alleviate some of the
numerical problems and may prove useful to save computa-
tional time in some cases, but it is restricted to high-
symmetry systems. In the case of benzene on Si �001� we
only find a C1 symmetry for the total system. Nevertheless,
we believe that a symmetry analysis of the adsorbed species
�where applicable� alone treated as an isolated molecule is
important to be better able to assess the changes that occur to
the vibrations when adsorbed on the surface, with respect to
the frequencies and to the intensities, but as well to the dis-
placement patterns of the normal modes.

C. Benzene adsorbed on Si „001…

Various experimental and theoretical work7–12 has been
devoted to the adsorption of benzene on the Si �001� surface
which emerged in the general agreement that benzene ad-
sorbs in a butterfly fashion. Other suggested bonding geom-
etries turned out instead to be either unstable or metastable.
Thus we have started the structural optimization with a ge-
ometry such that the benzene �1,4� C atoms are aligned par-
allel to one Si dimer where we employed the asymmetrically
buckled dimer model of the 2�2 reconstructed Si �001� sur-
face. The resulting 1,4-cyclohexadiene-like butterfly geom-
etry is depicted in Fig. 4. It is seen that because of the size of
the benzene molecule, full monolayer coverage corresponds
to one benzene molecule per 2�2 surface unit cell. So ben-
zene relaxes from the planar gas-phase geometry with D6h
symmetry to a tilted cyclohexadiene structure with C2v sym-
metry when adsorbed on Si �001�. Despite this drastic reduc-
tion of symmetry it is still possible to uniquely relate the
displacement patterns of the vibrations of the adsorbed spe-
cies to those of the isolated benzene molecule.

Resulting from the interaction with the delocalized
-electron system of benzene, the buckling of the dimer with
bonds to benzene vanishes whereas the buckling angle of the
remaining Si dimer is essentially unchanged. This is in con-

trast to the cluster calculations done in Ref. 12 where the
authors have a priori assumed a C2v symmetry of the en-
tire benzene/Si �001� adsorbate-substrate system. We find,
though, that the buckling of the free dimer remains, but this
does not affect the results because the vibration of the free Si
dimer is a low-frequency lattice vibration that does not mix
with the adsorbate-induced or adsorbate-dominated vibra-
tions we are primarily interested in.

The calculated vibrational spectrum of benzene adsorbed
on Si �001� is shown in Fig. 5. It is divided in out-of-plane
�a� and in-plane �b� contributions. Here the term “out-of-
plane” means the intensity resulting from the dynamical di-
pole perpendicular to the surface where “in-plane” corre-
sponds to the components parallel to the surface. Obviously,
the spectrum is much richer than that of the isolated benzene
molecule because of the reduced symmetry and the interac-
tion with the substrate. Nevertheless, it is possible to inter-
pret the origin of most of the major peaks in terms of the
vibrations of gas-phase benzene. To that end we compare the
form and frequencies of the vibrations of the adsorbate-
substrate system as depicted in Fig. 6 with the benzene
modes as shown in Fig. 3. Afterwards we will identify com-
mon features in the calculated and measured HREEL spec-
trum.

We begin with the most important out-of-plane modes
shown in Fig. 6�a�. Although Si atoms are involved in the
295-cm−1 mode, the major displacements take place within
the adsorbate which is found to correspond to one of the E2u
benzene modes with a frequency of 395 cm−1 �cf. Fig. 3�. So
this mode is softened by 100 cm−1 due to the interaction with
the substrate. An additional feature seen in Fig. 6�a� for the
295-cm−1 mode is the symmetric up-and-down vibration of
the Si dimer the benzene molecule is bonded to. The largest
out-of-plane intensity peak at 757 cm−1 originates clearly
from one of the E1g modes at 838 cm−1; the frequency shift
of 81 cm−1 is related to the nearly complete immobilization
of the two C atoms forming bonds to the surface Si dimer.
The second largest peak at 3107 cm−1 results from the E1u
mode at 3110 cm−1 of benzene. It is shifted by merely
2 cm−1and as such is characteristic for the adsorbate itself, in
this case of a C-H stretch; the substrate influence is nearly
neglegible.

The major in-plane modes and their coupling to the elec-
tromagnetic field or to electrons are characterized by the

FIG. 4. Side views along the 	011
 and 	01̄1
 directions and top
view of benzene adsorbed in a butterfly fashion on the Si �001�
surface. Si atoms are sketched as large white circles, Si dimer atoms
with no bonds to benzene as large gray circles; “up” and “down”
dimer atoms are distinguished by size. Dark gray circles correspond
to C atoms, small gray circles to H atoms. The 2�2 surface unit
cell is indicated by a rectangle.
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spectrum in Fig. 6�b�. The peak at 1103 cm−1 is the result of
the excitation of a B1u-like normal mode of benzene at
1137 cm−1 which is redshifted by 36 cm−1 due to the
molecule-substrate interaction. The 1140-cm−1 mode in the
spectrum is due to one of the E2g modes with a frequency of
1162 cm−1. The mode with a frequency of 1332 cm−1 is
partly similar to the A2g benzene mode at 1333 cm−1. A close
look at the in-plane modes at 1576 and 1629 cm−1 shows that
these two are most probably derived from the E2g modes at
1612 cm−1. While the symmetric C-C bond stretch at
1629 cm−1 is related directly to the E2g mode, the asymmet-
ric C-C bond stretch 1576 cm−1 obviously only becomes ap-
parent when the molecule interacts with the surface. For a
free molecule these two modes would be expected to vibrate
with the same frequency—in other words, would be expected
to be degenerate. The C-H stretch mode at 3107 cm−1 also
shows up in the in-plane spectrum. All the observed redshifts
and mode softenings may be simply explained by an increase
of the “effective masses” of the atoms due to the presence of
the heavier Si atoms.

Figure 7 demonstrates that our simple method of calculat-
ing frequencies and intensities of vibrational transitions
yields a spectrum that for the major peaks compares very
well to a measured HREEL spectrum of the adsorbate com-
plex benzene on Si �001�. We directly compare the frequen-
cies of the adsorbate modes in Fig. 6 with the experimental

ones from Fig. 7 �given in parentheses�. The peak related to
the C-H stretching vibration is reproduced at 3107 cm−1

�3050 cm−1�, but we fail to predict the smaller peak at
2935 cm−1 which Staufer et al.12 attribute to the �1,4� C-H
stretching—i.e., involving the C atoms bonded to the Si
dimer. The measured double-peak structure may be traced
back to a combination of the out-of-plane and in-plane
modes in Fig. 6 with the highest frequencies. The peak at
1629 cm−1 �1623 cm−1� results from the excitation of the
normal mode involving the symmetric stretch of the remain-
ing two C-C double bonds of the adsorbate. As discussed
above, in the in-plane spectrum we find a mode involving the
asymmetric stretch of the C-C double bonds which does not
appear in the measured HREEL spectrum. The peak at
757 cm−1 �776 cm−1� shows the highest relative intensity in
the calculation as well as in the experimental spectrum; it is
due to the excitation of an out-of-plane vibration of the C-
C double bonds of opposite phase. We attribute the calcu-

FIG. 5. IR spectrum of benzene adsorbed on Si �001�. The solid
line �a� represents the out-of-plane contributions, the dashed line �b�
the in-plane contributions. Fundamental vibrations accompanied
with a nonzero transition matrix element are referred to by their
respective wave numbers �in cm−1�.

FIG. 6. Graphic representation of a selection of the IR- or
HREELS-active �a� out-of-plane modes and �b� in-plane modes of
vibration of benzene adsorbed on Si �001�. C �H� atoms are shown
as medium-sized �small� circles and Si atoms as large circles. The
out-of-plane modes are depicted in such a way that atoms bearing
dots �crosses� are displaced forwards �backwards�. Gray dots and
circles belong to distortions of substrate atoms. For the in-plane-
modes the small arrows �to scale for each mode� indicate the dis-
placements of the respective atoms.

FIG. 7. Measured HREEL spectrum 	modified version of the
figure in Staufer et al. �Ref. 12�
.
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lated frequencies of 514 and 565 cm−1 to the experimental
wave numbers 538 and 604 cm−1 because the displacement
patterns of the corresponding normal modes are in accor-
dance with the assignment of these modes by Staufer et al.
Although the normal modes seem to be equivalent when
looking at the projection on the surface plane, they differ
considerably in amplitude. This becomes clear when keeping
in mind that the mode with a frequency of 514 cm−1 leads to
a nonvanishing contribution to the in-plane intensity as
shown in Fig. 6�b� whereas the 565-cm−1 mode is forbidden
in the in-plane spectrum. The first discernible experimental
peak at 315 cm−1 we find to result from the excitation of the
“butterfly-bending” normal mode with a calculated fre-
quency of 295 cm−1 which we relate to the lowest-lying
�395-cm−1� fundamental mode of the isolated benzene mol-
ecule.

IV. SUMMARY

In this paper we presented a simple but accurate method
for the calculation of the frequencies and oscillator strengths
of vibrational transitions in systems with partial or full local-
ization in the framework of density-functional theory with
periodic boundary conditions. The method is suited for iso-
lated molecules as well as for extended surface systems that
can be described in a slab geometry. Together with the fre-

quencies and displacement patterns of the calculated vibra-
tions we are able to reproduce and predict IR and HREEL
spectra including the correct relative intensities. Moreover,
the results of these calculations also allow a qualitative in-
terpretation in the intuitive graphical picture of normal
modes. We have clearly demonstrated the influence of the
actual adsorbate bonding and geometry on the vibrational
spectra. Consequently, we expect the method to be helpful to
unambiguously identify or discard suggested adsorption
models by interpreting experimental IR and HREEL spectra.
We have shown that the additional computational demand is
relatively moderate and might even be reduced when exploit-
ing potential symmetries of the adsorbate and/or the adsor-
bate complex.
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