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We present a theoretical study of collective plasmon excitation in metal thin films using the jellium model.
The excitation spectra are calculated in the linear response theory and the time-dependent local density ap-
proximation. The evolution from surface plasmons at large thickness to the hybridized thin film plasmons at
smaller thickness is obtained as functions of atomic layers and electron momenta. The energies of the hybrid-
ized plasmons follow qualitatively the classical electrodynamical model at large to intermediate thickness. For
ultrathin films with a few atomic layers, these plasmon resonances evolve into intraband and interband tran-
sitions at small momenta. The latter results from the quantized electron states normal to the films.
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I. INTRODUCTION

Collective electronic excitation of solid surfaces plays a
central role in many surface dynamical phenomena and pro-
cesses. Excitation of surface plasmons accompanies large
electron density oscillations localized near the surface. Such
localized oscillations are sensitive not only to the geometric
and electronic structure at surfaces, but also to the dynamical
processes occurring in the surface region. It is the common
ground for surface sensitivity in many spectroscopies. Dur-
ing the past two decades, surface plasmons have been inten-
sively investigated by both theory1,2 and experiment.3–7 Ex-
perimental studies of surface plasmons have focused on the
excitation energies and dispersions, which are accessible by
a number of spectroscopic techniques such as electron en-
ergy loss spectroscopy �EELS�,3 optical absorption and
transmission,4 photoemission and inverse photoemission,5

and surface enhanced Raman spectroscopy �SERS�.6 Theo-
retical understanding on surface plasmons has been based
on either classical models8–11 or quantum-mechanical
calculations.12–17 Linear response theory combined with
time-dependent local density approximation18,19 �TDLDA�
provides one of the most accurate approaches to surface
plasmons. It has been successfully applied to describe the
plasmon energies and dispersions of metal surfaces,15–17

adsorbed overlayers,20 semiconductor quantum wells, and
thin films.21,22 In atomic and molecular systems, TDLDA
has also been very successful in the description of plasmon
excitations for atoms,18,19 molecules,23 and small metal
clusters.24,25

The aim of this work is to explore the collective plasmon
excitation of metal thin films, whose thickness can be con-
trolled continuously layer by layer. This work is motivated
by the recent experimental progress in the preparation and
characterization of high quality thin films using molecular
beam epitaxy �MBE�.26 The precise control of the film thick-
ness down to single atomic layer offers the unique possibility
to engineer electronic states normal to the film. How such
layer-resolved thin films modulate their physical and chemi-

cal properties has received much attention in recent experi-
ments. So far, quantum oscillations have been observed in
the superconducting transition temperature,27 electron-
phonon coupling,28 work functions,5,28 the critical magnetic
field for superconductivity,29 and catalytic reactions in the Pb
and Pt films on a Si�111� 7�7 substrate.30 These oscilla-
tions, which were obtained as a function of atomic layers, are
attributable to the quantization of electronic states normal to
the surface. In a recent experiment, plasmon excitation of
silver thin films on the Si�111� 7�7 substrate has also been
measured as a function of film thickness.31

Qualitatively, thin film plasmons can be understood in a
one-dimensional model by solving the classical Maxwell
equations.8 The coupling between the surface plasmons at
two sides of the film results in hybridization between the two
surface modes. It leads to two coupled modes �± of the thin
film

�±�q,D� =
�p

�2
�1 ± e−qD�1/2. �1�

Here �p is the bulk plasmon frequency. The energy splitting
between the two modes depends on the film thickness D and
the parallel momentum q. The low-energy mode �− corre-
sponds to a symmetric induced charge distribution across the
film �breathing mode�, while the high-energy mode �+ has
an antisymmetric charge distribution �sloshing mode�. In the
thick-film limit, the coupling between the two surfaces of the
film becomes weak. The thin film plasmons reduce to two
degenerate surface plasmons, whose frequency equals
�p /�2. The classical model in Eq. �1� gives an approximate
description of the energy splitting of thin film plasmons.

One of the common drawbacks of the classical models is
the ignorance of the electronic structures of bulk materials
and at surfaces. This drawback is in sharp contrast with the
observation that surface plasmons are extremely sensitive to
the ground state electronic structure at a surface and its dy-
namical response to external perturbations. Using the hydro-
dynamic model, Bennett first demonstrated the dependence
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of plasmon dispersion on the electron density profile at
surfaces.9 Later, Schwartz and Schaich carried out a more
detailed analysis with different model electron densities and
boundary conditions, and concluded that both the frequency
and the dispersion of the surface plasmons sensitively de-
pend on the surface electronic distribution.10 These model
studies demonstrated the importance of the microscopic elec-
tronic structures in the description of plasmon excitations.

On a more quantitative level, surface plasmons of metal
thin films and semiconductor quantum wells have been in-
vestigated quantum mechanically. Using a jellium model,
Eguiluz13 first applied the random phase approximation
�RPA� to calculate the electronic excitation of metal thin
films based on the self-consistent electronic structure of the
jellium slabs obtained by Lang and Kohn. This approach was
pursued further by Dobson and Schaich,21,22 who studied the
excitation spectra of neutral and charged slabs at small wave
vectors within TDLDA. The two coupled plasmon modes �±
of a thin film were found in the calculated spectra. Moreover,
there was an additional peak near 0.8�p. It was not clear
from their calculation whether this mode corresponds to col-
lective electron oscillation or intersubband transitions.22 Re-
cently, Leseduarte et al.32 carried out a semiclassical calcu-
lation for the collective excitation in metal slabs within RPA.
The dispersion of the high-energy modes obtained by this
model is different from that of Dobson and Schaich for the
same film. In the small q limit, �+ approaches 0.8�p, while
the multipole plasmon mode16,17 is close to �p. All these
previous studies only calculated a few arbitrarily chosen
thicknesses, and did not yield layer-resolved information in
the excitation spectra in detail.

In this work, we report on a systematic TDLDA study of
the collective plasmon excitation of metal thin films, focus-
ing on their layer-dependent splitting and dispersion. The
film thickness has been continuously scanned from a few
tenth nanometers to a single atomic layer. As the thickness
decreases, the evolution from surface plasmons to hybridized
thin film plasmons is obtained as functions of film thickness
and wave vector. At large and intermediate thickness, the
energy splitting between the thin film plasmons follows
qualitatively the classical electrodynamic model. For ultra-
thin films with a few atomic layers, transition from plasmon
excitations to intraband and interband electron-hole pair ex-
citations has been observed at small momenta. Comparison
between the classical model and the quantum-mechanical
calculations is also made. Quantum effects in the plasmon
dispersion, the intersubband transitions, and the multipole
plasmon excitation are found at small wave vectors and in
the thin-film limit.

The rest of this paper is organized as follows. In Sec. II,
the computational methods are outlined. In Sec. III, the re-
sults of a thick slab are first compared with those given by
Lang and Kohn and Liebsch for a semi-infinite jellium sur-
face. It is followed by a systematic study of thin film plas-
mons. The validity and limitation of the classical models are
discussed. Finally in Sec. IV, we give a short summary of
this paper.

II. THEORETICAL METHODS

Following the early works on surface2,17 and thin film
plasmons,13,21,22 we developed a self-consistent density func-

tional approach for the ground state electronic structure and a
linear response scheme for excitation properties. In this sec-
tion, various ingredients involved in our calculations are de-
tailed below.

A. Electronic structure of a jellium thin film

We used a jellium model and the self-consistent density
functional theory �DFT� approach33,34 to describe the elec-
tronic structure of the thin films. In the jellium model, the ion
charges are approximated by a uniform positive background
as follows:

nion = �n0, �x� � D/2,

0, �x� � D/2.
� �2�

Here D is the thickness of the film �see Fig. 1�. The valence
electrons of the jellium are described by two equivalent pa-
rameters, the electron density n0 or the average electron ra-
dius rs

n0 =
3

4�rs
3 . �3�

Due to the translational symmetry and homogeneity par-
allel to the surface, the y-z plane, the effective one-electron
potential depends only on the coordinate normal to the film
x. The wave functions and eigenenergies of the system can
be written in the following forms �atomic units are used in
this paper e=m=�=1�:

�n,k��
= eik��·r��	n�x� , �4�

En,k��
= 
n +

1

2
�k���2. �5�

Here k�� and r�� are the parallel components of the electron
momentum and position vector, respectively. The normal

FIG. 1. Schematic illustration of the jellium slab with thickness
D used in the calculation.
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eigenenergies �
n	 and wave functions �	n	 fulfill the follow-
ing one-dimensional Kohn-Sham equation:


−
1

2

d2

dx2 + veff�x��	n�x� = 
n	n�x� . �6�

The effective one-electron potential veff�x� consists of two
parts: the electrostatic potential � and the exchange-
correlation potential vxc �Ref. 35�

veff�x� = ��x� + vxc�x� . �7�

The electrostatic potential is obtained by solving the Poisson
equation and the exchange-correlation part is described by
the local-density approximation �LDA� with Wigner’s
formula.2 By solving Eq. �6� self-consistently, the ground
state eigenenergies and wave functions of the system are
obtained. The electron density for a finite slab is given by

n�x� = 2 �
En,k��

�EF

��n,k��
�r���2 =

1

�
�


n�EF

�EF − 
n��	n�x��2.

�8�

In general, the Fermi energy of a thin film differs from
that of the semi-infinite surface, especially when D is small.
In our calculation, EF is determined by the charge neutrality
condition



−





n�x�dx = n0D . �9�

Equation �6� is numerically solved on a uniform grid. The
eigenenergies and wave functions are obtained by diagonal-
izing the Hamiltonian matrix.

B. Linear response of the jellium thin film

With the computed electronic structure, electronic excita-
tions of the jellium slab induced by an external field can be
calculated in the linear response theory, which has been
adopted in early studies of surface plasmon2,17 and thin film
plasmons.13,21,22 Here we are concerned with the excitation
induced by inelastic electron scattering, as measured by
EELS. The perturbation potential of the impact electrons is
modeled by a charged sheet approaching the jellium slab
from one side �x�0�. It takes the following form:36

�ext�x,q� = −
2�

q
eqx, �10�

where q= �q� �� is the magnitude of the parallel momentum. For
a weak external field, the response of the electron gas can be
obtained in the linear response function as follows:37

�n�x,q,�� =
 dx���x,x�,q,���ext�x�,q� . �11�

Here � is the linear response function, and �n is the induced

electron density. Within the TDLDA and the many body per-
turbation theory,38 � can be obtained perturbatively by solv-
ing the following Dyson equation:

��x,x�,q,�� = �0�x,x�,q,�� +
 dx1
 dx2�0�x,x1,q,��

�K�x1,x2,q���x2,x�,q,�� , �12�

where K is the kernel of the effective electron-electron inter-
action. In TDLDA, the kernel for the jellium systems reads

K�x1,x2,q� =
2�

q
e−q�x1−x2� + ��Vxc

�n
�

n=n�x1�
��x1 − x2� .

�13�

We also used Wigner’s formula of the exchange-correlation
kernel as in the ground state calculation. In Eq. �12� �0 is the
response function of the noninteracting electrons, which is
constructed from the eigenenergies and wave functions ob-
tained from Eq. �6�,37

�0�x,x�,q,�� =
 d�r�� − r����e−iq��·�r��−r�����̃0�r�,r��,�� , �14�

�̃0�r�,r��,�� = �
n,k��

�
m,k���

fn,k��
− fm,k���

� − Em,k���
+ En,k��

+ i�

� �n,k��

� �r���n,k��
�r����m,k���

�r���m,k���
� �r��� , �15�

where the Fermi-Dirac distribution function is defined as

fn,k��
= �2, 
n +

1

2
�k���2 � EF,

0, 
n +
1

2
�k���2 � EF.� �16�

In the numerical implementation, the response functions
are represented on the same grid as that used in solving Eq.
�6�. Therefore �0�x ,x� ,q ,��, K�x ,x� ,q�, and ��x ,x� ,q ,��
are all matrices, whose rank is equal to the dimension of the
grid.39 In the evaluation of �0, the sum over k�� in Eq. �15�
can be done analytically, giving the following expression of
�0:13,14

�0�x,x�,q,�� = �
n=1

M

�
m=1




Fnm�q,��	n
��x�	n�x��	m�x�	m

� �x�� ,

�17�
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Fnm�q,�� = −
1

�q2�q2 − 2�
n − 
m� + i
2q2�EF − 
n� − �1

2
q2 − 
n + 
m − � − i��2�1/2

− i
2q2�EF − 
n� − �1

2
q2 − 
n + 
m + � + i��2�1/2� . �18�

In Eq. �17�, the sum over n runs over the number of occupied
states M, while the sum over m runs over both the occupied
and unoccupied states.

As soon as we are concerned with the asymmetric pertur-
bation induced by the impact electrons in EELS, the surface
response function can be defined as

g�q,�� =
 dxeqx�n�x,q,��

= −
2�

q

 dx
 dx�eqx��x,x�,q,��eqx�. �19�

The imaginary part of the surface response function
Im�g�q ,���, the surface loss function, is related directly to
the energy loss spectra measured by EELS.40,41

III. RESULTS AND DISCUSSIONS

A. Comparison between a thick film
and the semi-infinite surface

Before studying thin film plasmons, we calculated a thick
slab to compare with the semi-infinite jellium surface. Our
calculation reproduces both the ground state and excitation
properties of the jellium surface.

To simulate the Ag thin films studied in the experiment,31

a density rs=3 is chosen. Figure 2 shows the ground state
electron density and the effective potential near the surface

of the slab with D=12�F ��F=9.82 a.u. is the Fermi wave-
length�. The results for the jellium surface35 with rs=3 are
also plotted �dots� in Fig. 2. Here, the comparison is made
only in the surface region, where the Friedel oscillation and
quantum spill out of the electrons are significant. The elec-
tron density and effective potential obtained in our calcula-
tion are in close agreement with those given by Lang and
Kohn.35

Figure 3 shows the surface loss function Im�g�q ,��� as a
function of energy for the same slab as in Fig. 2 at three
different wave vectors: q=0.05, 0.075, and 0.15 a.u., respec-
tively. The plasmon dispersion is given in the inset for a wide
range of momentum. Again the excitation spectra compare
well with those obtained by the semi-infinite jellium
surface.42 The bulk plasmon frequency is �p=9.1 eV, which
corresponds to a surface plasmon frequency �s=�p /�2
=6.4 eV. In Fig. 3, each curve shows a main peak close to
the energy of the surface plasmon. The dispersion of these
peaks is in good agreement with that obtained for the semi-
infinite surface. In particular, it has a negative slope in the
small q region and a positive slope at large q. Such a dis-
persion has been well documented for jellium metal
surfaces.1,15,43 In addition, there is a weak yet discernible
peak at 7.8 eV in Fig. 3, which is characteristic for multipole
plasmon excitation. The multipole mode is usually weak
and can hardly be distinguishable from the tail of surface
plasmon in high density metals. This is especially true at
large q.16,17

FIG. 2. The ground state electron density and the one-electron
potential near the surface of a thick film with D=12�F

=117.84 a.u. The background of positive charge has density
n0=3/ �4�rs

3�=8.84�10−3 a.u. The dots are the results by Lang
and Kohn for the semi-infinite jellium surface at the same density
�Ref. 35�.

FIG. 3. Energy and momentum dependence of the surface loss
function Im�g�q ,��� for the thick film with D=12�F at three dif-
ferent q. The resonance peak in each spectrum near 6.4 eV is the
surface plasmon resonance of the jellium surface. Inset: the plas-
mon dispersion of the metal film from our calculation �dots� com-
pares favorably with that of the semi-infinite surface �solid curve�.
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B. Thin film plasmons and their thickness dependence

The finite thickness of a thin film introduces electron con-
finement and quantization perpendicular to the film. In this
section, the thickness dependence of the excitation properties
is explored systematically as a function of atomic layers.

Figure 4 shows the surface loss function Im�g�q ,��� for a
typical thin film with D=5�F. The excitation spectra are
plotted as functions of energy and wave vector. The q depen-
dence of the spectra is characterized by three different re-
gions and evolves from surface plasmons to thin film plas-
mons. At large q, q�0.075 a.u., only one plasmon peak is
observable in each spectrum. It corresponds to the surface
plasmon at one side of the slab excited by the impact elec-
trons. The plasmon energy has a positive dispersion as q
increases as found for many metal surfaces.17 At intermedi-
ate q, 0.04�q�0.075 a.u., the plasmon resonance splits into
two peaks, corresponding to the two hybridized modes given
in Eq. �1�. This splitting becomes larger as the wave vector
decreases. At small q, q�0.04 a.u., more substructures ap-
pear in the spectrum, especially in the energy range of
7–8 eV. This feature results from the interaction of the mul-
tipole plasmon with the antisymmetric mode. It will be dis-
cussed in detail later.

Figure 5�a� shows the induced electron density of the
resonance peak at q=0.15 a.u. marked by an arrow in Fig. 4.
Here, only the electrons at the right-hand side of the slab are
excited due to the external field assumed in Eq. �10�. The
electrons at the left-hand side of the slab do not respond to
the incoming electrons, because the perturbation potential
decays rapidly inside the film at large q. This is in agreement
with the experimental observations that the plasmon disper-
sion of all thin films approaches that of the surface plasmon
in the large q limit.31 As q decreases, the external potential
penetrates gradually into the film. Electrons at both surfaces
of the slab start to respond to the external field and interact
with each other, leading to plasmon hybridization between
the two surfaces. The splitted plasmon peaks at intermediate

q result from the hybridization of surface plasmons, as ex-
pected by Eq. �1�. Figures 5�b� and 5�c� show the induced
electron densities of the two peaks at q=0.05 a.u., also
marked by arrows in Fig. 4. The density of the low-energy
peak, Fig. 5�b�, shows symmetric distribution across the slab.
In contrast, the high-energy mode in Fig. 5�c� has an anti-
symmetric density response. This picture of plasmon hybrid-
ization is very similar to the cases in nanoshells and other
nanostructures.44–47

We pushed our calculation further to the very small q
limit in order to gain insight into the excitation properties of
the thin films induced by optical excitation. It can be seen
from Fig. 4 that in the small q limit, the antisymmetric mode
splits into more substructures due to the coupling to the mul-
tipole plasmon excitation. The induced charge and field of
the multipole mode extend much deeper into the slab and can
only couple to the antisymmetric mode. The multipole
modes are only observable at small wave vectors16,17 in the
energy range of 0.8�p. From Fig. 5�c�, it can be seen that the
antisymmetric mode has two opposite induced charge sheets
at the two sides of the slab. The field of the antisymmetric
mode is thus extending in the whole slab. In comparison, the
density of the symmetric mode is much localized near the
surface as shown in Fig. 5�b�. It has thus little coupling to the
multipole mode.

As the thickness of the film further decreases, the interac-
tion between the two surface plasmon modes becomes stron-
ger, and electron quantization normal to the surface is more
prominent. These two effects lead to larger splitting between
the symmetric and antisymmetric modes at large q and a
more pronounced single-particle character at small q. Figure
6 shows the excitation spectrum for D=0.5�F, which corre-
sponds to an ultrathin film with a single atomic layer. At
large q, the two resonance peaks for the symmetric and an-
tisymmetric mode are still observable. The splitting between
them is, however, much larger compared to the case for D
=5�F shown in Fig. 4 at the same wave vector. At small q,
the symmetric mode is greatly enhanced and its linewidth
becomes much smaller. Accompanied with the enhancement
of the symmetric mode, the broad antisymmetric band disap-

FIG. 4. �Color online� The wave vector dependence of the sur-
face loss function Im�g�q ,��� for a thin film with D=5�F. The
plasmon resonance peak splits at q=0.075 a.u. The three arrows
mark the peak positions, at which the induced electron densities are
shown in Fig. 5. All the curves are offset for clarity.

FIG. 5. The induced electron densities of the plasmon reso-
nances marked by arrows in Fig. 4. The dashed lines show the
positions of the thin film edge.
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pears. Instead, a few discrete peaks show up. These discrete
peaks correspond to electron-hole pair excitations between
the discrete energy subbands in the normal direction. The q
dependence of the excitation spectra shown in Fig. 6 clearly
shows the transition from plasmonlike excitation to single-
particle excitation in the ultrathin films.

The character of the single particle excitations in the ul-
trathin films can be understood qualitatively from the exter-
nal potential and the electronic structure of the noninteract-
ing jellium films. At small q, the external potential in Eq.
�10� can be expanded as

��ext�x,q��q→0 = −
2�

q
− 2�x + O�q� . �20�

This potential yields two different kinds of transitions ac-
cording to the Fermi’s golden rule. The first term in Eq. �20�
gives rise to intraband transitions between states with the
same inversion symmetry across the film, while the second
term corresponds to interband dipole transitions between
states with different symmetry. The decreasing linewidth of
the intraband mode at small q results from the reduced phase
space for intraband transitions.48 The enhanced intensity in-
dicates the collective character of this mode even in the small
q limit. In contrast, the discrete peaks in the high energy
band �6–10 eV� are completely single-particle-like and do
not exhibit any collective behavior. Checking the sum-rule
indicates that the two types of transitions have equal partial
sum, due to the symmetry in the ground-state wave func-
tions.

Figure 7 shows the dispersion and splitting of the thin film
plasmons as a function of film thickness D=12�F−3.5�F.
Here a monolayer of the closely packed Ag �111� surface
corresponds to approximately 0.5�F. The dashed line in each
panel is the plasmon dispersion of the semi-infinite jellium
surface.42 At large q, the plasmon dispersions of all thin films
coincide with the surface plasmon independent of the film
thickness. At each thickness, a critical wave vector qc, below
which the symmetric and antisymmetric modes start to split,
can be clearly seen. At very small q, more substructures ap-
pear in the antisymmetric band. Yet the spectrum is still fitted

by a single Lorentzian in the energy range covering all these
substructures.49 This fitting scheme leads to a large uncer-
tainty in the antisymmetric mode at small q. Figure 8 shows
the layer-dependent dispersions for even thinner films with
D=3�F to 0.5�F. As D decreases, the splitting occurs at
larger q. In addition, single particle excitations start to domi-
nate the spectrum at small wave vectors. The plasmon dis-
persions in Figs. 7 and 8 show a monotonic variation with
the film thickness, and does not exhibit any oscillation as
observed in the work function,5,28 superconducting transition
temperature,27 and electron-phonon coupling.28

Figure 9 shows the dependence of qc on the film thick-
ness. It increases gradually as the thickness decreases. For a
thinner slab D=2�F, qc is about 0.18 a.u., while it is about
0.03 a.u. for a thicker slab D=12�F. When the thickness ap-
proaches to infinity, qc goes to zero. No splitting occurs in
the surface plasmon. The interaction between two surfaces
results from the penetration of the external field, which is
dependent on the product of wave vector and the film thick-
ness. The interaction is only noticeable when the product qD

FIG. 6. �Color online� The wave vector dependence of the sur-
face loss function Im�g�q ,��� for the thin film with D=0.5�F. The
single particle excitations appear in the energy band of the antisym-
metric mode at small q. All the curves are offset for clarity.

FIG. 7. The dispersion of the thin film plasmons as a function of
thickness, which is varied layer by layer at small thicknesses D
�5�F. The dashed line in each panel shows the surface plasmon
dispersion for the semi-infinite jellium surface.42

FIG. 8. The same as Fig. 7 for D=3�F to 0.5�F. For extremely
thin films, the single particle transitions �triangles� appear at small q
in the antisymmetric band.
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is small enough. Therefore, the product qcD is nearly con-
stant for all films calculated, as expected by the classical
model in Eq. �1�.

Figure 10 summarizes the energies of the symmetric and
antisymmetric plasmons as a function of the film thickness at
a fixed wave vector q=0.025 a.u. The plasmon energies cal-
culated by Eq. �1� are also given for comparison �solid lines�.
Since the surface plasmon of the classical model �s
=�p /�2=6.4 eV has no dispersion, the solid lines generally
deviate from the TDLDA results, especially at large thick-
ness. If we replace the surface plasmon frequency �p /�2 in
Eq. �1� with the dispersive �s�q=0.025�=6.235 eV given by
TDLDA, a better agreement can be found between TDLDA
and the “dispersive” classical model. For ultrathin films, the
antisymmetric band is gradually substituted by the single-
particle transitions. From the thickness dependence of the
critical wave vector �Fig. 9� and the energy splitting �Fig. 10�
between the symmetric and antisymmetric modes, we can

conclude that the classical model in Eq. �1� gives a fair quali-
tative description of the plasmon hybridization and splitting
in the thick films. However, it cannot describe the quantum
features of the spectra in the thin-film limit.

A detailed comparison between the jellium model and the
experimental data is not yet possible so far, due to the fact
that the present model neglected two aspects of the experi-
mental system. �1� The d band of the silver film is not de-
scribed in the jellium slab.42 As a result, the plasmon energy
of the jellium model is higher than the experimental value
3.9 eV. �2� In the experiment, the silver films are adsorbed
on the silicon substrate, which has not been considered in the
present study. Nevertheless, the general features of the col-
lective excitation obtained by the symmetric jellium model
are still meaningful for the understanding of thin film plas-
mons, at least on the conceptual level.

C. Quantum effects of plasmon excitation in thin films

In this section, we discuss some of the differences be-
tween the quantum mechanical model and the classical
model. Such differences can be best demonstrated by a dy-
namical response function d���, which is often used in the
study of surface plasmons1,50,51

d��� =

 dzz�n�z,��


 dz�n�z,��
. �21�

Here �n�z ,�� is the induced electron density in the linear
response regime. The d��� function is generally complex. In
the classical model, this function is simply a real delta func-
tion localized exactly at the edge of the slab, because the
induced charge is determined by the sharp boundary condi-
tion in classical electrodynamics. In TDLDA, �n�z ,�� has a
finite density distribution due to the quantum fluctuation of
the electronic system as shown in Fig. 5. Although the dis-
tribution of �n is still localized in the surface region, it does
not fully coincide with the jellium edge. The deviation of
d��� from the surface edge defines the dynamical image
plane, which is usually about 1 a.u. outside the jellium sur-
face. It characterizes the dynamical response of the electrons
at a metal surface.

With the fundamental difference illustrated in d���, many
physical quantities can be expressed in terms of d���. Below
are a few quantities relevant for thin film plasmons.

�i� In the classical model, the energy of the surface plas-
mon is a constant �s=�p /�2 and has no dispersion. In
TDLDA, it has a negative dispersion at small q and a posi-
tive one at large q. The dispersion at small q can be ex-
pressed as follows:17,43

�s�q� =
�p

�2

1 −

q

2
d��p

�2
� + O�q2�� . �22�

It can be seen that the dispersion is dependent on d���. Thin
film plasmons, which result from the hybridization of the
surface plasmons, cannot be well described by the classical

FIG. 9. The critical wave vector qc at which the plasmon modes
split, as a function of the film thickness D. The dashed line shows
the curve fitted by qc=3.2/D.

FIG. 10. The plasmon energies of the symmetric �squares� and
antisymmetric modes �dots� as a function of film thicknesses at q
=0.025 a.u. Solid lines: the energies �± are calculated by Eq. �1�.
Dashed lines: �± are calculated by replacing �p /�2=6.4 eV with
the dispersive �s�q=0.025�=6.235 eV obtained from TDLDA. For
very small thickness, the single particle excitations �triangles� ap-
pear in the antisymmetric band.
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model due to the fundamental difference in d���. In contrast,
the TDLDA calculation gives a quantitative description of
the plasmon dispersion.

�ii� The quantum confinement of the electrons in the nor-
mal direction is only described in the quantum mechanical
model. The quantization of the normal wave functions leads
to electron-hole pair excitations between the subbands. This
is especially obvious at small wave vectors, as shown in Fig.
4. For ultrathin films, the interband and intraband transitions
even dominate the excitation spectrum at small q as shown in
Fig. 6. Such quantum nature of electrons and its associated
properties are not accounted for in any classical models.

�iii� The multipole modes of thin film plasmons cannot be
accounted for by the classical model, but appear naturally in
the TDLDA calculations. For semi-infinite surfaces, the sur-
face response function is related to d��� in the small q
limit:1,17

g�q,�� �
���� − 1

���� + 1

1 +

2����
���� + 1

qd���� . �23�

The plasmon modes are the poles of this response function.17

The d��� function has a pole at around ��0.8�p,50 which
corresponds to the multipole resonance.16,17 In metal thin
films, the multipole plasmon also exists at large and interme-
diate thickness. It interacts with the antisymmetric mode �+
as shown in Fig. 4. This conclusion is in agreement with that
found in the semiclassical approach.32

IV. CONCLUSIONS

We have studied the excitation spectra of metal thin films
using the linear response theory and the jellium model of the
electronic structures. The energies and dispersions of surface
plasmons are obtained as a function of film thickness. As the
thickness decreases, the excitation spectra show evolution
from surface plasmons at large thickness to the hybridized

thin film plasmons at intermediate thickness. They transform
into single-particle excitations in ultrathin films.

The dispersion of the surface plasmons is characterized by
three typical regions. �i� At large wave vectors, the disper-
sion of the plasmon resonance approaches that of the surface
plasmon, due to the fact that this plasmon is localized at one
side of the film. �ii� At intermediate wave vectors, the plas-
mon resonance splits into the symmetric and antisymmetric
mode due to the penetration of external potential into the
film. It leads to hybridization between the surface plasmons.
�iii� At small wave vectors, the symmetric branch of the thin
film plasmons evolves into the intraband transitions, which is
still collective in character. In contrast, the antisymmetric
band mixes with the multipole plasmon at intermediate
thickness and transforms into single particle transitions in
ultrathin films.

The classical model gives an approximate description of
the interaction and energy splitting between the thin film
plasmons, especially at large thickness. Yet it does not ac-
count for any quantum-mechanical features of the excitation
spectra, such as the plasmon dispersion, the multipole
modes, and single particle excitations. These effects result
from the quantized motion of electrons in the normal direc-
tion and the dynamical response at surfaces. It would be
interesting in the future to investigate how these quantum-
mechanical behaviors affect other physical and chemical
properties of these thin films.
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