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Coordination-dependent interatomic potentials are proposed for silicon oxides and oxynitrides—also hydro-
genated ones—with a functional form based on the widely used Tersoff silicon potential. They are intended for
an accurate sampling of the configurational space of realistic silicon oxynitride systems and their interfaces
with silicon, including defects and changes of oxidation states. The parameters, which are given in the text, are
obtained by simultaneously mapping forces and energies onto the results of density-functional-theory calcula-
tions performed for a set of diverse systems and configurations and a wide composition range. Application to
a larger set of systems and configurations shows the transferability of these augmented Tersoff potentials and
their validity in predicting bulk lattice parameters, energetics of defect relaxation, and vibrational spectra.
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I. INTRODUCTION

Computer simulations are viewed as an increasingly use-
ful tool for the investigation of real materials, the prediction
of their physicochemical behavior, and ultimately the design
of novel ones. Still, achieving a good compromise between
accuracy and feasibility is a challenging issue for calcula-
tions based on atomistic models. Although systems of sizes
in the nanometer scale have become affordable for ab initio
calculations based on density-functional theory �DFT� �see,
e.g., Ref. 1�, the time scale of most dynamical processes of
interest as well as the extension of configurational sampling
required for a reliable search of equilibrium structures is still
prohibitive. This is why building robust classical schemes for
interatomic interactions is still a worthwhile effort for the
simulation of real materials.

The purpose of this paper is to introduce a simple and at
the same time highly transferable force field for SiON sys-
tems that is able to represent structural and dynamical prop-
erties for a wide range of compositions, in the bulk as well as
at interfaces with silicon, and also in the presence of hydro-
gen. The target systems are large-scale models of interfaces
and disordered phases; the target computational methodolo-
gies are molecular dynamics �MD� and Monte Carlo simula-
tions of diffusion and growth processes, also combined with
the replica-exchange method.2 The efficient use of these pro-
cedures requires that the computation of both energies and
forces be relatively inexpensive. In particular, at least the
most demanding part of the evaluation of the energy should
scale linearly, and a simple analytic expression is desirable
for its gradient.

Our formulation is rooted on Tersoff’s concept3 of a local
short-range potential for covalently bonded systems, in
which the fundamental variable is an effective coordination
depending on the local environment and the effects of a third
atom are included as weakening of the attractive part of the
two-body interaction terms. Previous applications of Ter-
soff’s scheme to binary compounds of silicon with oxygen4,5

and nitrogen6,7 were limited in transferability and generally
biased towards tetrahedral coordination for silicon. They
were adjusted to represent a very limited data set derived
from a mixture of experimental and computational results.
The variety and complexity of the multinary systems we con-

sider here impose a more substantial extension of the original
expression8,9 for the interactions between atoms of different
elements and for a correct description of coordination
changes and point defects, which inevitably form at the in-
terfaces with silicon and, more generally, during processes
like annealing and interdiffusion. For the sake of consistency
and accuracy, the procedure we choose for optimization of
the potential parameters consists in simultaneously fitting en-
ergies and forces to DFT values calculated for a selected set
of systems in several different configurations, but to none of
their physical properties. Our selection comprises a wide
range of bonding situations, mostly in the condensed phase,
which helps to enhance transferability further.

An exhaustive overview of the potentials proposed and
applied to silicon and silicon dioxide in the past 30 years
would exceed the scope of this work. Still it is imperative to
mention that many other empirical potentials have been pro-
posed for silicon and used to study a variety of properties
�see, e.g., Refs. 10–15�. We chose Tersoff’s scheme because
of its flexibility, the short range of the interatomic interac-
tions, and its success in a wide range of applications to con-
densed phases �see, e.g., Refs. 8, 9, 16, and 17�. For silica, a
large variety of force fields have been used, including those
based on the Keating18,19 or Beest–Kramer–van Santen20–22

�BKS� popular model and extensions23 of the Stillinger-
Weber formulation10 for silicon, also involving fixed-charge
Coulomb and polarizable charge-dipole interactions.24 In
particular, in Ref. 22, the BKS model was augmented with
Morse-stretch bonds and fixed-charge Coulomb and induced-
dipole interactions, and the parameters were adjusted to re-
produce the energies, stresses, and forces calculated from
high-temperature trajectories obtained with ab initio �DFT�
MD simulations. A more flexible formulation was introduced
in Ref. 25, in which atomic charges are allowed to change
with the changing atomic environment according to the
charge-equilibration procedure of Ref. 26.

The above models—and many others—have been applied
to simulate the physical behavior of silica in its different
phases �see, e.g., Refs. 27–30; for a recent critical review, see
Ref. 31�. SiO2/Si interfaces, in contrast, have rarely been
studied in classical MD or Monte Carlo simulations.32–34

More often these methods are employed to generate the ini-
tial configuration of a DFT structural optimization.35,36 A
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study based on a refined Keating model19,37 led to very in-
teresting results for the structure and growth dynamics of the
SiO2/Si�100� system, some of which are consistent with a
recent experiment.38,39 However, this potential has inherent
difficulties to describe other characteristics of the interface
correctly.40

Fewer studies have been carried out for silicon nitride on
the basis of classical MD simulations, generally based on
force fields derived from those of silicon dioxide �see, e.g.,
Refs. 41–44�. In particular, the potential of Vashishta et
al.24,45 has allowed very-large-scale, up to 10-million-atom,
simulations and in particular of cracks formation at an inter-
face between silicon nitride and silicon.46 However, this
scheme presents a serious drawback for the study of the dy-
namics of this complex interface, given that atoms are not
allowed to change oxidation state and coordination number
during a simulation.

After briefly reviewing the original expression of the Ter-
soff potential9 for silicon and the characteristics of the
Tersoff-derived potentials �Sec. II�, we describe the proce-
dure we followed to develop the new potential: namely, its
extended formulation �Sec. III�, the systems selected for the
training set and the DFT calculations �Sec. IV�, and the fit-
ting procedure �Sec. V�. In Sec. VI, all the parameters of the
new force field are presented, accompanied by an evaluation
of the fitting to the DFT data �Sec. VI A� and of their trans-
ferability. This is further tested against the DFT results on
some properties of crystalline silicon dioxide and nitride—
i.e., structural characteristics, defect relaxation energies, and
vibrational properties. These results are compared with the
predictions of other potentials and with experimental data
�Sec. VI B�. Additional details are given in the Appendixes.
Appendix A lists the parameters of the “intermediate” poten-
tial schemes that we constructed starting from Tersoff and
Tersoff-like potentials in Refs. 4, 6, 7, and 9. Appendixes B
and C report further calculations performed for a vacancy in
crystalline silicon and for the vibrational properties of silica
and silicon nitride, respectively.

II. TERSOFF AND TERSOFF-DERIVED POTENTIALS

The expression of the Tersoff potential energy E of a co-
valent system composed of atoms like silicon, germanium, or
carbon8,9 is

E = �
i

Ei =
1

2�
i�j

Vij , �1�

where the Vij’s are generalized Morse potentials. Given a
pair of atoms i and j, of elements I and J, respectively, their
interaction Vij is an explicit function only of their distance
rij,

Vij = f ij
IJ�AIJe

−�IJrij − bij
IJBIJe

−�IJrij� , �2�

where the function f ij
IJ defines their action cutoff as

f ij
IJ = �

1 if rij � RIJ,

1

2
�1 + cos��

rij − RIJ

SIJ − RIJ
	
 if RIJ � rij � SIJ,

0 if SIJ � rij ,
� �3�

where RIJ and SIJ are appropriate cutoff radii. The coeffi-
cients AIJ and BIJ, the inverse decay lengths �IJ and �IJ, and
the cutoff distances RIJ and SIJ depend only on the type of
the two interacting atoms. When the two elements are the
same, we will use only one index from now on: namely, e.g.,
AI=AII. For mixed covalent systems such as SiC, specific
combination rules were given in Ref. 9:

AIJ = �AIAJ�1/2, BIJ = �BIBJ�1/2, �4a�

RIJ = �RIRJ�1/2, SIJ = �SISJ�1/2, �4b�

and for the inverse decay lengths

�IJ = ��I + �J�/2, �IJ = ��I + �J�/2. �5�

Three-body effects are incorporated into the damping factors
bij

IJ of the two-body attractive interaction terms and depend
on an “effective coordination number” �I�ij

IJ:

bij
IJ = 	IJ�1 + ��I�ij

IJ�nI�−1/2nI, �6�

where
�ij

IJ = �
k�i,j

f ik
IKeijk

IJKtijk
I . �7�

The term tijk
I ,

tijk
I = 1 +

cI
2

dI
2 −

cI
2

dI
2 + �hI − cos�
 jik��2 , �8�

incorporates the effect of the bending angle 
 jik between at-
oms j and k around atom i. In the original Tersoff potential
for silicon,8 the term eijk was designed to represent the fact
that the influence of a third atom k on the i-j bond decreases,
when the i-k distance becomes large compared with the i-j
distance. However, in multicomponent systems, eijk is gener-
ally set to unity.6,9

eijk = �exp��3�rij − rik�3� , pure Si,

1, mixed systems.

 �9�

Note that, for a given i-j pair, both Vij and Vji are included in
the total energy expression �Eq. �1��, but owing to the differ-
ent bonding environments of the two atoms, they are not
equal. The Tersoff potential in Eqs. �1�–�9� was originally
designed for covalent systems. A straightforward extension
to systems composed of atoms of significantly different elec-
tronegativity, such as silicon and oxygen, was believed to
suffer from serious limitations. In the study of silica in Ref.
4, the Tersoff energy expression was extended to include an
electrostatic potential and a self-energy term, with partial
charges determined in a similar way as in the charge-
equilibration method.26 In addition, the term eijk was modi-
fied and set to

eijk
IJ = exp��IJ

mI�rij − rik�mI� , �10�

thus including an additional integer parameter mI, which was
simply set to 1 for elements other than silicon. For silicon,
the original value m=3 was kept. To our knowledge, this
potential has not been used by other authors in its complete
formulation; however, its parameters for the Tersoff-derived
terms served as starting point for further refinement5 and are
part of commercial codes �see, e.g., Ref. 47�.
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The parameters for oxygen, nitrogen, and hydrogen were
fitted in Refs. 4, 6, and 7, to reproduce a restricted database
of known experimental and calculated properties of com-
pounds containing these elements. In particular, the oxygen
parameters were obtained from application to silica4 as men-
tioned above. No precise indication was given about the ref-
erence data used, apart from those employed in the fitting of
the electrostatic terms. Test calculations were presented for
the properties of molecular oxygen and �-quartz, which,
however, used the complete parameter scheme, including the
electrostatic terms.

The data set used for nitrogen in Ref. 6 consisted of ex-
perimental values for the lattice parameter of �-Si3N4, the
interatomic distance and the binding energy of the N2 mol-
ecule, and of ab initio results for the average binding energy
of �-Si3N4 and the structure of the Si3NH9 molecule. In the
parametrization, the N-N attractive term was considered van-
ishing so as to avoid the formation of the dimer during simu-
lations of the SiNx systems.

Hydrogen parameters were fitted7 to reproduce empirical
values for the bond energy, the interatomic distance, and the
vibrational frequency of H2, the binding energy and equilib-
rium Si-H distance in SiH4, and the structure of the
NH�SiH3�2 molecule.

The starting point of our construction of an augmented
Tersoff potential was the Tersoff potential itself for silicon9

and the above-mentioned extensions for oxygen,4 nitrogen,6

and hydrogen.7 These parameters are listed in Table II and
referred to as the “Original” potential from now on.

In their construction of a Tersoff-like potential for silicon
dioxide, Umeno et al.5 fitted their parameters to DFT calcu-
lations, specifically via minimization of the root-mean-
square mismatch of forces only. These computations used
pseudopotentials obtained with the Troullier-Martins48

method and a plane-wave basis set up to a cutoff of 22 Ry for
silicon and 34 Ry for systems containing oxygen. Unfortu-
nately in Ref. 5 no mention was made of the exchange-
correlation functional there adopted. The reference systems
were limited to bulk silicon, �-cristobalite, and an abrupt
model of its interface with Si�100�. To enable an analysis of
the performance of the scheme of Umeno et al. in SiONH
systems, we have used them in combination with those for
nitrogen and hydrogen derived in Refs. 6 and 7, and consis-
tently applied the combination rules in Eqs. �4� and �5� to
construct the missing mixed parameters. The resulting pa-
rameter set is given in Tables XIII–XV of Appendix A and
referred to as “Original�U�.”

III. AUGMENTED TERSOFF POTENTIAL FOR SiONH
SYSTEMS

Our search for a more general and accurate interaction
scheme, still based on Tersoff’s concepts, primarily relied on
fitting to the results of DFT calculations, performed in the
Perdew-Burke-Ernzerhof �PBE�49 approximation of the
gradient-corrected exchange-correlation functional, by
means of a simultaneous minimization of the energy and the
force mismatch22 relative to a set of diverse atomic configu-
rations of the SiONH systems. Our choice for these reference

systems as well as the reference DFT calculations will be
reported in Sec. IV. Here we describe and justify the modi-
fications we made to the original Tersoff expression, espe-
cially for the interaction terms between atoms of different
elements.

�A� Our tests revealed that the expression eijk in Eq. �10�
led to inconsistent effective coordination numbers in mixed
systems whenever the characteristic lengths and interatomic
distances ranged over significantly different values, as is the
case for substoichiometric silicon oxide or silicon oxynitride.
This flaw can easily be fixed by measuring each interatomic
distance with its own characteristic length,

eijk
IJK = exp���IJrij − �IKrik�mI� . �11�

In this way, one obtains a more physical value for the “ef-
fective coordination number” in Eq. �6� than with Eqs. �9�
and �10�, and better numeric stability than with Eq. �10�.

�B� As pointed out in Ref. 5, the combination rules for the
interaction parameters of dissimilar atoms �Eqs. �4� and �5��
do not allow a good parametrization of silicon-oxygen and
silicon-silicon interaction terms simultaneously because of
the different types of bonding involved. An improvement is
obtained by carrying out the optimization for each pair of
atom types independently.

�C� Given that our selected training set comprises a range
of systems with different numbers of atoms and different
elements �see Sec. V�, the expression in Eq. �1� for the total
energy was augmented by the core energies EI

0 as

E = �
i�j

Vij + NI�
I

EI
0, �12�

where NI is the number of atoms of the Ith element.
Using this functional form with the modifications �A�–�C�

described above, we have obtained a first new set of param-
eters for Si, O, N, and H, which will be referred to as
“�-ZRL” from now on.

�D� However, further modifications were necessary to bet-
ter account for changes in the coordination and formation of
defects, especially at the interface between silicon and its
oxide and oxynitrides. In the expression of the Tersoff
potential,9 the energy changes due to the occurrence of over-
coordination or undercoordination for silicon atoms are el-
egantly included in the damping factor bij

IJ of the attractive
interaction through the dependence on the effective coordi-
nation number �I�ij

IJ. However, in the case of an overcoordi-
nated atom i and a fully coordinated atom j, only the inter-
action 1/2Vij is damped in Eq. �1�, whereas 1/2Vji still
corresponds to the interaction between two fully coordinated
atoms. As we have verified, this lack of symmetry tends to
favor the formation of defects at SiO2/Si interfaces. To rem-
edy this flaw, an additional penalty Ei

c for the occurrence of
undercoordination and overcoordination was introduced:

E = �
i�j

Vij + NI�
I

EI
0 + �

i

Ei
c, �13�

Ei
c = cI,1�zi + cI,2�zi

2, �14�

where �zi denotes the deviation from the expected coordina-
tion number and is given by
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�zi =
zi − zI

0

�zi − zI
0�

fs��zi − zI
0�� , �15� zi = �

j�i

f ij
IJbij

IJ, �16�

�fs�z�� = int��z�� + �
0 if �z� � zT − zB,

1

2
�1 + sin��

�z� − zT

zB
	
 if zT − zB � �z� � zT + zB,

1 if zT + zB � �z� ,
� �17�

where zT and zB are independent of the specific atom and
sgn(fs�z�)=sgn�z�. In Eq. �14�, the linear term in �zi differ-
entiates undercoordination and overcoordination; the qua-
dratic term prevents undercoordination from being favored.
Note that the expected coordination numbers zI

0 are not inte-
ger values because the bond strengths bij

IJ are included in the
bond count for zi. The switching function fs�z� prevents vi-
brations about the equilibrium positions from contributing.
The values obtained for this new and augmented parametri-
zation, which we denote as ZRL, are listed in Tables II–IV.

IV. TRAINING AND TEST SYSTEMS: DEFINITION AND
Ab initio CALCULATIONS

As mentioned above, all parameters of the new force
fields �both �-ZRL and ZRL� were fitted to simultaneously
reproduce energies and nuclear forces obtained from DFT
calculations, specifically in the PBE approximation49 for the
exchange-correlation functional. Neither additional DFT val-
ues nor empirical data were used. In the derivation of our
schemes, the parameters of the original Tersoff potential for
silicon9 were kept close to their original values by imposing
a specific constraint. The reference calculations employed
the plane-wave pseudopotential scheme of the CPMD code,50

and in particular Troullier-Martins norm-conserving
pseudopotentials48 and an energy cutoff of 80 Ry. The direct
inversion in iterative subspace �DIIS� algorithm was chosen
for direct wavefunction optimization.51 For the condensed-
phase systems, periodically repeated supercells �to be speci-
fied in each case� were used and the 
 point only was taken
as representative of its Brillouin zone. For the molecular sys-
tems, the Poisson equation was solved using the Hockney
algorithm.52

Table I reports the 18 systems used as reference for the
fitting of the potential and for its testing, and the number of
configurations considered for each of them. The systems
chosen as reference comprise diamond silicon, �-silicon ni-
tride, crystalline and amorphous samples of bulk silicon
oxynitrides, both hydrogenated and not, and abrupt as well as
highly defective models for the SiO2/Si�100� inter-
face. SiOxNy compounds have stoichiometric composition
�y=2�2−x� /3� and a nitrogen content �=y / �x+y� varying
from 4% to �90%. Their geometries were optimized in our
previous DFT study.53 In addition, �-quartz and

�-cristobalite, �-Si3N4, a large silicon cluster kept in the
bulk structure by hydrogen passivation, and the cubosiloxane
molecule were used for testing the potential only.

Ab initio calculations of both the energy and its gradient
with respect to the internal coordinates were run for 10 584
configurations. This large number was needed to ensure that
for each system the extracted subset used for the fitting of the
potential parameters was large enough to cover a representa-
tive area of the configurational space. Globally, the resulting
training set contained 207 configurations.

For systems �a�–�k� and �m�–�q� in Table I, the atomic
configurations were derived from snapshots taken at equidis-
tant time intervals over the trajectories of 21 classical MD
runs driven by the Original potential. The temperature
spanned a range from �150 to �600 K, and each run had a
duration of �2 ps, following a short steepest-descent geom-
etry optimization. For systems �l�, �r�, and �s�, the selected
configurations correspond to predictions of intermediate ver-
sions of the potential whose energy and/or gradients exhib-
ited a strong mismatch with DFT calculations. They were
added to the training and control sets to better calibrate the
interaction terms of our final potential �Eq. �13�� that explic-
itly penalize overcoordination and undercoordination.

V. FITTING PROCEDURE

The energy mismatch DE between the DFT-PBE reference
results �EDFT� and the ones obtained with the classical poten-
tial to be optimized �Epot� was defined as

DE
2 =

1

Nfr
�

f

Nfr

�Epot�x f� − EDFT�x f��2. �18�

Similarly the mismatch DF between the corresponding gradi-
ents with respect to the Cartesian coordinates xi,d of the ith
atom �force mismatch� is defined as

DF
2 =

1

3� f

Nfr Nat,f

�
f

Nfr

�
i

Nat,f

�
d

3 � �

�xi,d
Epot�x f� −

�

�xi,d
EDFT�x f�	2

,

�19�

where Nfr is the total number of configurations x f of the f
system and Nat,f is the corresponding number of atoms. Note
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that all Nfr configurations x f were taken simultaneously to
allow maximum transferability.

Minimization of only the energy error DE delivers a good
ordering for the energies of different configurations but a
poor result for the forces at geometries near equilibrium.
Indeed this procedure necessarily samples higher-weight re-
gions of the potential energy surface, which are far from
equilibrium. On the other hand, minimization of only the
force mismatch DF, while leading to a good prediction of the
equilibrium geometries, results in a highly incorrect ener-
getic ordering of different configurations �see, e.g., Ref. 5�.
Consequently, the force mismatch and energy error were op-
timized together using a weighted sum,

DW = wEDE + �1 − wE�rBDF, �20�

where rB is the Bohr radius and wE is the weight attributed to
the energy mismatch. Values of wE in the range from �0.05
to �0.2 were found to provide a good trade-off between the
prediction of the energy and forces.

The weighted error function DW was locally optimized
using the limited-memory Broyden-Fletcher-Goldfarb-
Shanno �L-BFGS� method with line search54 and steepest
descent with a dynamic trust radius; its gradient with respect
to the force-field parameters was calculated using finite dif-
ferences. In addition, at different steps of the optimization, a

global minimization of the force mismatch DF was per-
formed on the configurations of a few silicon oxynitride sys-
tems �Table I�. A subspace-searching simplex method was
used for this unconstrained optimization.55

According to standard procedures of force-field construc-
tion, constraints were imposed to maintain the values of the
parameters to be optimized within their physically meaning-
ful ranges. The cutoff distances RIJ and SIJ were kept fixed
during the global minimization of DF. Both numerical stabil-
ity and transferability of the potential were tested on all con-
trol configurations �see Table I�.

VI. RESULTS

The values of the parameters of the ZRL force field are
given in Tables II–IV. Table II lists the individual coeffi-
cients in the Tersoff expression �Eq. �2�� and compares them
with those of the Original potential �see Sec. II�. Table III
reports the deviation of the parameters of the mixed terms in
the ZRL force field from the combination rules, Eqs. �4� and
�5� Table IV quotes the parameters of the augmentation term
�Eqs. �13�–�17��. The intermediate parametrizations Original
�U� and �-ZRL are reported in Tables XIII–XV of Appendix
A.

TABLE I. Systems used for fitting and testing, their characteristics, number of configurations used, and MD sampling time �see text�. I
and II indicate two different configurations. In particular sample II of SiONH �6%� includes an H2 molecule. SiO2/Si�100� refers to both
ideal abrupt interfaces and highly defected configurations.

Compound
�N content� State

Structure
�sample� No. atoms

Sampling
time �ps�

No. configurations

Training Control Label

Si solid diamond 64 4 20 868 a

Si123H100 cluster diamond 223 2 449 b

SiO2 solid �-quartz 72 2 500 c

solid �-cristobalite 192 2 499 d

Si3N4 solid �-Si3N4 42 4 20 1000 e

Si8O12H8 mol. cubo-siloxane 28 2 500 f

SiON

�4%� solid amorphous 71 2.2 20 849 g

�8%� solid with defects 62 1 1 h

�12%� solid amorphous 69 4 20 894 i

�16%� solid with defects 70 1 1 j

�40%� solid with defects 64 2 10 500 k

�94%� solid amorphous 170 2 2 l

SiONH

�6%� solid amorphous �I� 76 4 20 1000 m

solid amorphous �II� 78 2 10 498 n

�8%� solid �-quartz 76 4 20 1000 o

solid amorphous �I� 73 4 20 1000 p

solid amorphous �II� 73 4 20 1000 q

SiO2/Si�100� solid �-cristobalite 92 12 12 r

SiO2Si�100� solid tridymite 100 11 11 s
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A. Quality of the parameter fit

In this section, we analyze the quality of the results of the
fitting in terms of �i� the energy error renormalized to the
number of silicon atoms NSi,f in each configuration f �DE,Si
in Eq. �21��, �ii� the force mismatch DF defined in Eq. �19�,
and �iii� the correlation coefficient CF between the forces
thus derived Fpot,f and the DFT values FDFT,f:

DE,Si
2 =

1

Nfr
�

f

Nfr �Epot�x f� − EDFT�x f�
NSi,f

	2

, �21�

CF =
� f

Nfr �Fpot,f,FDFT,f�

�� f

Nfr �Fpot,f,Fpot,f��1/2�� f

Nfr �FDFT,f,FDFT,f��1/2 , �22�

Fpot,f = �−
�

�xi,d
Epot�x f�


i,d
, FDFT,f = �−

�

�xi,d
EDFT�x f�


i,d
.

�23�

Table V contains the energy error. Note that the renormaliza-
tion mentioned above enables a better comparison of the

different systems. To analyze its origin, we have performed
one further step of optimization; namely, we have fitted the
core energies for each control set separately while retaining
all other parameters fixed. The corresponding error DE,Si

cc

�also renormalized� is reported in Table V. We emphasize
that the absence of the core energy term in the Original and
Original�U� potentials does not allow a consistent evaluation
of the energy error. Table VI gives the quality of the force
fitting. Inclusion of both the force mismatch and the force
correlation coefficient in the evaluation allows a sensitive
assessment of the accuracy of the predicted forces both near
and far from equilibrium.

The poor performance of the Original�U� force field on all
samples of silicon oxynitride is not surprising in view of the
different independent sources of the parameters and the sub-
sequent application of the combination rules, Eqs. �4� and
�5�. The energy error of our force fields drops considerably
when the atom core energies are reoptimized, which shows
that the main cause of discrepancy comes from keeping the
core energies constant for all chemical environments rather
than from an incorrect energy ordering of different configu-
rations of systems with the same composition.

TABLE II. Comparison of parameters of the Original and ZRL potentials �see text�. Values are in eV, Å, and Å−1.

Silicon Oxygen Nitrogen Hydrogen

Parameter Original ZRL Original ZRL Original ZRL Original ZRL

AI 1830.8 1803.79 3331.0 3331.06 6368.14 6368.21 86.7120 86.9235

BI 471.18 471.195 261.2 260.476 511.760 511.205 43.5310 42.9815

�I 2.4799 2.62392 5.36 3.78336 5.43673 5.60181 3.7879 3.85393

�I 1.7322 1.88891 2.68 3.34402 2.70000 3.16170 1.9800 1.97047

RI 2.70 2.44809 2.70 2.26069 1.80 1.75256 0.80 0.77985

SI 3.00 3.08354 3.00 3.31294 2.10 2.41523 1.00 0.88641

�I 1.0999�10−6 1.0999�10−6 2 1.0027 5.2938�10−3 4.4422�10−3 4 4

nI 0.78734 0.78766 1 3.98638 1.33041 2.42635 1 1.00921

mI 3 3 1 1 1 1 1 1

cI 1.0039�105 1.0039�105 0 0a 2.03120�104 2.2955�104 0 0

dI 16.217 16.21701 1 1 25.5103 24.78674 1 1

hI −0.59826 −0.56239 0 −0.52909 −0.56239 −0.52909 1 1

	Si,I 1 1 1 1 0.67 1 0.78 1

	O,I 1 1 1 1 1 1 1 1

	N,I 0.67 1 1 1 0 1 0.76 1

	H,I 0.78 1 1 1 0.76 1 1 1

aAlthough not restrained to zero, the value obtained from fitting was negligible.

TABLE III. Coefficients of mixed terms �Eq. �2�� of the ZRL potential expressed in terms of their
deviation from the combination rule in Eqs. �4� and �5�. The values for the inverse decay lengths are given
in Å−1.

Parameter Si-O Si-N Si-H O-N O-H N-H

AIJ / �AIAJ�1/2 1.04752 0.58647 1.52966 1.26527 0.99853 0.83424

BIJ / �BIBJ�1/2 0.99978 1.10293 1.68173 1.00075 1.01274 0.97237

�IJ− ��I+�J� /2 0.74003 −0.73787 −0.15903 2.34383 1.03160 0.07480

�IJ− ��I+�J� /2 −0.30051 −0.19843 0.22168 3.50573 −0.22005 0.21563
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B. Prediction of physical properties

In this section, we investigate some of the physical prop-
erties of SiO2 as a further test of the transferability of the
force field. We stress again that, unlike the procedures com-
monly used to construct classical potentials for condensed
matter systems, ours has only energies and forces as refer-
ence physical quantities but none of the properties. Therefore
the results discussed here are a test of the predictability of
specific features. Structural characteristics, vibrational spec-
tra, and relaxation energies of point defects were calculated
in the four potential schemes considered so far �Original,
Original�U�, �-ZRL, and ZRL� and compared with the pre-
dictions of the DFT-PBE scheme. All calculations with clas-
sical potentials were performed in supercells: namely, 2�2
�2 for silicon and the silica polymorphs, 1�1�3 for sili- con nitride. For comparison, DFT calculations were carried

out in these supercells and in the unit cell of the periodic
lattice using an appropriate sampling of the Brillouin zone.
To be consistent with typical DFT calculations of crystalline
phases, we report the latter as reference. Computations are
made with the number of plane waves kept constant, equal to
the one corresponding to the largest cell considered and to
the energy cutoff chosen. The cutoff energy Ecut and the
number Nk of k points in the irreducible Brillouin zone are
given in the table for each case. We have verified that the
differences obtained with the supercell computations are not
significative. Furthermore, comparison is made with the re-
sults obtained using the Compass56,57 force field, which is
part of commercial codes �see, e.g., Ref. 47� and thus widely
used in materials modeling.

Figure 1 shows the potential energy surfaces �PES’s� in
the space of the lattice parameters, calculated for silicon di-
oxide in three crystalline modifications and �-Si3N4. Each
point corresponds to full relaxation of the internal coordi-
nates. The Original PES dramatically fails to stabilize SiO2
in the crystal structures considered here. In the Original�U�
scheme, SiO2 is unstable in the �-quartz structure and col-
lapses near the experimental values of the lattice parameters.
The improvement introduced by our procedure is evident. As
expected, ZRL performs only slightly better than �-ZRL in
this application. In our potential schemes and in PBE as well,
the energy change corresponding to a simultaneous similar
variation of the two lattice parameters is significantly smaller
for �-quartz and �-cristobalite compared to �-quartz. This
result is in agreement with the analysis of the anomaly of the
elastic constants reported in Ref. 58. Such a flatness is en-
hanced in the description provided by the potentials, as a

TABLE IV. Parameters of the augmentation term �no analog in
Tersoff-derived potentials� of the ZRL interaction scheme �Eqs.
�13�–�17��. zT=0.49751 and zB=0.20039 for all elements. EI

0 is
given in eV.

Parameter Si O N H

EI
0 −103.733 −432.158 −264.156 −13.174

zI
0 3.70 2.80 1.75 1.00

cI,1
c −0.1238 −0.0038 −0.0868 0

cI,2
c 0.2852 0.1393 0.2454 0

TABLE V. Energy mismatch �in eV�: the error functions DE,Si

�Eq. �21�� and DE,Si
cc as explained in the text. The notations of the

control sets are self-explanatory with components labeled as in
Table I. “SiON-ld” and “SiON-hd” refer to samples with low and
high density of defects, respectively. Note that configurations with a
high density of defects are also included in “SiO2/Si.”

Control set
�components�

Control
quantity

New potentials

�-ZRL ZRL

Si DE,Si 0.153 0.121

�a� DE,Si
cc 0.008 0.009

SiO2 DE,Si 0.176 0.125

�c,d� DE,Si
cc 0.075 0.032

OxN DE,Si 0.200 0.190

�c,d,e,f� DE,Si
cc 0.141 0.085

SiON-ld DE,Si 0.087 0.088

�g,m-q� DE,Si
cc 0.083 0.081

SiON-hd DE,Si 0.249 0.299

�h-l� DE,Si
cc 0.044 0.042

SiO2/Si DE,Si 0.485 0.272

�r,s� DE,Si
cc 0.355 0.171

All DE,Si 0.148 0.147

�a–s� DE,Si
cc 0.148 0.147

TABLE VI. Force mismatch DF �in eV/Å�, and force correla-
tion coefficient CF defined in Eqs. �19� and �22�, respectively. La-
bels as in Table V. Note that full correlation corresponds to CF=1.

Control set
�components�

Control
quantity

Old potentials New potentials

Original Original�U� �-ZRL ZRL

Si DF 0.115 0.121 0.239 0.139

�a� CF 0.987 0.987 0.967 0.985

SiO2 DF 1.464 1.780 0.505 0.643

�c,d� CF 0.625 0.884 0.962 0.945

OxN DF 1.329 1.627 0.518 0.769

�c,d,e,f� CF 0.694 0.861 0.960 0.933

SiON-ld DF 2.313 2.053 0.784 0.841

�g,m-q� CF 0.423 0.771 0.910 0.904

SiON-hd DF 4.064 70.44 1.885 1.606

�h-l� CF 0.213 0.026 0.717 0.785

SiO2/Si DF 1.450 1.227 1.140 1.007

�r,s� CF 0.563 0.675 0.543 0.582

All DF 2.656 15.01 1.729 1.072

�a–s� CF 0.428 0.142 0.655 0.849
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consequence of their independence from bending around
oxygen �cO=0�. This feature does not manifest itself in the
case of �-quartz due to its different topology. We also note

that in the Compass force field, �-quartz is metastable and
easily transforms to �-quartz. The internal structure has a
lower symmetry than expected from experimental data.

TABLE VII. Lattice parameters �in Å� calculated for bulk silicon, silicon dioxide, and silicon nitride. The uncertainty is indicated in
brackets �see text�. Missing values correspond to the cases where the structure is unstable �see Fig. 1 and text�. The density � is given in
g/cm3.

System Property Compass

Old potentials New potentials
DFT
PBEa ExpOriginal Original�U� �-ZRL ZRL

a 5.16�12� 5.11�12� 5.019�28� 4.902b

�-quartz c 5.62�20� 5.57�19� 5.472�45� 5.400b

� 2.31�19� 2.38�19� 2.507�49� 2.664

a 5.07 5.203�19� 5.255�27� 5.197�27� 5.134�59� 5.01c

�-quartz c 5.59 5.714�27� 5.770�48� 5.707�49� 5.572�95� 5.46c

� 2.41 2.234�27� 2.169�40� 2.242�43� 2.353�94� 2.52

a 5.06 5.09�21� 5.23�23� 5.21�20� 5.131�71� 4.957d

�-cristobalite c 6.83 6.90�74� 7.11�65� 7.10�57� 7.04�19� 6.890d

� 2.28 2.23�43� 2.05�37� 2.07�33� 2.15�12� 2.357

a 6.03 7.471�8� 7.395�13� 7.372�10� 7.388�19� 7.619�26� 7.608�5�e

�-Si3N4 c 2.23 2.991�3� 2.936�8� 2.939�6� 2.887�11� 3.015�16� 2.911�1�e

� 6.63 3.222�10� 3.351�21� 3.368�16� 3.414�31� 3.084�37� 3.193�5�

aEcut is 120 Ry. Nk is 14 for both quartz and cristobalite, and 27 for
�-Si3N4.
b13 K, Ref. 64.

c600 °C, Ref. 65.
d10 K, Ref. 66.
eRoom temperature, Ref. 67.

FIG. 1. PES calculated in the different classical potential schemes considered here and in DFT-PBE. Energies are in eV and distances in
Å. The energy spacing is 0.005 eV for the three silica polymorphs and 0.0075 eV for the nitride.
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When applied to �-Si3N4, although one can find a minimum
energy when the appropriate symmetry constraints are im-
posed on the lattice, the resulting internal structure does not
preserve any symmetry.

Better agreement with the ab initio results is obtained
when one focuses only on the equilibrium lattice parameters,
whenever appropriate �see Table VII�. In each case we quote
the numerical uncertainty that we calculated; this is defined
as the range of values in which the energy �per formula unit�
does not vary within a given interval �E, which we chose as
0.001 eV for both the oxides and nitride. Moreover, control
of this range of values provides a measure of the flatness of
the PES around the minimum and of the relative difficulties
inherent in any scheme. Partial comparison of classical po-
tentials and ab initio and experimental data have been made
�see, e.g., Refs. 25 and 59�, which, however, did not account
for the numerical uncertainty. The experimental data in Table
VII refer to low temperature, whenever possible. Compari-
son with experiment also reveals the problems encountered
by the ab initio approach, in particular the tendency of the
PBE functional to predict lower atomic densities, which is
not surprising. This tendency is further enhanced in the clas-
sical force fields we have derived, in the case of the silica
polymorphs, while a substantial increase in the atomic den-
sity is predicted in the case of silicon nitride.

We performed the same calculations for silicon in the dia-
mond structure. The PES is much less flat than in the oxide
and nitride. If we choose a �E of 0.01 eV, the uncertainty in
the determination of the lattice constant is less than 0.001 Å
in all schemes. The original Tersoff potential accurately re-

produces experiment �5.431 Å� by construction and so does
ZRL �5.430�8� Å�. Original�U� results in a smaller lattice
constant �5.379�7� Å�, whereas the DFT-PBE and �-ZRL
values are larger �5.467�7� and 5.680�5�, respectively�.

Structural energy differences are quoted in Table VIII and
compared with the enthalpy changes measured at the struc-
tural transitions. The theoretical values include the zero-point
energies that are determined from the spectrum of the long-
wave vibrational modes calculated in the harmonic approxi-
mation, as described below. Although this comparison is in-
teresting from a methodological point of view, we must
emphasize that structural energy differences are much
smaller than the error expected from a simple force field.
Therefore, if such a force field successfully predicts this en-
ergy ordering—namely, in line with the relative thermody-
namic stability of the different structures—this agreement
must be considered fortuitous. On the other hand, it is note-
worthy that the values of the zero-point energies �in Table
IX� calculated with our potentials reproduce well the PBE
values and their differences for all structures, while there is a
strong discrepancy with the values obtained with other force
fields. In Table IX, we also report an estimate obtained from
the observed spectrum �TO modes�, under the assumption
that anharmonic effects are negligible.

The response of the system to the formation of a defect is
of special relevance to the simulations of processing and
growth of interfaces between heterogeneous materials. We
considered the formation of an isolated vacancy of either
silicon or oxygen in the �-quartz matrix. Table X contains
the relaxation energy and the amount of structural relaxation

TABLE VIII. Structural energies �in kJ/mol� relative to �-cristobalite, with �Etot� and without �Elatt�
zero-point energy differences �see EZPE� in Table IX.

System Property Compass

Old potentials New potentials
DFT
PBEa Expt.Original�U� �-ZRL ZRL

�-quartz �Elatt 0.0 0.0 2.2

�Etot 0.0 0.0 2.2 −3.41b

�-quartz �Elatt −2.3 −0.4 0.0 0.0 3.1

�Etot −3.1 −3.7 −0.5 −0.3 2.5 −2.94b

aNk=47 and 40 for quartz and �-cristobalite, respectively. All other details as in Table VII.
bRef. 68.

TABLE IX. Zero-point energies EZPE �in kJ/mol� calculated for different silica polymorphs in the opti-
mized lattice �Table VII� and also in the experimental lattice of �-quartz.a The estimate from the observed
vibrational spectra is also added �Expt�.

System Lattice Compass

Old potentials New potentials
DFT
PBE Expt.Original Original�U� �-ZRL ZRL

�-quartz optimized 27.0 29.0 27.9

experimental 33.5 23.4 43.7 29.9 31.1 28.0 29.4

�-quartz optimized 32.4 35.7 26.5 28.7 27.3

�-cristobalite optimized 33.2 39.0 27.0 29.0 27.9

aRT lattice parameters a=4.913 Å and c=5.405 Å.
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involved. Calculations refer to a �2�2�2� supercell, with
lattice parameters kept at the optimum DFT-PBE value for
the structure without defects. Therefore, these results are of
interest only for the evaluation of the potentials versus the ab
initio approach. The case of silicon is treated separately in
Appendix B.

The ability to predict the vibrational properties of a given
compound is generally a stringent test for a force field. In-
deed given the realm of applications for which the potentials
here proposed are intended, global characteristics and ener-
getics like the zero-point energies mentioned above, are
more important than the details of vibrational spectra of crys-
talline phases. Still, for the sake of completeness, we discuss
them here both for �-quartz �Table XI� and �-Si3N4 �Table
XII�. Calculations were performed in the harmonic approxi-
mation, and the details were the same as those described for

the structure optimization runs. In DFT-PBE we verified that
the supercells used for the classical force fields were suffi-
cient to reproduce the vibrational frequencies obtained with
fully converged computations within one to two wave num-
bers.

Comparison with DFT-PBE results is significative be-
cause DFT-PBE provided the reference models in our fitting
procedure. However, we also repeated these calculations in
the structures corresponding to the equilibrium in each po-
tential scheme. This allowed us to contrast our findings with
those of other potentials in their equilibrium lattices. For the
case of �-quartz, we report a comparison with the DFT-PBE
spectrum. The changes at the equilibrium lattices were not
significant. Although both are fitted to DFT forces and ener-
gies, the �-ZRL potential seems to reproduce the DFT spec-
trum better than the ZRL potential, especially in the high-
frequency region. In particular, the gap between the bending
and stretching modes is overestimated by more than
200 cm−1 in the ZRL scheme. The lowest and highest
stretching E modes are inverted compared to DFT. This is
consistent with the absence of the softening effect of the
electronic polarizability in the potential schemes; the latter is
indeed large only for one of the modes as shown by the
LO-TO splitting. The analysis of the eigenvectors reveals
discrepancies in the relative ordering of modes of different
nature. One can then argue that, contrary to the assumption
made in Ref. 31, a good representation of the phonon density
of states is not sufficient for the evaluation of the accuracy of
a potential scheme in describing the vibrational properties of
this material. When constrained to the DFT-PBE cell of
�-quartz, the Original�U� potential does not show an insta-

TABLE X. Relaxation energies �in eV� of isolated vacancies in
�-quartz and corresponding root-mean-square displacements �in Å�
�see text�. Labels as in Table VII.

Old potentials New potentials

System Vacancy Original Original�U� �-ZRL ZRL
DFT
PBE

Si Erel −3.627 −6.780 −0.701 −0.239 −0.221

rmsd 0.175 0.433 0.126 0.107 0.057

O Erel −2.523 −8.769 −1.128 −1.005 −1.008

rmsd 0.175 0.399 0.150 0.141 0.104

TABLE XI. Frequencies �in cm−1� of long-wave vibrational modes of �-quartz calculated with DFT-PBE
and with the different force fields in the PBE cell. The assignment refers to the irreducible representations of
the point group D3 �space group P3121�. E modes are both IR and Raman active; A1 are Raman and A2 are
IR active. Experimental data are from Ref. 69 �IR� and Ref. 70 �Raman�. “–” denotes the lowest E modes
because not observed in IR spectroscopy.

Rep
D3

Old potentials New potentials DFT IR Raman

Original�U� �-ZRL ZRL PBE TO LO TO LO

E 161 121 111 119 – – 128 128

A1 277 249 217 180 207 207

E 447 243 237 247 – – 264.5 264.5

A1 670 357 357 337 355 355

A2 453 361 355 345 363.5 386.7

E 557 362 354 371 393.5 402 394 403.5

E 782 472 456 417 450 510 450 508.5

A1 840 501 474 435 464.5 464.5

A2 696 452 452 460 495 551.5

E 824 650 582 658 695 697.6 696 696

A2 904 719 640 744 777 790

E 994 740 661 758 797 810 796 809

E 1304 988 1245 1024 1065 1226 1067 1230

A2 1267 988 1247 1027 1071 1229

A1 1324 997 1254 1041 1082 1082

E 1194 974 1191 1118 1158 1155 1159 1159
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bility of the internal structure. In contrast, the Original po-
tential results in a strong distortion such that the vibrational
modes could no longer be classified according to the repre-
sentations of the D3 point group.

For the case of �-Si3N4, the computed spectra of the op-
tically active vibrational modes in Table XII refers to the
optimized lattices, and are compared to the prediction of a
well-known “Hessian-biased” force field41 and to experi-
ment. Regarding our potentials, again more significant dis-
crepancies are found in the frequencies of the stretching
modes, which are also more strongly dependent on the lattice
parameters. Still, the agreement is clearly better than that
found with the Hessian-biased force field. This is also true
when compared with other model potentials, which were ei-
ther fitted to reproduce some undefined “dynamical
properties”60 or derived from DFT calculations performed in
the local-density approximation.61

VII. CONCLUSIONS

In conclusion, we have developed a force field that is
based on the Tersoff potential for covalently bonded systems,
but modifies and augments it to enable a better description of
mixed compounds and to account for the presence of coor-

dination defects. In particular, it is tailored to accurately rep-
resent systems composed of silicon, nitrogen, oxygen, and
hydrogen in noncrystalline phases, where a variety of chemi-
cal bonding situations are present. For this reason, the pa-
rameters were systematically fitted to simultaneously repro-
duce both forces and potential energies, for diverse
configurations of a number of systems �mostly in the solid
state�, calculated in the framework of density-functional
theory.

Although retaining the simplicity of a local potential, with
focus on atomic coordination as predominant variable in de-
termining the system energetics and atomic dynamics, the
ZRL scheme necessarily includes a larger number of param-
eters to be fitted. However, the gain in accuracy and trans-
ferability is worthwhile, as shown in a number of applica-
tions, for which dramatic improvement was obtained over
previous potentials of the Tersoff family as well as the Com-
pass force field, which is widely used for modeling of the
type of materials studied here. It is worth stressing that given
the focus of our work on a global and comprehensive de-
scription of mixed SiONH compounds, the ZRL potential
was not optimized to represent either one specific system,
such as SiO2 or Si3N4, or specific properties, such as vibra-
tional spectra of crystalline phases. Still the comparison we
have drawn also shows an improvement on the predictions of
well-known force fields. Moreover and more importantly,
unlike current non–ab initio approaches, the ZRL scheme
allows a reliable description of changes in the bonding pat-
tern that take place at the interface between silicon and its
oxides and oxynitrides. Examples of successful applications
to the study of SiO2/Si�100� and SiON/Si�100� interfaces
can be found in Refs. 62 and 63. In particular, in the
SiO2/Si�100� system, our scheme was able to predict the
formation of a substoichiometric region and its characteris-
tics in agreement with experiment62 and to shed light on the
major effects of the nitridization process.63

We must emphasize that the good performance of the
ZRL potential in systems with partially ionic bonding is pos-
sible because the short-range terms of the electrostatic inter-
actions, which are crucial for a correct description of differ-
ent coordination environments, are implicitly accounted for.
For this to be the case, the long-range behavior of the inter-
atomic interactions should not be determined by monopole-
monopole coupling. On the other hand, the short-range na-
ture of our potential is instrumental in extending the time
scale accessible to simulations.

Given the complexity of the interatomic interactions in
the systems we have studied here, one cannot expect that a
simple classical potential scheme is as accurate as ab initio
calculations. However, being derived from DFT calculations
without additional constraints, the ZRL force field can be
reliably used in the modeling of large-scale, complex, and
heterogenous systems, in combination with DFT-based MD
simulations.

APPENDIX A: INTERMEDIATE PARAMETRIZATION
SCHEMES

For the sake of completeness, we report here �Tables
XIII–XV� the parameter sets obtained at intermediate steps
of our study, as described in Secs. II and III.

TABLE XII. Frequencies �in cm−1� of the optically active long-
wave vibrational modes of �-Si3N4 calculated with the new poten-
tials in the corresponding optimized structures, and compared with
DFT-PBE, experiment �Ref. 71� and the results of the Hessian-
biased potential �WG� in Ref. 41. Our assignment refers to the
irreducible representations of the point group C6h �space group
P63/m�. Note however that in Ref. 41 the modes belonging to the
E2g and E1g representations are not distinguished but all denoted as
Eg.

Rep
C6h WG

Old potential New potentials
DFT
PBE Expt.Original �-ZRL ZRL

E2g 190 319a 286 177 175 144

Ag 236 169 159 172 197 186

E1g 215 480 257 207 218 210,229

E2g 518 737a 464 420 431

Ag 289 383 420 415 438 451

E2g 592 996a 719 568 595 619

Ag 539 1730 934 825 700 732

E1g 975 1230 935 1061 838 865

E2g 1017 1231a 1012 1083 898 928

Ag 547 1207 998 1108 904 939

E2g 1067 1737a 956 939 1004 1047

Au 548 373 415 399 361 380

E1u 481 394 434 423 413 447

E1u 580 1012a 689 576 550 580

Au 1062 1217 930 1064 828 910

E1u 1012 1207a 1015 1095 859 985

E1u 1064 1641a 958 1016 991 1040

aUnclean projection.
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TABLE XIII. Comparison of the parameters of the Original�U� potential and the corresponding ones in the �-ZRL potential. Values are
in eV, Å, and Å−1.

Parameter

Silicon Oxygen Nitrogen Hydrogen

Original�U� �-ZRL Original�U� �-ZRL Original�U� �-ZRL Original�U� �-ZRL

AI 11422.0 1830.80 3439.0 3331.06 6368.14 6368.21 86.7120 86.9230

BI 120.0 471.175 228.0 260.477 511.760 511.205 43.5310 42.9845

�I 3.94 2.45918 4.23 3.75383 5.43673 5.59852 3.7879 3.85415

�I 1.61 1.76191 1.01 3.35421 2.70 3.14828 1.98 1.97002

RI 2.70 2.44810 2.70 2.26069 1.80 1.75256 0.80 0.77985

SI 3.00 3.08355 3.00 3.31294 2.10 2.41522 1.00 0.88641

�I 1.13�10−6 1.0999�10−6 1.86 0.28010 5.2938�10−3 4.4422�10−3 4 4

nI 0.821 0.78665 0.151 0.75469 1.33041 2.42635 1 1.00921

mI 3 3 1 1 1 1 1 1

cI 1.06�105 1.0039�105 0 0a 2.03120�104 2.2955�104 0 0

dI 15.4 16.21697 1 1 25.5103 24.78455 1 1

hI −0.317 −0.59912 0 0.96783 −0.56239 −0.53957 1 1

	Si,I 1.00 1 1.00 1 0.67 1 0.78 1

	O,I 1.00 1 1.00 1 1.00 1 1.00 1

	N,I 0.67 1 1.00 1 0.00 1 0.76 1

	H,I 0.78 1 1.00 1 0.76 1 1.00 1

aNot restrained to zero. The value obtained from the fitting was vanishingly small.

TABLE XIV. Coefficients of mixed terms �Eq. �6�� of the Original�U� and �-ZRL potentials, expressed in
terms of the deviation from the combination rule of Eqs. �4� and �5�. The values are given in Å−1.

Parameter

Si-O Si-N Si-H O-N O-H N-H

Original�U� �-ZRL �-ZRL �-ZRL �-ZRL �-ZRL �-ZRL

AIJ / �AIAJ�1/2 0.35552 1.04753 0.58647 1.52969 1.26527 0.99854 0.83424

BIJ / �BIBJ�1/2 3.43613 1.00000 1.10301 1.68153 1.00075 1.01275 0.97236

�IJ− ��I+�J� /2 −0.52001 0.67692 −0.60402 −0.10789 2.37154 1.04786 0.08200

�IJ− ��I+�J� /2 0.76000 −0.43480 −0.08761 0.25083 3.50485 −0.22886 0.22572

TABLE XV. Core energies �in eV� introduced in the expression, Eq. �12�, of the �-ZRL scheme.

Parameter Si O N H

EI
0 −103.8161 −429.7459 −263.3069 −12.7355
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APPENDIX B: SILICON VACANCY

In analogy to the calculations presented in Table X, here
we report �Table XVI� the results obtained for the relaxation
of an isolated vacancy in silicon. In this case the comparison
with the original potential is particularly interesting; there-
fore, we also quote the values calculated in the specific equi-
librium structures. While PBE, ZRL, and Original agree in
predicting a weak relaxation of the internal structure, the
relaxation energies differ significantly. Note again that no
optimization of the lattice constant of the model including
the defect was attempted.

APPENDIX C: MORE ON VIBRATIONS

For a comparison with predictions from the Compass

force field, we have to resort to the �-quartz structure
�Table XVII�, because in the � modification SiO2 turns
out to be unstable also when constrained to the DFT-
PBE cell. In the �-quartz structure, Compass predicts
a symmetry lowering. A sign of instability was found
in the DFT-PBE scheme, marked by an imaginary fre-
quency. We verified that the related eigenvector cor-
responds to the transformation from � to �-quartz. Indeed
�-quartz is stable only at high temperature. In the
�-ZRL and ZRL schemes, this is a soft mode �10 cm−1�.
However it is very sensitive to small changes of the lattice
parameters. For example, calculations performed in the
DFT-PBE lattice with our potentials also predict an imagi-
nary frequency.

TABLE XVI. Relaxation energy �in eV� of an isolated vacancy in diamond silicon and corresponding
root-mean-square displacements �in Å�, calculated with a different choice of the lattice constant �see text�.
DFT-PBE and OPT denote the optimum values in PBE and in the corresponding force field respectively.a

Quantity Lattice

Old potentials New potentials
DFT
PBEOriginal Original�U� �-ZRL ZRL

Erel PBE −0.504 −0.062 −0.184 −0.358 −0.153

rmsd PBE 0.050 0.020 0.039 0.051 0.064

Erel OPT −0.388 −0.002 −0.232 −0.266 −0.153

rmsd OPT 0.043 0.003 0.093 0.043 0.064

aFor the sake of clarity, we repeat here the values reported in the text: 5.433 �Original�, 5.379 �Original�U��,
5.680 ��-ZRL�, 5.430 �ZRL�, 5.467 �PBE� Å.

TABLE XVII. Frequencies �in cm−1� of long-wave vibrational modes of �-quartz calculated with
lattice parameters optimized for each scheme. The assignment refers to the irreducible representations
of the point group D6 �space group P64222�. Note that in the Compass structure the vibrational modes
could only be classified according to the representations of the C6 point group. “—” indicates imaginary
frequency.

Rep
D6

Compass
�C6�

Old potentials New potentials
DFT
PBEOriginal�U� �-ZRL ZRL

B1 55 �B� — 10 10 —

E1 107�E1� 94 77 75 82

E2 310�E2� 433 245 238 234

B1 352 �B� 533 350 343 342

B2 416 �B� 493 388 379 388

E2 468�E2� 651 421 408 372

E1 443�E1� 613 428 415 389

A2 469 �A� 691 472 461 394

A1 572 �A� 818 480 463 416

E2 722�E2� 815 588 539 644

B2 808 �B� 863 641 577 743

E1 875�E1� 959 684 621 746

E2 1246�E2� 1144 1006 1225 1148

A2 1314 �A� 1282 1009 1272 1042

E1 1317�E1� 1287 1009 1271 1041

B1 1304 �B� 1243 1021 1282 1065

AB INITIO DERIVED AUGMENTED TERSOFF¼ PHYSICAL REVIEW B 73, 155329 �2006�

155329-13



*Present address: Infineon Technologies, Am Campeon 1-12, 85579
Neubiberg, Germany.

1 J. Hutter and A. Curioni, ChemPhysChem 6, 1788 �2005�.
2 Y. Sugita and Y. Okamoto, Chem. Phys. Lett. 314, 141 �1999�.
3 J. Tersoff, Phys. Rev. Lett. 56, 632 �1986�.
4 A. Yasukawa, JSME Int. J., Ser. A 39, 313 �1996�.
5 Y. Umeno, T. Kitamura, K. Date, M. Hayashi, and T. Iwasaki,

Comput. Mater. Sci. 25, 447 �2002�.
6 F. de Brito Mota, J. F. Justo, and A. Fazzio, Phys. Rev. B 58,

8323 �1998�.
7 F. de Brito Mota, J. F. Justo, and A. Fazzio, J. Appl. Phys. 86,

1843 �1999�.
8 J. Tersoff, Phys. Rev. B 38, 9902 �1988�.
9 J. Tersoff, Phys. Rev. B 39, R5566 �1989�.

10 F. H. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 �1985�.
11 R. Biswas and D. R. Hamann, Phys. Rev. B 36, 6434 �1987�.
12 E. Kaxiras and K. C. Pandey, Phys. Rev. B 38, R12736 �1988�.
13 M. Z. Bazant, E. Kaxiras, and J. F. Justo, Phys. Rev. B 56, 8542

�1997�.
14 J. F. Justo, M. Z. Bazant, E. Kaxiras, V. V. Bulatov, and S. Yip,

Phys. Rev. B 58, 2539 �1998�.
15 C. L. Allred, X. Yuan, M. Z. Bazant, and L. W. Hobbs, Phys. Rev.

B 70, 134113 �2004�.
16 B. W. Dodson, Phys. Rev. B 35, 2795 �1987�.
17 J. Tersoff, Phys. Rev. B 37, 6991 �1988�.
18 S. von Alfthan, A. Kuronen, and K. Kaski, Phys. Rev. B 68,

073203 �2003�.
19 Y. Tu, J. Tersoff, G. Grinstein, and D. Vanderbilt, Phys. Rev. Lett.

81, 4899 �1998�.
20 B. W. H. van Beest, G. J. Kramer, and R. A. van Santen, Phys.

Rev. Lett. 64, 1955 �1990�.
21 S. Tsuneyuki, M. Tsukada, H. Aoki, and Y. Matsui, Phys. Rev.

Lett. 61, 869 �1988�.
22 P. Tangney and S. Scandolo, J. Chem. Phys. 117, 8898 �2002�.
23 T. Watanabe, H. Fujiwara, H. Noguchi, T. Hoshino, and I.

Ohdomari, Jpn. J. Appl. Phys., Part 2 38, L366 �1999�.
24 P. Vashishta, R. K. Kalia, J. P. Rino, and I. Ebbsjö, Phys. Rev. B

41, 12197 �1990�.
25 E. Demiralp, T. Çağin, and W. A. Goddard III, Phys. Rev. Lett.

82, 1708 �1999�.
26 A. K. Rappé and W. A. Goddard III, J. Phys. Chem. 95, 3358

�1991�.
27 R. A. Jackson and C. R. A. Catlow, Mol. Simul. 1, 207 �1988�.
28 B. P. Feuston and S. G. Garofalini, J. Phys. Chem. 89, 5818

�1988�.
29 B. Vessal, M. Amini, D. Finchman, and C. R. A. Catlow, Philos.

Mag. B 60, 753 �1989�.
30 J. Horbach and W. Kob, Phys. Rev. B 60, 3169 �1999�.
31 D. Herzbach, K. Binder, and M. H. Muser, J. Phys. Chem. 123, 1

�2005�.
32 A. C. T. van Duin, A. Strachan, S. Stewman, Q. Zhang, X. Xu,

and W. A. Goddard III, J. Phys. Chem. A 107, 3803 �2003�.
33 K. Tatsumura, T. Watanabe, D. Yamasaki, T. Shimura, M.

Umeno, and I. Ohdomari, Jpn. J. Appl. Phys., Part 1 42, 7250
�2003�.

34 K. Tatsumura, T. Watanabe, D. Yamasaki, T. Shimura, M.
Umeno, and I. Ohdomari, Jpn. J. Appl. Phys., Part 1 43, 492
�2004�.

35 K. O. Ng and D. Vanderbilt, Phys. Rev. B 59, 10132 �1999�.
36 A. Bongiorno and A. Pasquarello, Appl. Phys. Lett. 83, 1417

�2003�.
37 Y. Tu and J. Tersoff, Phys. Rev. Lett. 84, 4393 �2000�.
38 S. Dreiner, M. Schurmann, and C. Westphal, Phys. Rev. Lett. 93,

126101 �2004�.
39 S. Dreiner, M. Schurmann, and C. Westphal, Phys. Rev. Lett. 94,

189602 �2005�.
40 A. Bongiorno and A. Pasquarello, Phys. Rev. Lett. 94, 189601

�2005�.
41 J. A. Wendel and W. A. Goddard III, J. Chem. Phys. 97, 5048

�1992�.
42 X.-Y. Guo and P. Brault, Surf. Sci. 488, 133 �2001�.
43 C. L. Rountree, R. K. Kalia, E. Lidorikis, A. Nakano, L. V. Brut-

zel, and P. Vashishta, Annu. Rev. Mater. Res. 32, 377 �2002�.
44 X. T. Su and S. H. Garofalini, J. Appl. Phys. 97, 113526 �2005�.
45 P. Vashishta, A. Nakano, R. K. Kalia, and I. Ebbsjö, Mater. Sci.

Eng., B 37, 56 �1996�.
46 M. E. Bachlechner, A. Omeltchenko, A. Nakano, R. K. Kalia, P.

Vashishta, I. Ebbsjö, and A. Madhukar, Phys. Rev. Lett. 84, 322
�2000�.

47 CAChe Materials Explorer, Copyright Fujitsu Limited, 2001,
http://www.cachesoftware.com/materialsexplorer/index.shtml

48 N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 �1991�.
49 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 �1996�.
50 CPMD, Copyright IBM Corp. 1990–2005 and MPI für Fest-

körperforschung, Stuttgart, Germany, 1997–2001.
51 J. Hutter, H. P. Lüthi, and M. Parrinello, Comput. Mater. Sci. 2,

244 �1994�.
52 R. W. Hockney, Methods Comput. Phys. 9, 136 �1970�.
53 D. Fischer, A. Curioni, S. Billeter, and W. Andreoni, Phys. Rev.

Lett. 92, 236405 �2004�.
54 D. C. Liu and J. Nocedal, Math. Program. 45, 503 �1989�.
55 T. Rowan, Ph.D. thesis, Department of Computer Sciences, Uni-

versity of Texas at Austin, 1990.
56 H. Sun and D. Rigby, Spectrochim. Acta, Part A 53, 1301 �1997�.
57 H. Sun, J. Phys. Chem. B 102, 7338 �1998�.
58 N. R. Keskar and J. R. Chelikowsky, Phys. Rev. B 48, 16227

�1993�.
59 M. Catti, B. Civalleri, and P. Ugliengo, J. Phys. Chem. B 104,

7259 �2000�.
60 A. P. Mirgorodsky, M. I. Baraton, and P. Quintard, Phys. Rev. B

48, 13326 �1993�.
61 W.-Y. Ching, Y.-N. Xu, J. D. Gale, and M. Rühle, J. Am. Ceram.

Soc. 81, 3189 �1998�.
62 D. Fischer, A. Curioni, S. R. Billeter, and W. Andreoni, Appl.

Phys. Lett. 88, 012101 �2006�.
63 W. Andreoni, A. Curioni, D. Fischer, C. A. Pignedoli, and S. R.

Billeter, in Defects in High-k Gate Dielectric Stacks, edited by
E. Gusev, NATO Science Series �Springer, Berlin, 2006�, Vol.
II/220, p. 203.

64 G. A. Lager, J. D. Jorgensen, and F. J. Rotella, J. Appl. Phys. 53,
6751 �1982�.

65 R. W. G. Wyckoff, Crystal Structures, 2nd ed. �Interscience, New
York, 1963�, Vol. 1.

66 J. J. Pluth, J. V. Smith, and J. Faber, J. Appl. Phys. 57, 1045
�1985�.

67 S. Wild, P. Grieveson, and K. H. Jack, in Special Ceramics, edited
by P. Popper �British Ceramic Research Association, Stoke-on-
Trent, 1972�, Vol. 5, p. 385.

BILLETER et al. PHYSICAL REVIEW B 73, 155329 �2006�

155329-14



68 A. Navrotsky, in Mineral Physics & Crystallography, Handbook
of Physical Constants, edited by T. J. Ahrens �American Geo-
physical Union, Washington, D.C., 1995�, pp. 18–29.

69 F. Gervais and B. Piriou, Phys. Rev. B 11, 3944 �1975�.

70 J. D. Masso, C. Y. She, and D. F. Edwards, Phys. Rev. B 1, 4179
�1970�.

71 N. Wada, S. A. Solin, J. Wong, and S. Prochazka, J. Non-Cryst.
Solids 43, 7 �1981�.

AB INITIO DERIVED AUGMENTED TERSOFF¼ PHYSICAL REVIEW B 73, 155329 �2006�

155329-15


