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Quantum rings as electron spin beam splitters
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Quantum interference and spin-orbit interaction in a one-dimensional mesoscopic semiconductor ring with
one input and two output leads can act as a spin beam splitter. Different polarization can be achieved in the two
output channels from an originally totally unpolarized incoming spin state, very much like in a Stern-Gerlach
apparatus. We determine the relevant parameters such that the device has unit efficiency.
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The Stern-Gerlach experiment, where spatial and spin de-
grees of freedom become intertwined, has been playing a
fundamental role in the conceptual foundations of quantum
mechanics. Still, soon after the discovery of this effect, it
was pointed out by Bohr and Mott! that, in contrast to atoms,
electrons cannot be spin-polarized in an inhomogeneous
magnetic field. The recent spectacular development of spin
electronics (spintronics)? in low dimensional semiconductor
structures offers a new way of manipulating spin degrees of
freedom. Quantum rings made of semiconducting materials?
exhibiting Rashba-type* spin-orbit interaction (SOI), have
been shown to be especially important due to their remark-
able spin transformation properties.>!!

In the present paper we propose a device that can be con-
sidered to a large extent a spintronic analog of the Stern-
Gerlach apparatus: the incoming electrons are forced to split
into two different spatial parts by the geometrical construc-
tion of the semiconductor device, see Fig. 1. Due to spin-
sensitive quantum interference!>"'* and spin-orbit interac-
tion, electrons that are initially in a totally unpolarized spin
state become polarized at the outputs with different spin di-
rections. A similar polarizing effect has been predicted in a
Y-shaped conductor as a consequence of scattering on
impurities'® (which is a different physical mechanism from
the coherent spin transfer to be discussed here) or because of
the presence of SOI in a localized area around the junction.'®
There are important proposals considering four terminal
devices!”!3 as well, where the strength of the SOI is assumed
to be different in the two arms of the interferometer. In our
model SOI is uniform in the ring and absent in the leads.
However, the latter requirement is not crucial; its purpose is
to demonstrate clearly the role of the ring itself, while the
effects caused by SOI in the leads can be included in a
straightforward way. As our treatment is based on an exact,
analytic solution of the spin dependent transport problem, it
allows us to determine for which parameters the device is
reflectionless, i.e, perfect polarization at the outputs takes
place without losses.

We consider a ring'® of radius a in the x-y plane and
assume a tunable static electric field in the z direction con-
trolling the strength of the spin-orbit interaction character-
ized by the parameter a.> The Hamiltonian”?° in the pres-
ence of the spin-orbit interaction for a charged particle of
effective mass m” is given by
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where ¢ is the azimuthal angle of a point on the ring, )
=h%/2m"a® is the dimensionless kinetic energy of the
charged particle, and w=a/fia is the frequency associated
with the SOI. According to Ref. 9, in the |1), ||) eigenbasis
of the z component of the spin, the eigenstates of H read
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The corresponding energy eigenvalues are
E=ﬁQ|:K2—p,KW+:T], pu==x1, (3)

with w=1+(w?/Q?). The spinors in (2) are simultaneous

eigenvectors of H, of the z component of the total angular
momentum: K=L +S_, and of the spin operator pointing in
the direction determined by the angles 6 and ¢:

Sge =Sy sin fcos ¢+ S8, sin Osin ¢ + S cos 0, (4)

where 6 is given by the constant tan f=—w/():
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FIG. 1. The geometry of the device and the relevant wave func-
tions in the different domains.
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From a geometrical point of view, the second eigenvalue
equation above means that the direction of the spinors (2) are
either parallel or antiparallel with the conserved (position

dependent) direction defined by Sy,. Therefore, the expecta-

tion value of the vector S in these states rotates around the z
direction making always an angle 6 with it, while ¢ is the
actual azimuth along the ring.

In a closed ring K+- should be an integer, but the pres-
ence of the leads connected to the ring lifts this restriction:
the energy is a continuous variable, and then the possible
values of k are the solutions of Eq. (3):

)=ulw2+ (- 1Vgl j=12. w=xl. (6

where g=+/(w/2Q)*+E/#Q). The energy eigenvalues are
fourfold degenerate, they can be classified’ by the quantum
numbers « and w. The ratio of the components of the
eigenvectors (2) is determined by v (k) /u(kt)=(tan 0/2),
=(1-uw)Q/w.

The stationary states of the complete problem including
the ring as well as the leads, can be obtained by fitting the
solutions corresponding to the different domains. Using local
coordinates as shown in Fig. 1, the incoming wave W5(x3)
and the outgoing waves W (x;), ¥,(x,) are built up as linear

combinations of spinors with a spatial dependence ¢, etc.,
corresponding to E=h2k>/2m’":
4 r .
\1}3()63) — (fT )elk.X3 + ( T)e—th3, (78.)
/i Ty
5 i
v, (x,) = p e, (7b)

1

where n=1,2. The wave functions belonging to the same
energy E in all the three sections of the ring can be written as
linear combinations of four eigenspinors:

Vi(e) = E aij,uw(K;'Lr(Pi)’ (8)
j=1.2
pu==1

with i=1,1I,1II identifying the sections. This superposition is
no longer an eigenvector of Sy, as it contains states with
both u==+1, and their coefficients are different in general.
Additionally, spatial interference of terms describing clock-
wise and anticlockwise motions plays an essential role in
determining the spin direction in the ring. Therefore, the po-
sition dependencies of the corresponding spin expectation

values (W,|S|¥,) in the arms are more complicated than the
simple precession of the eigenvectors given in Eq. (2). Nev-
ertheless, this change of the spin direction along the ring can
be calculated without difficulty, if one determines the values
of the coefficients a;;,, which can be done using the bound-
ary conditions, to be discussed now.

Figure 1 indicates the wave functions to be fitted at dif-
ferent junctions: e.g., the incoming wave at x3;=0 should be
fitted to W, at ¢;=0 and to W at ¢;;=27. We require the
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continuity of the wave functions, as well as a vanishing spin
current density at the junctions.”?2!-?2 The procedure is simi-
lar to the case of a single outgoing lead which was described
in detail in Refs. 7 and 9. The results can be summarized by
the aid of two transmission matrices, which, acting on the
incoming spinor valued input wave functions provide the

output
f r
G0
)=\ 9)

with n=1,2. When the incoming electron is not perfectly
spin-polarized, its state should be described by a 2 X2 den-
sity matrix p;,, we can write

p"=T"p,(T™)", (10)

where p' and p? are the output density matrices in the re-
spective leads. The matrix elements of 7" and 7® can be
calculated analytically for arbitrary geometry, but we found
that the spin-polarizing properties of this device are most
clearly seen for the case when the outgoing leads are in a
symmetric position, i.e., y;=27—,. Here we will limit our-
selves to this symmetric geometry, yielding

T(TIT) = ﬂe’72/2|:0052 E(hl + h2) + SiIl2 E(l’ll - hz):| 5
y

8 o 0 A
i = 99K 2 gin @ cos ULny 4 hy) = (07 = 1),
y 2 2
8qak 0 0 . .
)= = e_’VZ/Z{sinz —(h1+h2)+cosz—(h1—h2)],
y 2 2
1) _ —i 1)
=1y,
where

hy == ake ™2™ 7 sin[q(2 1 — y,) Isin[2¢(7 - )],
hy = ige™™"*2{™ 7 sin(qy,) — sin[g(27 - ,) 1},

y = ia’k*{sin[2g(37 - 2v,)] - 2 sin[2¢(7 - v,)] - sin(2g )}
- 2ga*kH{cos[2q(3m—2y,)]

+2 cos[2¢g(m— )|} + 6ga’k* cos(2g )

— 12ig?ak sin(2q ) + 8¢ [cos(wr) + cos(2gm)]. (11)

Similarly, for the second output we obtain T(z) T(lll ,
Tﬁ _T<T]T)’ Tﬁ)— TilT’ and Tﬁ) T<l This symmetry is re-
lated to the chosen geometry y,= 277 v,. We note that the
reflection matrix can also be calculated using the method
described above; it turns out to be diagonal in the
basis. We concentrate here on the transmission properties of
the ring and consider reflection as a loss in the efficiency of
spin transformation.

The most surprising physical consequence of our three
terminal ring is its ability to deliver polarized output beams
of electrons. Considering a completely unpolarized input,
i.e., p;, being proportional to the identity, the outputs will be
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FIG. 2. Determination of the parameter values corresponding to
perfect polarization: Equations (13a) and (13b) with the plus (mi-
nus) sign are satisfied along the gray and the thin (thick) black lines,
respectively. At each intersection of a black and a gray line the ring
acts as a perfect polarizing device. This figure corresponds to a
geometry given by y;=m/2, y,=3/2.

generally partially polarized that could be detected by Fara-
day rotation experiments.'> However, we found that properly
chosen parameters lead to output polarizations as high as
100%. The relevant output density operators in this case
should be projectors (apart from the possible reflective
losses):

STOTM) = 5,47 (12)

The nonnegative numbers 7, and 7, measure the efficiency
of the polarizing device, i.e., 7+ 7,=1 means a reflection-
less process. Direct calculation shows that, provided Eq. (12)
is satisfied, the norms of the two outputs are equal,
m=1,=mn/2. Equation (12) is equivalent to requiring the
determinants of 7" (T™)" to vanish. We found that these
determinants are equal, and zero if h;+h,=0. Using Eqgs.
(11), these conditions can be formulated as

__ sin(gy)
O Gnlg2m— ] (15
. _ ak .
sin(lwm) = F ; sin[2g(7m— v,)], (13b)

each of them lead to a k— w relation as depicted in Fig. 2 for
a representative example corresponding to y,=37/2. The
crossing points of the gray [solution of Eq. (13a)] and black
[solution of Eq. (13b)] curves in Fig. 2 are the parameters
that can be used in an experimental realization of our pro-
posal to achieve perfectly polarized outputs. Similar figures
can be drawn for arbitrary (symmetric) geometry. This im-
plies that there are lines in three-dimensional {y,,w/Q,ka}
space along which the ring polarizes a completely unpolar-
ized input.

Now we can ask what the transmission probabilities are,
provided perfect polarization occurs. Figure 3 shows that
along a line defined by h;+h,=0, 7 is a quasiperiodic func-
tion of y,. A similar figure can be drawn for the condition
hy—h,=0. As we can see, there are certain points (that is,
parameter combinations), where the transmission probability
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FIG. 3. The transmission probability of a perfectly polarizing
ring as a function of y,=27—7,. The parameter ka changes in the
range of [19.0, 21.0], while 0 < w/Q <35, and the plot corresponds
to the condition £, +h,=0.

is unity. This shows that it is possible to obtain 100% spin-
polarized outputs from a perfectly unpolarized input, even
without reflective losses.

Now we turn to the investigation of the outgoing spinors
which arise as a consequence of the polarizing property of
the ring. Clearly, these are the eigenstates |¢") of the trans-
mitted density matrices corresponding to the nonzero eigen-
values which are given by 7, =17,=128¢%a*k*|h,|*/|y|*. Note
that the quasiperiodic behavior of the transmission probabil-
ity m=n;+ 7, seen in Fig. 3 is related to the sine and cosine
functions in A; and y. Focusing on the case of h;+h,=0, the
eigenstates of the respective transmitted density matrices
corresponding to the nonzero eigenvalues #; and 7, read

sin —
|¢l>+ = ’ s
6

—e 2 cos —
2

. 6
e "2 cos —
|¢2>+ =

sin —
(14)

These results describe the connection between the strength of
the spin-orbit coupling (encoded in 6), the geometry of the
device, and its polarizing directions. We stress that this pair
of spinors exhibits nontrivial spatial-spin correlation being a
signature of quantum noncontextuality.>> However, note that
they are, in general, not orthogonal, their overlap is given
by (¢*|p'),=isin Osiny,. On the distinguishability of
nonorthogonal states, see Ref. 24. Similarly, for i;—h,=0,
we have

) 0
e'"2 cos — sin —

.= ’)_= ’ 15
|¢ >—_ 0 ) |¢>—_ 0 . ( )
sin — — e cos —

2 2

Considering the transmission matrices themselves, it is
clear that under the conditions given by Egs. (13a) and (13b),
their determinants also vanish. That is, each T™ has a zero
eigenvalue, but—due to the nonhermiticity—its eigenspinors
are not orthogonal. It can be verified that the eigenstates
corresponding to the nonzero eigenvalue coincide with |¢"),

155325-3



FOLDI et al.

and |¢")_, while the spinors annulled by the transmission
matrices 7<">|¢g>=o have the following components:

CcOS — —sin —
1 2 2
o)+ = Rt )+ = ) (16)
sin — COS —
2 2
if 7y +hy=0, and [Gh)_=|d)., |HD)-=|d0).-

This shows that if the conditions given by Egs. (13a) and
(13b) are satisfied, the device acts similar to a Stern-Gerlach
apparatus in the sense that (1) for unpolarized input, we have
two different spin directions (14) in the outputs, (2) if we
consider one of the eigenstates (14) as the input, its spin
direction will not change in the appropriate output, and (3)
there are spinors given by Eq. (16), for which the transmis-
sion probability into a given output lead is zero. However,
the analogy is not perfect; the polarized spinors (14) are not
orthogonal and the spinor which has zero probability to be
transmitted through a given lead is not equal to the eigenstate
corresponding to the nonzero eigenvalue of the other lead:

|¢")# | ) for n#n'. From this point of view, an optical
polarizing beam splitter®>?® with nonorthogonal polarizing
directions can be the closest analog.

The present calculation was done for an idealized model
system; in fact, our intention was showing that the discussed
polarizing effect—in contrast to previous proposals—can be
described in terms of pure quantum mechanics (i.e., spin
precession and interference), thus it is of importance from a
fundamental point of view, as well. On the other hand, there
are results showing that the approximations of our model
(transport is ballistic and one dimensional, i.e., the finite
width of the ring-wire was not taken into account) can give
valid descriptions of actual physical systems under specific
experimental situations. Currently, high mobility samples
have become available such that at cryogenic temperatures
transport is found to be ballistic over tens of microns. Simi-
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larly, phase coherence and spin coherence lengths?’ have
been found up to 100 wm. Our narrow ring implies the as-
sumption of single mode propagation. Recently, it was found
that the finite width of the rings has a small effect on the loss
of coherence of the spin state; it has also been shown that in
a multichannel system the modulation of the transmitted spin
states survive and under specific conditions the individual
eigenchannel transmissions are very similar to the ones
found in single channel rings.®?® A possible nonideal cou-
pling to the leads can be described through effective tunnel
barriers. But in most of the current experimental systems the
leads are connected in a rather adiabatic way which makes
the coupling very close to ideal.

In conclusion, we showed that a quantum ring with one
input and two output leads in the presence of Rashba-type
SOI has remarkable similarities with a Stern-Gerlach appa-
ratus. Parameter values, within the experimentally feasible
range,>%? were identified when the three terminal ring de-
livers perfectly polarized output beams of electrons without
reflective losses. We found that appropriate spin-polarized
input states are transmitted without modification, but it is
also possible to prepare inputs, for which the transmission
into a given lead is forbidden. Thus our paper describes a
realistic model in which spin-sensitive quantum interference
gives rise to fundamental polarization effects as well as to
nontrivial spatial-spin correlations.

We note that similar rings can act as spintronic quantum
gates,” or in the presence of an external magnetic field, can
be used also for spin filtering.” This points to the possibility
of integrating spintronic beam splitters, gates, and filters that
can serve as elementary building blocks of a quantum net-
work based on spin-sensitive devices.3*33
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