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A fully quantum-mechanical theory for the spontaneous light emission from the interacting electron-hole
system in a quantum dot is developed. Using a cluster-expansion approach, a closed set of equations of motion
for singlets and two-particle correlations is derived. Photoluminescence spectra are calculated and the radiative
decay dynamics is discussed.
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I. INTRODUCTION

A number of recent experiments1–6 has demonstrated that
isolated semiconductor quantum dots are capable of emitting
nonclassical light. Already for continuous-wave excitation,
photon-antibunching effects can lead to sub-Poissonian emis-
sion statistics,5 while in case of a pulsed excitation, emission
of a single photon2–4 or one pair of strongly correlated
photons6 per each excitation pulse has been observed. This
truly quantum-mechanical behavior opens the door to future
applications of quantum dots in quantum cryptography7as
well as quantum computing8,9 and data storing.10

Already the theoretical description of the quantum-dot
carrier system is a sophisticated many-body problem.11–22 As
a general tendency, the three-dimensional confinement
strongly enhances the Coulomb correlations between the dot
electrons and holes. To investigate the properties of these
correlations and their effect on the optical resonances of the
system, both partial and full diagonalization techniques11–18

as well as configuration-interaction calculations19–21 have
been applied.

The methods above can successfully solve the specific
details of an isolated dot; one can accurately describe, e.g.,
emission and absorption lines. However, this approach be-
comes rather involved for a realistic quantum dot that is an
open system due to interaction with a quantized multimode
light field, wetting layer states,23 and phonons.24 Such cou-
pling effects are often very dynamical, and they have suc-
cessfully been described25–27 in quantum-well systems using
the cluster-expansion approach. In particular, we analyze the
nonclassical emission from a quantum dot, which requires
quantization of the light field. Therefore, we extend earlier
theoretical approaches and present a fully quantum-
mechanical theory for the spontaneous emission from the
Coulomb interacting carrier system in a quantum dot. While
we concentrate here on the internal electronic interaction, the
theory we introduce has the potential to treat consistently
different phenomena related to open quantum-dot systems.

We employ the equation-of-motion approach for the rel-
evant correlation functions and systematically treat the re-
sulting hierarchy problem by using the cluster-expansion
technique. In Sec. II, we introduce the model Hamiltonian
where the material part agrees with Refs. 15 and 18 while the
light-matter interaction is described quantum electrodynami-
cally. After a short summary of the main features of the
cluster expansion in our system in Sec. III, we derive the

semiconductor Bloch equations �SBEs� for the quantum dot
in Sec. IV. The SBEs describe the excitation of the carrier
system when it is driven by a coherent light field.28 In Sec. V,
we then analyze the emission from the dot under incoherent
conditions, which is described by the semiconductor lumi-
nescence equations �SLEs�. We introduce an exciton basis
that enables us to formulate analytic approximations for both
the linear absorption and the stationary luminescence spec-
trum. In Sec. VI, we present a phenomenological description
of a generic excitation process, and determine the physically
allowed stable states of the dot in the incoherent regime.
Finally, in Sec. VII, we calculate the luminescence from sev-
eral of these stable states and identify plasma and excitonic
contributions on the basis of their decay dynamics.

II. MODEL HAMILTONIAN

The coupling of a quantum dot to a light field can be
treated fully quantum mechanically by starting from the gen-
eral system Hamiltonian29,30

H = H0,ele + H0,light + HC + HD �1�

which contains contributions H0,ele and H0,light due to nonin-
teracting electrons and light, respectively. The many-body
and the quantum-optical dynamics follow from the Coulomb
part of the Hamiltonian HC and the light-matter part HD.
Expanding the electron states in the usual Bloch basis and
using the envelope function approximation,31,32 the pure car-
rier Hamiltonian �1� can be written as

H0,ele = �
��

E�
�a��

† a��, �2�

HC =
1

2 �
���

�1,. . .,�4

V�3�4

�1�2a��1

† a���2

† a���3
a��4

�3�

where � labels the band index of the Bloch electrons while �
identifies the quantum numbers of the envelope part. When
the electrons are confined to a lens-shaped dot on a planar
wetting layer �i.e., quantum well�, its envelope function can
accurately be described via the harmonic oscillator wave
functions confined in two directions.33 Thus, the envelope
part is defined by �= �n ,m ,�� with the principal quantum
number n=0,1 ,2 , . . ., the angular-momentum quantum num-
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ber m=−n ,−n+2, . . . ,n−2,n, and the spin �. The fermionic
operators a��

† and a�� create and annihilate, respectively, a
Bloch electron in band � with envelope function ���r� as
calculated in Appendix A.

In this paper, we restrict the analysis to a two-band model
with a single valence band �=v and a single conduction
band �=c. In this case, the single-particle energies simply
follow from

E�
c � E�

e = n��e + Eg, �4�

E�
v � − E�

h = − n��h, �5�

where Eg is the band-gap energy. In Appendix B, it is shown
that the Coulomb matrix elements are real valued and obey
the selection rules

V�3�4

�1�2 = �m1+m2,m3+m4
��1,�4

��2,�3
V�3�4

�1�2. �6�

Also the following symmetries:

V�3�4

�1�2 = V�1�2

�3�4, �7�

V�3�4

�1�2 = V�4�3

�2�1 �8�

are generally valid.
For a quantum-electrodynamical treatment of the light-

matter interaction,29,30 we start from the quantized transverse
electric field

E�r� = �
q�

Eq�iUq��r�Bq��t� + H.c.�ê�, �9�

where q denotes the wave vector and ê� ��=1,2� defines the
polarization direction of the eigenmode Uq�. In the follow-
ing, we suppress the index � for notational simplicity. The
photon operators Bq ,Bq

† satisfy bosonic commutation rela-
tions. Moreover, we have introduced the vacuum-field am-
plitude Eq����q / �2	0�. As a result of quantization, the
light field has

H0,light = �
q

��q�Bq
†Bq +

1

2
	 �10�

with the dispersion relation �q=c0
q
, where c0 denotes the
vacuum velocity of light.

When the quantum dot is positioned at r=0, the dipole-
interaction Hamiltonian leads to

HD = �
�q

�i�Fq
*Bq

† − FqBq�av�
† ac� + H.c.� �11�

where the coupling constant

Fq � EqUq�0�ê� · dvc �12�

contains the dipole matrix element dvc.
For all numerical examples in this paper, we choose ma-

terial parameters that are typical for self-assembled indium-
based quantum dots. We assume effective electron and hole
masses me=0.065m0 and mh=0.170m0, respectively. The
quantum-well confinement is characterized by a confine-
ment width of L=40 Å �see Appendix A, Eq. �A2�� while for

the in-plane confinement, we take ��e=40.20 meV and
��h=15.37 meV. In Ref. 33, it is discussed in detail how
these confinement parameters depend on the geometry of the
dot. To fully determine the material Hamiltonian, we assume
the band-gap energy Eg=1.52 eV and the dielectric constant
	=13.69.

The parabolic confinement potentials are truncated by dis-
sociation thresholds. Consequently, for principal quantum
numbers n higher than a certain nmax, the envelope functions
do not correspond to dot states any longer, and their energies
are hidden in the quasicontinuum of the wetting-layer states.
While all equations will be derived for the most general case,
we restrict their explicit evaluation in this paper to nmax=1,
i.e., to a quantum dot that contains only s and p shells for
both electrons and holes. Moreover, we investigate the spin-
selective case where only one of the spin species is consid-
ered such that the dot states are determined by n and m
alone. Figure 1 schematically displays the energy levels of
the material system.

III. CLUSTER EXPANSION

In general, all relevant operators can be classified by de-
termining how many fermion or boson operators they con-
tain. The class of N-particle operators is given by

ON = aiN
†
¯ ai1

† ai1�
¯ aiN�

, �13�

where photon operators formally correspond to pairs of car-
rier operators Bq�aq�

† aq�. The Heisenberg equations of mo-
tion i��tO= �O ,H� have the structure

�

�t
ON = T�ON� + V�ON+1� , �14�

where the functional T mainly results from the noninteract-
ing part H0=H0,ele+H0,light of the Hamiltonian while the
functional V originates from the interacting part HC+HD,

FIG. 1. Energy levels of the quantum dot. The shaded areas
indicate the wetting-layer continuum.
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respectively. Hence, N-particle operators are coupled to �N
+1�-particle operators via V, which leads to the well-known
hierarchy problem of many-body physics.32,34

One successful approach to deal with the hierarchy prob-
lem is provided by the so-called cluster expansion.25,35–38

Here, one factorizes N-particle expectation values in terms of
independent single particles �singlets�, correlated pairs �dou-
blets�, correlated three-particle clusters �triplets�, and so on,
up to correlated N-particle clusters. The hierarchy problem
can then be treated consistently by truncating the right-hand
side of Eq. �14� such that one includes all clusters up to a
desired order.

In practice, the cluster expansion is performed according
to the recursion scheme

�O2
 = �O2
S + 
�O2
 , �15�

�O3
 = �O3
S + �O1

�O2
 + 
�O3
 ,

] �16�

�ON
 = �ON
S + �ON−2
S
�O2
 + �ON−4
S
�O2

�O2
 + ¯

+ 
�ON
 , �17�

where 
�ON
 denotes the purely correlated part of the
N-particle cluster. Each term on the right-hand side of Eq.
�17� represents the fully antisymmetrized �for fermionic op-
erators� or symmetrized �for bosonic operators� sum over all
possibilities to distribute the N creation and N annihilation
operators among the different clusters. As a starting point of
the recursion scheme, �ON
S leads to the Hartree-Fock fac-
torization for the carrier operators while the singlet part for
the photon operators produces the classical factorization for
the light field. For our purposes, it will be sufficient to trun-
cate the hierarchy of equations on the doublet level.

IV. SEMICONDUCTOR BLOCH EQUATIONS

The proper two-point quantities can be distinguished into
polarization expectation values

p��
� � �av�

† ac��
 , �18�

and density expectation values

fe��
� � �ac�

† ac��
 , �19�

fh��
� � ���� − �av�

† av��
 . �20�

Their coupled equations of motion form the semiconductor
Bloch equations

i�
�

�t
p��

� = �
�1

�E���1

e p�1

� + E�1�
h p��

�1� − dcv�E


������ − fh��
� − fe��

� � − �
�1�2�3�4

V�1�4

�2�3

�����1
��2�� − ���1

fe��
�2 − ��2��fh�1

� �p�4

�3 + Dp��
� ,

�21�

i�
�

�t
fe��

� = �
�1

�E���1

e fe�1

� − E�1�
e fe��

�1� + dcv�E
p��
�

− �dcv�E
p�
���* − �

�1�2�3

�V�1�3

���2p�3

�2�p�
�1�*

− V�1�3

��2 �p�3

�2�*p��
�1� + De��

� , �22�

i�
�

�t
fh��

� = − �
�1

�E���1

h fh�1

� − E�1�
h fh��

�1� + dcv�E
p��
�

− �dcv�E
p�
���* + �

�1�2�3

�V���3

�1�2�p�3

�2�*p�1

�

− V��3

�1�2p�3

�2�p�1

���*� + Dh��
� . �23�

In Eqs. �21�–�23� the first lines always contain the mean-field
energies

E���
e � ����E�

e − �
�1�2

V���2

��1 fe�2

�1 + �
�1�2

V�2��
��1 �fe�2

�1 − fh�2

�1� ,

�24�

E���
h � ����E�

h − �
�1�2

V���2

��1 fh�2

�1 − �
�1�2

V�2��
��1 �fe�2

�1 − fh�2

�1� .

�25�

Formally, E
���
e�h� also includes terms such as U��

� ���1
V���1

��1

which lead to a divergence since the summation over �1 runs
over all states of the system including the extended wetting-
layer states. However, the completeness relation of the enve-
lope functions and the explicit form of V���1

��1 �see Eq. �B4��
provide U��

� =����U where U does not depend on �. Thus,
these formally infinite terms are already included in the
band-gap energy such that they do not appear in Eqs. �24�
and �25�.

The second lines of Eqs. �21�–�23� contain the classical
electric field �E
 which drives the polarization and thus con-
tributes to the creation of electron and hole densities. Often,
dcv�E
 is referred to as the Rabi frequency, and its Coulomb
renormalizations are found in the third lines of Eqs.
�21�–�23�. For a quantum-dot system, these renormalizations
are somewhat more complicated than the corresponding
terms for quantum wells.30

We see from the SBEs that the singlet dynamics couples
to pure doublet terms indicated by Dp��

� , De��
� , and Dh��

� .
They originate from Coulombic and quantum-optical corre-
lations. Explicitly, these terms can be written as

Dp��
� = − �

�1�2�3

�V�2�3

���1�
�

C�v� ��1

�c �2�3
	

− V�2�3

��1 �
�

C�v� �3�2

�c �1��
	� + i�
�B�ac�

† ac��


− 
�B�av�
† av��
� , �26�
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De��
� = − �

�1�2�3

�V�2�3

���1�
�

C�c� ��1

�c �2�3
	

− V�2�3

��1 �
�

C�c� �3�2

�c �1��
	� + i�
�B�

† av�
† ac��


+ 
�B�
† av��

† ac�
*� , �27�

Dh��
� = �

�1�2�3

�V�2�3

���1�
�

C��v �1�

v� �3�2
	

− V�2�3

��1 �
�

C��v �2�3

v� ���1
	� + i�
�B�

† av�
† ac��


+ 
�B�
† av��

† ac�
*� , �28�

where we have identified the genuine two-particle correla-
tions

C� ��� ���

���� ����
	 � 
�a��

† a����
† a����a����
 . �29�

In our further derivations, we investigate the specific dynam-
ics of excitonic electron-hole correlations

CX��
�

��
�� � C�cv ���

vc ����
	 �30�

as well as electron-electron and hole-hole correlations

Ce��
�

��
�� � C�cc ���

cc ����
	 , �31�

Ch��
�

��
�� � C�vv ���

vv ����
	 , �32�

respectively. By using the rotating-wave approximation, the
photon correlation terms can be expressed with the help of a
collective photon operator

B� � �
q

FqBq, �33�

which basically describes the operator form of the Rabi fre-
quency.

The two-particle correlations which include photon opera-
tors provide quantum-optical corrections to the SBEs. For
example, De and Dh lead to spontaneous recombination of
electron-hole pairs which is observed as reduction of carrier
densities. The Coulomb correlations describe a variety of
phenomena such as dephasing, energy renormalization, and
scattering contributions.

If the system can be reduced to a closed set of dot states,
one can diagonalize the Coulomb interaction with a given
number of electrons and holes and determine the genuine
many-body states and corresponding eigenenergies of the
carrier system.18 These states are stationary unless coupling
to the light field or wetting layer is included. Since the clus-
ter expansion describes the system exactly as long as the
cluster number is larger than the particle number, two-
particle correlations also provide terms that lead to the sta-

tionary states corresponding to the two-particle eigenstates.
More specifically, such contributions are obtained from Dp,
De, and Dh terms that are limited to pure dot states. Since
this feature is clearly present only for quantum-dot systems,
we concentrate in this paper on resolving how the cluster
expansion provides stationary states and characterize the
quantum emission from the corresponding stationary states.

A. Elliott formula for absorption

The precise inclusion of the two-particle correlations
�26�–�28� is computationally rather demanding, especially, if
the scattering from the wetting layer is fully included.23,39–41

To gain some insight into coherent and classical excitation
dynamics, we first simplify these contributions by including
only their generic properties. The full singlet-doublet analy-
sis is then performed later in Sec. V where the incoherent
regime with quantum emission is investigated.

If we assume that the two-particle correlations Dp, De,
and Dh only lead to dephasing for the polarization when dot
states are analyzed, we may replace Dp��

� in Eq. �21� by a
phenomenological dephasing term −i
p��

� . If we further as-
sume that the densities are quasistationary, Eqs. �22� and �23�
can adiabatically be decoupled from Eq. �21�. As a result, we
find the frequency domain version of Eq. �21�:

��� + i
�p��
� ��� = − dcv�E
�������� − fe��

� − fh��
� �

+ �
�1�2

A���,�1�2
p�2

�1��� , �34�

with the matrix A defined by

A���,���� � ����E����
e + �����E���

h − �
�1�2

V�1��
�2�� ����1

��2��

− ���1
fe��

�2 − ��2��fh�1

� � . �35�

This matrix problem can be inverted such that p��
� can be

expressed in terms of the exciting field. This result then
yields the macroscopic polarization of the quantum dot,

P�t� = dcv�
�

�p�
��t� + �p�

��t��*� , �36�

as response to an external light field �E
 which, for simplic-
ity, we assume to be parallel to the dipole matrix element.
The linear absorption spectrum then follows from

���� � Im� P���
�E
���� , �37�

which defines how the dot system absorbs a weak probe
field.

By using the exciton basis introduced in Appendix C, one
can diagonalize and invert Eq. �34�. This procedure yields
the Elliott formula42

���� = 
dvc
2 Im��
i

�1
�i,R
��i,L
1 − fe − fh

Ei − �� − i
 � , �38�

where 
�i,R�L�
 denotes the right- �left-�handed excitonic
wave function with components �

���
i,R�L�, and
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�1
�i,R
 = �
�

���
i,R, �39�

��i,L
1 − fe − fh
 = �
���

�����
i,L �*����� − fe��

� − fh��
� � . �40�

The excitonic eigenenergies Ei appearing in the denomi-
nator of the Elliott formula clearly define the spectral posi-
tions of the absorption resonances. When the Coulomb cor-
relations are fully included in the analysis, they provide
density-dependent energy renormalizations as well as
excitation-induced dephasing39–41 which also varies with the
resonance index i. These effects are well known also from
quasi-two-dimensional quantum-well structures.43,44

B. Singlet properties of the system

The absorption spectrum for the unexcited dot is shown in
Fig. 2. Out of the nine excitonic eigenstates only two are
optically visible. In the following, we will refer to the low-
energy resonance as the first, and to the high-energy reso-
nance as the second exciton. In the absence of Coulomb
interaction, the resonances coincide with the unrenormalized
vertical transition energies Es=Eg and Ep=Eg+���e+�h�.
Contrary to the quantum-well case, the second exciton ab-
sorption turns out to be even larger than the first one.

In Fig. 3�a�, the excitonic eigenenergies are plotted as a
function of the s-shell density for vanishing p-shell density.
The energy E1 of the first exciton features only a moderate
shift, which means that no higher-order correlations are
needed to obtain a spectrally stable position for the first reso-
nance. Apparently, this result does not hold for the second
excitonic energy E2 that may well be influenced by higher-
order clusters where also wetting-layer states have to be con-
sidered. We will therefore concentrate in this paper on con-
figurations where the lowest exciton state is predominantly
excited. In this case, the singlet-doublet analysis clearly pro-
vides sufficient accuracy.

Figure 3�b� shows the nonvanishing components of the
first and the second right-handed excitonic wave functions.
Again, a strong dependence on the s-shell density is only

observed for the second exciton. From the two lines corre-
sponding to the lowest exciton, one can clearly see that to a
certain degree, the first exciton mixes s- and p-shell carrier
states.

As a general result, pronounced excitonic effects turn out
to be present even for high densities where the Pauli block-
ing becomes considerably strong. This feature clearly distin-
guishes the quantum dot from the 2D quantum-well case.26 It
is therefore interesting to investigate how electron-hole pairs
become correlated or uncorrelated when the density is in-
creased. While quantum-well excitons eventually become
ionized,45 quantum-dot excitons may still show large corre-
lations even for elevated densities.

V. SEMICONDUCTOR LUMINESCENCE EQUATIONS

The amount of relevant two-particle correlations reduces
considerably as we investigate the entirely incoherent situa-
tion where the polarization p��

� and the classical field �Bq

vanish for all �, ��, and q. Since this regime also leads to
interesting phenomena such as photoluminescence, we now
analyze the quantum emission from stationary quantum-dot

FIG. 2. Absorption spectrum for the unexcited dot. The exci-
tonic resonances are positioned at E1=Eg−22.61 meV and E2=Eg

+37.50 meV. Es=Eg and Ep=Eg+55.57 meV mark the unrenor-
malized vertical transitions between the s- and the p-shell states,
respectively.

FIG. 3. �a� Dependence of the excitonic eigenenergies Ei on the
s-shell density for vanishing p-shell density. The solid lines refer to
the optically visible excitons, the dashed lines to the dark excitons.
The uppermost and the solid lines are nondegenerate; all other lines
are twofold degenerate. �b� The nonvanishing components of the
first and the second excitonic wave functions as function of the
s-shell density. Additionally to the orthogonality relation between
left- and right-handed exciton states �see Appendix C, Eq. �C3��, the
right-handed wave functions have been normalized with respect to
the Euclidean norm. Only the components ����

i,R diagonal in � ,��
are nonzero. They are unambiguously determined by the exciton
label i and the angular momentum number m. Solid lines refer to
i=1, dashed lines to i=2.
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states when the excitation levels become appreciable. When
the system is incoherent, all singlets, except densities, remain
zero during the evolution of the system. Furthermore, the
quantum corrections and the Coulomb correlations in the
equations of motion �22� and �23� for the densities become
dominant once the coherent quantities disappear. Hence, it is
crucial to consider the full set of equations of motion at the
singlet-doublet level.

Under quasistationary conditions, the photoluminescence
spectrum follows from the photon flux30

IPL��q� �
�

�t
�Bq

†Bq
 . �41�

The equation of motion for the photon-number-like expecta-
tion values is given by

i�
�

�t

�Bq

†Bq�
 = ���q� − �q�
�Bq
†Bq�
 + i�

�

�Fq�
*

��
��q�

+ Fq���
��q���*� , �42�

where we have defined the photon-assisted polarization

���
� �q� � 
�Bq

†av�
† ac��
 �43�

which contains the correlated part of the process where a
photon is emitted via the recombination of an electron-hole
pair.

The corresponding dynamics follows from

i�
�

�t
���

� �q� = − ��q���
� �q� + T��

� �q� + �
�1�2

A���,�1�2
��2

�1�q�

+ iS��
� �q� − i����� − fh��

� − fe��
� �
�Bq

†B�
 , �44�

with the matrix A as defined in Eq. �35�. In the following, we
will approximate the full three-particle scattering term T��

� �q�
by a phenomenological dephasing term −i
���

� �q�. The last
line of Eq. �44� contains the source terms, of which the sec-
ond one gives the contribution by the stimulated emission
which is important only if the system is positioned inside a
cavity. Hence, we will completely neglect this effect, thus
decoupling Eq. �44� from Eq. �42�. The source term

S��
� �q� � Fq�

�1

�fh�1

� fe��
�1 + CX�1��

�1� � �45�

is due to spontaneous emission from either the plasma or
correlated electron-hole pairs.

Equations �42� and �44� constitute the semiconductor lu-
minescence equations for the quantum dot.

A. Analytic luminescence formula

In many experimentally relevant situations, the recombi-
nation correlations, the densities, and the excitonic correla-
tions are quasistationary quantities. In this case, Eq. �44�
leads to

���q + i
����
� �q� = �

�1�2

A���,�1�2
��2

�1�q� + iS��
� �q� .

�46�

This equation has the same structure as the SBE �34� for the
microscopic polarization p��

� . Hence, we can again diagonal-
ize the problem by means of the exciton basis from Appen-
dix C. We finally obtain

IPL��q� =
2
Fq
2

�
Im��

ij

��i,R
1
�Xi
†Xj
�1
� j,R


E j − ��q − i
 � , �47�

with the excitonic operators

Xi = �
���

�����
i,L �*av�

† ac��. �48�

As in higher-dimensional semiconductor structures, both ex-
citonic correlations �the doublet part 
�Xi

†Xj
� and Coulomb-
correlated plasma �the singlet part �Xi

†Xj
S� provide contribu-
tions to the spectrum that cannot be distinguished by a
standard photoluminescence experiment.46

B. Evolution of spontaneous recombination

In order to close the set of equations, we finally consider
the temporal evolution of the source term �45�. For the den-
sity expectation values in the incoherent regime, the equa-
tions of motion �22� and �23� reduce to

i�
�

�t
fe��

� = �
�1

�E���1

e fe�1

� − E�1�
e fe��

�1�

− �
�1�2�3

�V�2�3

���1�
�

C�c� ��1

�c �2�3
	

− V�2�3

��1 �
�

C�c� �3�2

�c �1��
	� + i
�B�

† av�
† ac��


+ i
�B�
† av��

† ac�
*, �49�

i�
�

�t
fh��

� = − �
�1

�E���1

h fh�1

� − E�1�
h fh��

�1�

+ �
�1�2�3

�V�2�3

���1�
�

C��v �1�

v� �3�2
	

− V�2�3

��1 �
�

C��v �2�3

v� ���1
	� + i
�B�

† av�
† ac��


+ i
�B�
† av��

† ac�
*. �50�

For the excitonic correlation �30�, we obtain

i�
�

�t
CX��

�
��
�� = − �

�1�2

A���,�2�1

* CX�2��
�1�� + �

�1�2

A����,�1�2
CX��

�
�2

�1

+ �
�1�2�3�4

V�1�4

�2�3�����1
− fe�1

� ����2�� − fh��
�2�

�fe��
�3 fh�4

�� − ���3�� − fe��
�3 �
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������4
− fh�4

���fe�1

� fh��
�2�

+ DX
exc

��
�

��
�� + TX��

�
��
��

− i����� − fh��
� − fe��

� �
�B�
† av��

† ac��


− i������ − fh��
�� − fe��

�� �
�B�
† av��

† ac�
*. �51�

Although quite complicated, this equation can be interpreted
straightforwardly. The first line would be diagonal in the
exciton basis and characterizes CX as an “excitonic” correla-
tion. The Coulomb sum beginning in the second line consti-
tutes the source term having the form of a generalized Bolt-
zmann equation. The last two lines are responsible for the
radiative decay of the excitonic correlations. Finally,

DX
exc

��
�

��
�� denotes all terms originating from the fermionic

exchange which are explicitly given in Appendix D. The

correlated triplets DX��
�

��
�� are omitted within the pure singlet-

doublet analysis performed in this paper.
The equations of motion for the electron-electron and

hole-hole correlations have similar structures. Their explicit
form can also be found in Appendix D where the relevance
of exchange terms and intraband carrier-carrier correlations
for the dynamics and optical spectra is briefly discussed.

VI. NUMERICAL STUDY OF STABLE QUANTUM-DOT
STATES

A quantum dot can be excited in several different ways.
One possibility involves pumping by means of an optically
resonant coherent light field. Other methods include nonreso-
nant optical excitation as well as optical or electronic pump-
ing of the wetting layer where the last two cases imply
carrier-capture dynamics between wetting-layer and
quantum-dot states.23 For all indirect excitations, one can
anticipate a significant Coulomb and phonon-induced relax-
ation. To define the form of the excitation, one must, in prin-
ciple, describe the dynamics of all relevant quantities micro-
scopically. As a simplification, we use in this paper a
phenomenological description of the excitation process and
restrict the microscopical analysis to the quantum emission
from stable dot states in the incoherent regime. For this pur-
pose, we assume a generic form for the pumping of singlets
and doublets, demanding that a steady-state configuration is
reached after excitation. As additional constraints, the fermi-
onic levels may only be excited to values between 0 and 1,
and the steady-state luminescence must be positive. These
conditions define the generic phase space of possible excita-
tions.

Explicitly, we model the pumping by adding a term

� �

�t
�

pump
Y = Y0ṠY�t� , �52�

with Y0 as the pumping amplitude, to the dynamics of the
quantity Y that can either be a density or a genuine two-
particle correlation. Pumping the exciton and plasma densi-
ties separately allows us to study the influence of the differ-
ent population contributions on the emission characteristics.

The switch-on function SY�t� vanishes in the beginning and
approaches unity for large t while its derivative approaches
zero. For all examples throughout this paper, we have chosen
a common function

SY�t� �
1

1 + e−t/� �53�

for all Y. As long as the the switch-on time � is not too short,
the final value of Y does not depend on �. In order to esti-
mate the shortest admissible �, we consider the simplest case,
where only the s-shell densities fs

e/h� fe/h�0,0�
�0,0� are pumped

with amplitude Y0=1. The results for four different
switch-on times are shown in Fig. 4. Pumping with � larger
than 30 fs leads to a well-defined final density while �
=10 fs constitutes a too fast switch on such that no stable
configuration is reached. As a consequence, all expectation
values exhibit periodic oscillations which is most pro-
nounced for an immediate switch on, i.e., �→0.

Moreover, we observe that for a reasonably slow switch
on, the density terminates a little below the value of the
pumping amplitude, which expresses the fact that during the
excitation, a certain amount of density is transferred to the p
shell. This effect can be traced back to the Coulomb corre-
lations between the shells and is related to the nonvanishing
�pp

1,R component of the first excitonic wave function �see Fig.
3�. Since the comparatively slow radiative decay is the only
process in our model that changes the number of carriers per
band, the density transfer from s to p shell does not change
the total density. Because we will exclusively consider situ-
ations where electrons and holes are pumped symmetrically,
the total number of electron-hole pairs Neh will be a well-
defined quantity in the following.

Next, we analyze how the reached steady state depends on
the pumping amplitude. Here, we exclusively treat excitation
of the s-shell density. To be assured that the switch-on pro-
cess is sufficiently slow in all cases, we choose a large
switch-on time �=270 fs. As a well-defined way to quantify
what kind of excitation is present in the quantum dot, we
consider the energy per particle. The total energy of the ma-
terial system

FIG. 4. Pumping of the s-shell density for different switch-on
times �.
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�Hmat
 � �H0,ele
 + �HC
 �54�

decomposes into the singlet contribution

�Hmat
S = �
�

�E�
e fe�

� − E�
h fh�

�� +
1

2 �
�1¼�4

V�3�4

�1�2�fh�4

�1fh�3

�2

− fh�3

�1fh�4

�2 + fe�4

�1fe�3

�2 − fe�3

�1fe�4

�2 − 2fe�4

�1fh�3

�2� ,

�55�

where for the Coulomb part, we have taken into account the
renormalizations discussed in Sec. IV directly after Eqs. �24�
and �25�, and the contribution of the two-particle correlations


�Hmat
 =
1

2 �
�1. . .�4

V�3�4

�1�2�Ch�4�3

�1�2 + Ce�4�3

�1�2 − 2CX�3�4

�1�2� .

�56�

Both the total energy �thick solid line� and its singlet contri-
bution �thin solid line�, each normalized with respect to the
number of excited electron-hole pairs, are plotted in Fig. 5�a�
as a function of Neh. For low densities, the energy per par-
ticle is close to the gap which means that the system is in an
electron-hole plasma state where electrons and holes are in-
dependent and uncorrelated entities such that the density ma-
trix approximately has the product form �=�e � �h. For el-
evated densities, however, the total energy per particle
approaches the lowest resonance, i.e., the excitonic binding
energy E1 �dashed line�. Moreover, the absolute value of the
doublet contribution to the energy per particle becomes
larger, indicating that the stable electron-hole states become
truly correlated.

In the next step, we additionally allow for pumping of the
first exciton population 
N1�
�X1

†X1
. It turns out that
stable excitation states are thus reached for an almost arbi-
trary pumping amplitude where as a general tendency, the
energy per particle decreases with increasing strength of the
population pumping. Physically, however, the phenomeno-
logical excitation of the lowest exciton population has to be
limited such that the total energy per particle does not go
below the excitonic binding energy. Hence, the shaded area
in Fig. 5�a� designates the physically allowed stable states.
From below, it is limited by the excitonic binding energy that
defines the population-saturation line of the system, and the
upper limit is given by the plasma line that yields the total
energy per particle in the absence of population pumping.
Figure 5�b� shows the amount of generated excitonic popu-
lation per particle for both the saturation regime �solid line�
and the plasma regime �dashed line�. The shaded area in
between indicates the physically allowed phase space for the
exciton pumping. We notice that the population per particle
assumes values between 0 and 1 and is largest for dilute
densities. We conclude that, depending on the excitation con-
ditions, a quantum dot in the low-density regime can have a
stable many-body configuration ranging from pure plasma
�
N /Neh�0� up to fully correlated electron-hole pairs
�
N /Neh�1�.

VII. PHOTOLUMINESCENCE FROM STABLE
QUANTUM-DOT STATES

Next, we calculate the luminescence spectra for some ex-
emplary stable states out of the allowed phase space deter-
mined in Sec. VI. The justification to concentrate on stable
states of the material system is provided by the fact that
radiative decay of excitation typically takes place on a com-
paratively large time scale—radiative lifetimes of less than
1 ns are usually only reached when the spontaneous emis-
sion of the dot is drastically enhanced with help of a
microcavity47 or a photonic-crystal environment.48 We may
thus assume that the quantum-dot carrier system remains sta-
tionary sufficiently long such that steady-state luminescence
can be determined. Under these conditions, the carrier sys-
tem acts as a constant source for the photoemission.

A. Low-density regime

The shaded area in Fig. 6�a� displays the luminescence at
the first excitonic resonance when the s-shell density is
weakly pumped with the amplitude 0.1. The dashed and solid
curves are obtained by additional pumping of the first exci-
ton. We find that the magnitude of the luminescence in-
creases strongly for higher exciton densities, however, its
spectral shape and position are not affected by the popula-
tion, i.e., luminescence is observed at the excitonic reso-
nance regardless of whether the system is in the plasma or in
the population-saturation regime. This behavior can directly
be deduced from the explicit form of the steady-state lumi-
nescence formula �47� which shows that the emission fre-
quencies are independent of the population source.

FIG. 5. �a� Total energy Emat= �Hmat
 per particle as function of
the total density Neh �thick solid line�. The thin solid line gives the
singlet contribution to the total energy, while the saturation line is
defined by the first excitonic resonance. �b� First-exciton population
reached for density pumping alone �solid line� and maximum al-
lowed 
N1 pumping �dashed line�.
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From Eq. �42� and Eqs. �49� and �50�, it follows that the
total number of recombined electron-hole pairs per unit time,

−
�Neh

�t
= − � �

�t
�

HD

�
�

fe/h�
�

=
2

�

�

�t
Re��

�


�B�
† av�

† ac�
� =
�

�t
�
q


�Bq
†Bq
 ,

�57�

equals the total number of emitted photons per unit time. In
Fig. 6�b�, the recombination rate

� � −
1

Neh

�Neh

�t
�58�

is plotted for both the plasma and the population-saturation
regime. While � has a high constant value along the satura-
tion line, it decreases linearly along the plasma line as the
density is decreased. Plasma versus exciton luminescence
can thus be distinguished by their respective decay dynam-
ics. In general, the system can decay along any curve
through the shaded area in Fig. 6�b�. The dynamics then
allows one to draw conclusions about the nature of the de-
caying quasistationary states. Microscopically, this is deter-
mined by a number of effects such as relaxation, carrier cap-
ture, phonon coupling, etc. Only for constant � does Eq. �58�
describe an exponential decay. However, our analysis indi-
cates that the radiative decay in a quantum dot does not
necessarily show an exponential behavior.

B. High-density regime

For the luminescence spectrum in Fig. 7, we have pumped
the s-shell density with a high amplitude of 0.95 without any
exciton-population pumping. The solid line gives the result
of the full computation. We find that even with a high exci-
tation, light is still emitted at the excitonic resonance. While
the spectral position of the peak remains almost unchanged
compared with the low-density spectrum in Fig. 6, the height
of the peak is enlarged by more than one order of magnitude.

The shaded area in Fig. 7 is calculated from the steady-
state formula �47� within a singlet approximation where only
the fefh source term from Eq. �45� is considered in the lumi-
nescence equation �44�. Formally, this corresponds to de-
scribing the carrier system by single-particle densities alone,
assuming that this would constitute a stable state of the sys-
tem. This case has already been studied in Fig. 4 with the
immediate switch on. From that analysis we see that such a
state can actually not be stationary, since the densities are
strongly oscillating. Nevertheless, it turns out that the singlet
source term alone produces the luminescence at the first
resonance rather accurately. On the other hand, an artifact of
negative emission is observed at the second excitonic reso-
nance which is a consequence of the instability of the corre-
sponding singlet state. This clearly demonstrates that dou-
blets are necessary to provide a stable state of the system
with a physically meaningful steady-state luminescence
spectrum. For the given pumping conditions, the singlet ap-
proximation underestimates the recombination rate � from
the full computation by a factor of about 0.74.

C. Physical relevance of second-exciton pumping

A close inspection of the second excitonic resonance
shows that for every s-shell-pumping amplitude from 0 to 1,
one can find a pumping strength of the first exciton such that
the luminescence at the second excitonic resonance turns
negative. Although for all physically allowed 
N1-pumping
amplitudes the absolute height of the negative peak remains
several orders of magnitude smaller than for the artifact from
the singlet approximation discussed in Sec. VII B, this would
definitely be an unphysical feature of a steady-state lumines-

FIG. 6. �a� First luminescence peak in case of weak density
pumping for maximum 
N1 pumping �solid line�, half-as-strong

N1 pumping �dashed line�, and no 
N1 pumping at all �shaded
area�. �b� Recombination rate for plasma �solid line� and
population-saturation �dashed line� regimes. The bold dots mark the
three cases from �a�.

FIG. 7. Luminescence spectrum for a high density of Neh

=0.95. For the singlet approximation, only the fefh source term has
been considered.
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cence spectrum. To understand the origin of this, we remem-
ber the comment to Fig. 4 that pumping of the s-shell density
always affects the p-shell densities, too. This was traced back
to the Coulomb correlations between the shells. In a similar
manner, pumping of the first exciton is always accompanied
by a change of the population of the second-exciton state.
The fact that this influence can lead to negative luminescence
is a clear evidence that in certain cases, population of the first
exciton without population the second exciton constitutes an
unphysical situation. However, it turns out that this can eas-
ily be cured by exciting the second excitonic state very
weakly. Within the phase space determined in Fig. 5, the

N2-pumping amplitude that is required for luminescence at
the second resonance zero is always smaller than 10−3. This
additional constraint upon the physically accessible phase
space has practically no effect on the emission of light at the
first excitonic resonance and on the recombination rate.

VIII. SUMMARY AND OUTLOOK

In summary, using a cluster-expansion approach we de-
rive SBEs and SLEs for a quantum dot on a wetting layer
with parabolic in-plane confinement. We obtain a closed set
of equations of motion on the singlet-doublet level. From
these, we derive an Elliott formula for the linear absorption
spectrum and a steady-state solution for the photolumines-
cence spectrum. We then investigate the stable carrier con-
figurations for a quantum dot with an s and a p shell. On the
basis of a general phenomenological description, we obtain
rigorous limits for the phase space of physically allowed ex-
citation processes. The theory is evaluated numerically for
different stable states of the quantum dot. Stationary lumi-
nescence spectra are computed and the excitonic and plasma
contributions are identified.

In the future, the theory will be extended to include also
higher-order correlation functions with the goal to analyze
the quantum statistics of the emission. For example, in order
to describe antibunching effects, conditional probabilities of
photon detection have to be calculated. In the incoherent
regime, these quantities are the truly correlated parts of four-
particle expectation values.
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APPENDIX A: SINGLE-PARTICLE WAVE FUNCTIONS

It has been shown33 that a lens-shaped quantum dot can
accurately be described by a parabolic in-plane confinement
potential

VQD
� ��� =

1

2
m���

2�2, � = e,h , �A1�

where me/h denotes the effective electron and hole masses,
respectively. For the z confinement perpendicular to the
quantum well, we choose

VQW�z� = �0 for 
z
 �
L

2
,

� for 
z
 �
L

2
.� �A2�

In the envelope-function approximation, the single-particle
wave functions then take the form

����r� = ��
��r�u��r� = ��

���,����z�u��r� , �A3�

where u��r�=u��k�0 ,r� is the Bloch function with band
index �=v ,c. The envelope function ���r� decomposes into
the ground-state wave function for the z confinement,

��z� = ��
2

L
cos

�

L
z for 
z
 �

L

2
,

0 for 
z
 �
L

2
,� �A4�

and an eigenfunction of the two-dimensional harmonic oscil-
lator in polar coordinates

��
���,�� = c0���eim�e−��2

�
m
Ll−

m
�2��2� , �A5�

where

l±��� �
1

2
�n ± 
m
� , �A6�

c0��� �
1

��
� l−!

l+!
�2���1+
m
�/2, �A7�

� �
m���

2�
, �A8�

and Ll−

m
 denotes the generalized Laguerre polynomial. The

corresponding eigenenergies are

E�
HO,� = ����n + 1� . �A9�

Neither the eigenenergies nor the eigenstates explicitly de-
pend on the spin. By the choice me�e=mh�h we obtain iden-
tical wave functions for electrons and holes. This character-
izes the so-called symmetric case which is often employed in
the literature.

The second quantization of H0,ele, HC, and HD from Sec.
II has thus been performed with the electronic field operator

��r� = �
��

a������r�, � = v,c . �A10�

APPENDIX B: COULOMB MATRIX ELEMENTS

In second quantization using the field operator �A10�, the
Coulomb interaction Hamiltonian takes the form
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HC =
1

2 �
�1,¼,�4

�1,¼,�4

a�1�1

† a�2�2

† a�3�3
a�4�4

V��1�2 �1�2

�3�4 �3�4
	 ,

�B1�

where

V���� ���

���� ����
	 �� � d3r d3r����

* �r������
* �r��V�r

− r��������r��������r� �B2�

with the unscreened Coulomb potential

V�r − r�� =
e2

4�	0	
r − r�

. �B3�

To evaluate �B2�, we use separation of length scales. We
summarize over all unit cells R and make use of the period-
icity of the Bloch functions u��r0+R�=u��r0� and the fact
that the envelope function varies slowly in space, such that
we can replace ���R+r0� by ���R� for any unit-cell vector
r0��0. Furthermore, the Bloch functions are orthonormal
with respect to the unit cell, and �R�0f�R���d3R f�R�. Fi-
nally, we find the matrix elements from Eq. �3� to be

V�3�4

�1�2 = ��1�4
��2�3� � d3r d3r���1

* �r���2

* �r��

�V�r − r����3
�r����4

�r� . �B4�

For the harmonic-oscillator eigenstates below the disso-
ciation threshold, this volume integral can analytically be
reduced to a one-dimensional integral,

V�3�4

�1�2 = 2���m1+m2,m3+m4
��1�4

��2�3
�− 1�m3−m2

�
0

�

dq I0�q�G�1�4
�q�G�2�3

�q� , �B5�

where we have defined

� �
1

2�2�4

e2

	0	
�m���

�
, �B6�

I0�q� � � � dz dz�
��z�
2
��z��
2e−q��
z−z�
 �B7�

and

G�1�2
�q� = 2�i�m2−m1�c0��1�c0��2��−1−�
m1
+
m2
�/2

� �
0

�

d� �e−2�2
�
m1
+
m2
Ll1

−

m1
�2�2�Ll2

−

m2


��2�2�Jm2−m1
�q�� , �B8�

with Jm�x� the Bessel function of the first kind. The integral
�B7� that contains the contribution from the quantum-well
confinement can be computed analytically.

APPENDIX C: EXCITON PROBLEM

The homogeneous part of Eq. �34� defines an
N2-dimensional eigenvalue problem, where N is the number
of discrete single-particle states per band we have included
in our model

A
�i,R
 = Ei
�i,R
, i = 1, . . . ,N2. �C1�

Here, 
�i,R
 denotes the right-handed excitonic wave function
with components ����

i,R , while the excitonic eigenenergies Ei

are the eigenvalues of the N2�N2 matrix A as given by Eq.
�35�.

It is straightforward to see that the matrix A becomes
non-Hermitian whenever the densities are nonvanishing. As
a consequence, the eigenfunctions 
�i,R
 do not coincide with
the left-handed solutions 
�i,L
 of the excitonic eigenvalue
problem,

��i,L
A = ��i,L
Ei. �C2�

Left- and right-handed eigenfunctions obey the generalized
orthonormality and completeness relations

��i,L
� j,R
 = �
k

��i,L
k
�k
� j,R
 = �ij , �C3�

�
i


�i,R
��i,L
 = �
ijk


j
�j
�i,R
��i,L
k
�k
 = 1 , �C4�

i.e., �
�i,R
� and �
�i,L
� are reciprocal.
In view of Eqs. �C3� and �C4�, we can introduce excitonic

creation and annihilation operators

Xi
† � �

���

����
i,L ac��

† av�, �C5�

Xi = �
���

�����
i,L �*av�

† ac��, �C6�

which can be inverted via

ac��
† av� = �

i

�����
i,R �*Xi

†, �C7�

av�
† ac�� = �

i

����
i,R Xi �C8�

back to the electron-hole picture.

APPENDIX D: EFFECT OF EXCHANGE TERMS AND
INTRABAND CARRIER-CARRIER CORRELATIONS

The exchange terms in the equation of motion �51� for the
excitonic correlations explicitly read

DX
exc

��
�

��
�� = �

�1�2�3�4

V�4�2

�1�3������2
fh��

�1 − ��1��fh�2

���CX-e�4

�
��
�3

+ ���1��fe�2

� − ���2
fe��

�1 �CX-h��
�3

�4

���

+ �
�1�2�3�4

V�3�4

�1�2����2��fh��
�1 − ��1��fe��

�2 �CX�4

�
�3

��
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+ �����1
fe�2

� − ���2
fh�1

���CX��
�3

��
�4 �

+ �
�1�2�3�4

V�2�4

�1�3����1��fh�2

�� − ����2
fh��

�1�CX�4

�
��
�3

+ ����2
fe��

�1 − ��1��fe�2

� �CX��
�3

�4

��� . �D1�

The first line of Eq. �51� contains two further Coulomb sums
over excitonic correlations. There, the density-dependent fac-
tors have the phase-space filling form, as can be seen from
the definition �35� of the matrix A. Hence, for low densities,
the structure of the equations of motion for the excitonic
correlations is predominantly determined by those Coulomb
sums. It is then acceptable to neglect the exchange terms
completely, which characterizes the so-called main-sum ap-
proximation. We have found that even for strong s-shell
pumping the steady-state luminescence spectrum barely
changes its shape when this approximation is applied.

In order to ultimately close the set of equations on the
singlet-doublet level, we finally need the equations of motion
for the intraband carrier-carrier correlations �31� and �32�.
For the electron-electron correlation �31�, we obtain
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and for the hole-hole correlation �32�

i�
�

�t
Ch��

�
��
�� = �

�1

�− E�1�
h Ch��

�1
��
�� − E�1��

h Ch��
�

��
�1 + E���1

h Ch�1

�
��
��

+ E���1

h Ch��
�

�1

��� + �
�1�2�3�4

�V�4�3

�1�2 − V�3�4

�1�2������1

− fh�1

� ������2
− fh�2

���fh��
�3 fh��

�4 − ���3�� − fh��
�3 �

����4�� − fh��
�4�fh�1

� fh�2

���

+ �
�1�2�3�4

V�4�2

�1�3������2
fh��

�1

− ��1��fh�2

���CX-h��
�3

�4

� + ����2
fh��

�1

− ��1��fh�2

� �CX-h��
�3

�4

�� − �����2
fh��

�1

− ��1��fh�2

���CX-h��
�3

�4

� − ����2
fh��

�1

− ��1��fh�2

� �CX-h��
�3

�4

���

− �
�1�2�3�4

V�4�3

�1�2�����1
����2

− ����2
fh�1

�

− ���1
fh�2

���Ch��
�3

��
�4 − ���1����2�� − ��1��fh��

�2

− ��2��fh��
�1 �Ch�4

�
�3

��� + �
�1�2�3�4

V�2�4

�1�3����1��fh�2

��

− ����2
fh��

�1 �Ch��
�

�4

�3 + ���1��fh�2

�

− ���2
fh��

�1�Ch�4

�3
��
�� + ���1��fh�2

��

− ����2
fh��

�1�Ch�4

�
��
�3 + ���1��fh�2

�

− ���2
fh��

�1 �Ch��
�3

�4

��� . �D3�

Aside from the fact that the electron-electron and hole-hole
correlations do not directly couple to the light field, the latter
two equations have a very similar structure to the equation of
motion for the excitonic correlation. The full numerical cal-
culations show that the intraband correlations only yield very
small corrections to the density and exciton-correlation dy-
namics that naturally become slightly more important when
the carrier density increases. The effect of these corrections
on the luminescence spectra is even less significant than the
effect of the exchange terms �D1�.
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