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We extensively study the localization and the quantum Hall effect in the Hofstadter butterfly, which emerges
in a two-dimensional electron system with a weak two-dimensional periodic potential. We numerically calcu-
late the Hall conductivity and the localization length for finite systems with the disorder in general magnetic
fields, and estimate the energies of the extended levels in an infinite system. We obtain the Hall plateau
diagram on the whole region of the Hofstadter butterfly, and propose a theory for the evolution of the plateau
structure with increasing disorder. There we show that a subband with the Hall conductivity ne2 /h has �n�
separated bunches of extended levels, at least for an integer n�2. We also find that the clusters of the subbands
with identical Hall conductivity, which repeatedly appear in the Hofstadter butterfly, have a similar localization
property.
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I. INTRODUCTION

A two-dimensional �2D� electron system with a 2D peri-
odic potential is expected to exhibit an intricate energy spec-
trum in a strong magnetic field, which is called the Hofs-
tadter butterfly. When the magnetic length is of the order of
the lattice constant, the interplay of the Landau quantization
and Bragg reflection yields a fractal-like series of energy
gaps, which depends sensitively on the number of magnetic
flux quanta per unit cell,1

� =
Ba2

h/e
,

where B is the amplitude of the constant magnetic field and a
is the lattice constant. Moreover, it is shown that each sub-
band carries a quantized Hall conductivity, which varies with
the energy gaps in a nontrivial manner.2 The recent develop-
ments in experimental techniques make it possible to
fabricate a two-dimensional superlattice on a 2D electron
gas �2DEG�. Evidence of the fractal energy spectrum was
found in a superlattice patterned on GaAs/AlxGa1−xAs
heterostructures,3,4 where the Hall conductivity changes non-
monotonically as the Fermi energy transfers from one gap to
another.

From the theoretical side, it is intriguing to consider the
magnetotransport in this intricate energy spectrum. Broaden-
ing of the density of states5,6 and the conductivity5 were
investigated for the Hofstadter butterfly within the self-
consistent Born approximation. For the localization regime,
we expect that, by analogy with unmodulated 2D systems,
the extended levels appear only at certain energies in the
Hofstadter spectrum, and �xy�E� will turn into a series of
Hall plateaus separated by those energies.

The evolution of the extended states as a function of the
disorder was proposed for several flux states in the Hofs-
tadter butterfly.7–9 A finite-size scaling analysis was per-
formed for a 2D system modulated by a weak periodic po-
tential and it was found that the modulation does not change
the critical exponent at the center of the Landau level.10,11

Previously we have numerically calculated the Hall conduc-

tivity in weakly modulated 2D systems at several fluxes and
studied the effect of the localization on the quantum Hall
effect in the Hofstadter butterfly.12 There we determined the
energies of the extended levels from the scaling behavior of
the Hall conductivity in finite systems.

In this paper, following the line of the previous work, we
present an extensive study of the quantum Hall effect in a
single Landau level in the presence of the two-dimensional
periodic potential. We numerically calculate the Hall conduc-
tivity and the localization length in general magnetic fluxes,
using the exact diagonalization of the Hamiltonian for finite
systems. We determine the energies of the extended levels in
an infinite system by analyzing the size dependence in the
Hall conductivity, and find that those energies always coin-
cide with the points where �xy / �−e2 /h� becomes n+1/2 �n is
an integer� in finite systems. In particular, we resolved two
separated extended levels in a subband carrying the Hall con-
ductivity by 2e2 /h. We propose a possible scenario for the
evolution of the extended levels with increasing disorder for
several fluxes, which suggests that the Hall plateau structure
changes through the pair annihilation and/or pair creation of
the extended levels. We survey the Hall conductivity over the
whole region of the Hofstadter butterfly, to find that elec-
tronic structure with similar Hall conductivity and localiza-
tion length appears in a self-similar manner at different
fluxes, reflecting the fractal property of the ideal spectrum.

II. FORMULATION

We first prepare the formulation to describe a Bloch elec-
tron in magnetic fields. Let us consider a two-dimensional
system in a uniform magnetic field with a periodic potential
Vp and a disorder potential Vd,

H =
1

2m
� p + eA�2 + Vp + Vd. �1�

We assume that Vp has a square form,
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Vp = V cos
2�

a
x + V cos

2�

a
y ,

and the disorder potential is composed of randomly distrib-
uted � potentials ±�0 with the number per unit area ni,
where the amounts of the positive and negative scatterers are
taken to be equal. We consider only the lowest Landau level
�N=0�, assuming that the magnetic field is strong enough
and the mixing of the Landau levels is neglected. In the
Landau gauge, the basis can be taken as

�0,ky� =� 1
��lLy

exp�ikyy�exp�−
�x + kyl

2�2

2l2 � �2�

with the magnetic length l=�	 /eB. The matrix elements of
Vp are then written

�0,ky��Vp�0,ky� = �ky�,ky
2Ve−�/2� cos

kya

�

+ ��ky�,ky+2�/a + �ky�,ky−2�/a�Ve−�/2�. �3�

In an ideal system �Vd=0�, the wave function can then be
expanded as


ky
�r� = 	

m

cm�ky�
0,ky −
2�

a
m� , �4�

with Bloch wave number ky ranging from −� /a to � /a. The
Schrödinger equation is then reduced to Harper’s equation,

Ve−�/2��cm+1 + cm−1� + 2Ve−�/2� cos� kya − 2�m

�
�cm = Ecm.

�5�

In a rational flux �= p /q �p ,q are coprime integers�, the
equation becomes periodic in m with a period p, which cor-
responds to a distance qa in the center coordinate along the
x axis, so that we have the Bloch condition cm+p=eikxqacm
with another Bloch wave number kx from −� / �qa� to
� / �qa�. As a result, we have p independent states for each of
k= �kx ,ky� in the Landau level, so that we can label the wave
function as 
nk on a q-folded Brillouin zone with the sub-
band index n=1,2 , . . . , p. We can decompose the wave func-
tion as 
nk�r�=ei�kxx+kyy�unk�r�, where u satisfies the magnetic
Bloch condition

u�x,y + b� = u�x,y� ,

u�x + qa,y� = e2�ipy/au�x,y� . �6�

Figure 1 shows the energy spectrum in the lowest Landau
level at Vd=0 plotted against �. The intricate band structure
is due to the number of subbands p, which is not a continu-
ous function of �. We can show that p subbands never over-
lap so that we always have p−1 energy gaps inside the Lan-
dau level. The total width of the spectrum scales with the
factor e−�/2� in Eq. �5�, and shrinks as the flux becomes
smaller. The lower panel shows the zoom out of the spectrum
covering from �=0 to 10. We can see that, on going to a
higher field, a series of subbands splits away from the center
toward higher and lower energies. These are identified in the

semiclassical picture as the quantization of the electron mo-
tion along the equipotential line around the bottom or the top
of the periodic potential. The widths of those levels become
narrower for larger � because the coupling between different
potential valleys becomes exponentially small as the mag-
netic length becomes smaller.

The Hall conductivity �xy is calculated by the Kubo for-
mula as

�xy = 	
��EF

	
�����

���vx������vy��� − ���vy������vx���
��� − ���2 ,

�7�

where EF is the Fermi energy and �� the energy of the eigen-
state ��� in the lowest Landau level. This is rewritten in an
ideal system as2

FIG. 1. �a� Ideal energy spectrum of the lowest Landau level in
a weakly modulated two-dimensional system, plotted against the
magnetic flux �. Integers inside gaps indicate the quantized Hall
conductivity in units of �−e2 /h�. �b� Zoom out of �a�.
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�xy =
e2

2�h
	

n
�

EEF

d2k 2 Im�
 �unk

�kx

 �unk

�ky
�� , �8�

where the summation is taken over all the occupied states. It
is shown that the contribution from all the states in one sub-
band is always quantized in units of −e2 /h.2 So we have an
integer Hall conductivity when the Fermi energy EF is in
every gap, since it simply becomes the summation of the
integers for all the subbands below EF. In such a gapped
situation, we have a useful expression for the Hall conduc-
tivity called the Strěda formula,13 which is directly derived
from the Kubo formula �7�. This is written as

�xy = − e
�n

�B
, �9�

where n is the number of states below the Fermi energy per
unit area and B is the magnetic field. In Fig. 1, we put the
value of the Hall conductivity for each of the gaps obtained
by this formula. The contribution by one subband, ��xy, is
obtained as the difference in �xy between the gaps above and
below the subband. In Fig. 1�b�, the series of branches men-
tioned above always carries ��xy =0, since those subbands,
coming from the localized orbitals around the potential
minima or maxima, contain a constant number of states
n=1/a2 which is independent of the magnetic field.

III. LOCALIZATION AND THE QUANTUM HALL EFFECT

We now move on to the disordered system to investigate
the localization and the quantum Hall effect. Here we nu-
merically diagonalize the Hamiltonian �1� of finite systems
of L�L with L=Ma �M is an integer�, and calculate the
localization length Lloc and the Hall conductivity �xy as func-
tions of Fermi energy. The localization length is obtained
from the system size dependence of the Thouless number
g�L�, by assuming that g�L� behaves as exp�−L /Lloc�, where
g�L� is defined as the ratio of the difference in the eigenen-
ergies between periodic and antiperiodic boundary condi-
tions to the mean level spacing �E. The Hall conductivity is
calculated by the Kubo formula �7� with the exact eigenstates
in the disordered system, where the mixing between different
Landau levels is taken into account within the lowest order
in �Vp+Vd� / �	�c� with �c=eB /m being the cyclotron fre-
quency. Every quantity is averaged over a number of differ-
ent samples.

In the strong disorder regime, the energy scale of the dis-
order is characterized by

� =�4niv0
2

2�l2 ,

which represents the increasing width of the Landau level in
absence of the periodic potential.14 This parameter is relevant
as long as the disorder is strong enough to destroy the band
structure inside the Landau level. In the weak disorder limit,
on the other hand, the relevant parameter is the increasing
width of the Bloch subband, which is written as

�E � 2�niv0
2� , �10�

with � being the density of states per unit area. For a subband
in the flux �= p /q, � is approximated as 1/ �Wqa2� with the
subband width W, so that we obtain

�E �
2�niv0

2

Wqa2 � � . �11�

The relation between � and � is given by

� =
�

2

�2

Wp
.

As a typical result, we show the calculation for the disor-
dered system in the flux �=3/2 in Fig. 2. The top panel
indicates the system size dependence of �xy and the density
of states, and the bottom the inverse localization length
1/Lloc. The parameter of the disorder is set to � /V=0.25. In
the clean limit, a Landau level splits into three separated
subbands since p=3, and the Hall conductivity carried by
each of the subbands is ��xy =1,−1,1. Here and in the fol-
lowing we show �xy and ��xy in units of −e2 /h. When the
system is disordered we find that the gaps between the sub-
bands are smeared out while the Hall conductivity converges
to quantized values around the density of states �DOS� dips,
indicating the appearance of the Hall plateau. If we look at
the size dependence of the Hall conductivity in the whole
energy region, we see that �xy always approaches 1 in the
area �xy �1/2 on increasing the size, and 0 in �xy 1/2, so
we expect that in an infinite system the continuous function
�xy�E� changes into Hall plateaus connected by steps, as
shown by the steplike line. Therefore we speculate that the
points of �xy =1/2 are identified as the extended levels in an

FIG. 2. �a� Hall conductivity �xy �solid line� and the density of
states � �dashed� in the flux �=3/2 and the disorder � /V=0.25
with various sizes L /a=8, 18, and 36. The gray steplike line is an
estimate of �xy as L→�. �b� Inverse localization length estimated
from the Thouless number. The vertical lines penetrating the panels
represent the energies of the extended levels.
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infinite system, and they indeed agree with the energies
where localization length diverges as shown in Fig. 2�b�.

We can see similar tendencies in the size dependence of
�xy in other fluxes as well, where the fixed points are always
found at �xy =n+1/2 �n is an integer� in all the cases inves-
tigated. While each of the three subbands has one extended
level at a certain energy in �=3/2, the localization generally
depends on the Hall conductivity assigned to subbands. We
have shown that a subband carrying zero Hall conductivity is
completely localized in finite disorder strength.12

IV. EVOLUTION OF THE EXTENDED LEVELS

When we consider a situation where the disorder in-
creases in the Hofstadter butterfly, we expect that the ex-
tended levels in the subbands move and merge on the energy
axis in some way, and in large enough disorder, only one
remains at the center of the Landau level. It would be non-
trivial and intriguing to ask how they evolve as a function of
disorder, and how different they are in various fluxes. Here
we study the evolutions for some particular fluxes, on the
assumption that the extended levels always exist at the ener-
gies of �xy =n+1/2 with integers n, and the region where

n−1/2�xy n+1/2 in finite systems becomes �xy =n in an
infinite system.

We first show the results for the flux �=3/2 in Fig. 3. The
top and middle panels indicate the density of states and the
Hall conductivity, respectively, in a finite system L=12a for
several disorder parameters �. The bottom panel shows the
traces of the extended levels obtained by just taking the en-
ergies of �xy =n+1/2. We observe that three extended levels
get closer as the disorder increases, and contract into one at a
certain �. The combination of three branches at a time is due
to the electron-hole symmetry with respect to E=0, owing to
the equal amounts of the positive and negative scatterers. If
we break the symmetry by introducing imbalance between
them, the evolution changes in such a way that two of them
annihilate and one is left intact.15

The situation becomes a little complicated in a slightly
larger flux �=5/3, as shown in Fig. 4. In the clean limit, we
have five subbands carrying ��xy =−1, +2,−1, +2,−1 from
the bottom to the top. Since the second and the fourth bands
pass through n+1/2 twice, each of them comes to have two
extended levels in sufficiently small disorder on the present
assumptions. On going to stronger disorder, one of the two
extended levels experiences a pair annihilation with the low-
est or highest subband, and only three extended levels are
left as in �=3/2. When we start with a more complicated
flux, we speculate that the Hall plateau structure is simplified
one by one, going through analogs of the simpler fluxes
nearby.

To check that there are actually two separated extended
levels in a subband carrying ��xy =2, we can make a scaling
analysis in the Hall conductivity on varying the system size.

FIG. 3. �a� Density of states and �b� the Hall conductivity as a
function of the Fermi energy at �=3/2 and L=12a with several
disorder parameters � /V. �c� Trace of the extended levels as a func-
tion of disorder, obtained by taking the energies of �xy =n+1/2 �in
units of −e2 /h�. The horizontal bars show the numerical errors.
Integers in the enclosed areas represent the quantized Hall conduc-
tivities. The thick bars at �=0 and the integers below them indicate
the ideal subbands and ��xy, respectively.

FIG. 4. Plots similar to Fig. 3 calculated for �=5/3.
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In the flux �=5/3, unfortunately, the large statistical error
prevents us from resolving the splitting, but we can in a
similar situation in another flux �=8/15, where the lowest
subband carrying ��xy =2. Figure 5 shows the Hall conduc-
tivity and the localization length for the lowest subband
with disorder �=0.0173V. The difference in �xy between
L /a=45 and 30, shown in the middle panel, indicates that
�xy actually has turning points around �xy =1/2 and 3/2.
This is confirmed by the calculation of the localization length
in the lowest panel, showing that Lloc diverges at those two
energies, so it is quite likely that there are two extended
levels in this subband in an infinite system.

A major difference from �=5/3 is that the ideal subband
width is much narrower than the energy gap in the present
case, so we can set the disorder in such a way that the states
in the subband are completely mixed up but not with other
subbands. We speculate that this situation makes the local-
ization length smaller and enables us to resolve the separated
extended levels in a finite-size calculation. We have another
example where one subband has more than one extended
level in an anisotropic modulated quantum Hall system.
There �xy�E� in a subband with ��xy =1 has a nonmonotonic
behavior crossing �xy =1/2 three times, so that three ex-
tended levels arise.12

Last we investigate a flux �=8/7, slightly away from
�=1. Around this region the Landau level splits into a num-
ber of tiny subbands as seen in the original Hofstadter but-
terfly, just like the Landau levels in the usual 2DEG around
zero field. This is actually understood as the Landau quanti-
zation in the magnetic Bloch band at �=1 caused by the
residual flux �−1.16 As seen in Fig. 6, each of these “Landau
levels” equally carries the Hall conductivity of ��xy =1
while the center one has a large negative value. It is highly
nontrivial how the extended states evolves in increasing dis-
order in such a situation.

Figure 6 shows the disorder dependence of the density of
states, the Hall conductivity �xy, and the traces of �xy =n
+1/2 in a fixed system size L=14a in �=8/7. Remarkably
the result suggests that a pair creation of extended states can
occur in increasing disorder, as indicated by the arrows in
�c�. In �b�, we can see that this happens when a dip in �xy�E�
touches the line of �xy =n+1/2, where a pair of extended
levels with opposite Hall conductivity are created as sche-
matically shown in Fig. 7. In even stronger disorder, these
newly created pairs annihilate with other extended levels in
the lower and higher subbands.

To confirm the existence of a pair creation, we investi-
gate the scaling behavior of the Hall conductivity �xy�E� in
a similar situation in �=5/4, for the smaller disorder
�=0.4V and the larger 0.525V. The results in Fig. 8 show
that the direction of the size dependence around the dip
�E /V�−0.2� seems to change when passing through
�xy =0.5, within the system size numerically available. This
is consistent with the proposed scenario as in Fig. 7, while

FIG. 5. �a� Hall conductivity �xy and the density of states
� calculated for the lowest subband in �=8/15, carrying
��xy =−2e2 /h, with the disorder � /V=0.0173 and various sizes
L /a=30, 45, and 60. The gray steplike line is an estimate at
L→�. The vertical line at E�−0.0865 represents the energy region
of the ideal subband. �b� Relative value of �xy in L /a=60 estimated
from L /a=45. �c� Inverse localization length �in units of a� esti-
mated from the Thouless number. Two vertical lines penetrating the
panels represent the energies of the extended levels in an infinite
system.

FIG. 6. Plots similar to Fig. 3 calculated for �=8/7. Arrows
indicate the positions of the pair creations in the extended levels.
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we need further extensive work to confirm that the tendency
remains toward the infinite system.

For the usual 2DEG without a periodic potential, there has
been a long debate about the fate of the extended states in the
Landau levels in the strong disorder limit in a weak magnetic
field. It has been argued that all the extended states float up
in the energy axis with increasing disorder and the system
finally becomes an insulator.17–19 Numerical calculations in
tight-binding lattice models, on the other hand, showed that
the states with negative Hall conductivity move down from
the tight-binding band center, to annihilate with the extended
states in the lower Landau levels.20–22 Our theory may sug-
gest a somewhat different story where pair creations of the
extended states occur, since we actually observe similar dips
in �xy�E� around higher Landau levels in a disordered non-
periodic 2DEG.

We also remark that the evolution of the extended levels
generally depends on the correlation lengths of the disorder
potential. It was shown in the tight-binding model that the
pair annihilation of the extended states with positive and
negative Hall conductivity do not occur in the long-range
disorder.23,24 In our problem, the scenario of the pair creation
might change in correlating disorder, since the appearance
of the dips in �xy�E� is due to the inter-Landau-level
mixing,25,26 and thus is suppressed by long-range scatterers.
This should be addressed in future work.

V. HALL PLATEAU DIAGRAM

We extend the analysis to general fluxes to look into the
quantum Hall effect over the whole region of the Hofstadter

butterfly. Figure 9 shows �a� the Hall conductivity, �b� the
density of states, and �c� the localization length in disordered
systems with � /V=0.25, plotted against the Fermi energy
and the magnetic field. The solid lines in Fig. 9�a� represent
the extended levels in an infinite system, and the enclosed
areas are the Hall plateaus with the quantized value of �xy,
where we again assume that the extended levels in an infinite
system coincide with the energies of �xy =n+1/2 in a finite
system. In the density of states �Fig. 9�b��, we recognize
valleys in the contour plot as the remnants of the minigaps,
and some of them can be associated with the Hall plateaus in
�a�. For instance, a pair of valleys between �=1 and 2 inside
the Landau level corresponds to two major plateaus with
�xy =0 in 0E0.5V and �xy =1 in −0.5VE0.

In Fig. 9�c�, we see that the energy region with large
localization length becomes broad particularly around inte-
ger fluxes. There the cluster of subbands widely spreads
along the energy axis, and thus the states are less easily
mixed. We also find that the upper and lower branches of the
spectrum in ��2, carrying zero net Hall conductivity, are all
localized, as seen in the particular case �=3.12 The localiza-
tion length is smaller for larger � in those branches, mainly
because the mixing of the states becomes stronger in nar-
rower subbands.

In Fig. 10, we show the Hall plateau diagrams and the
density of states for the different disorder parameters � /V
=0.15 and 0.5, which exhibit the dependence on � together
with Figs. 9�a� and 9�b�. We can see that the small Hall
plateaus coming from the fine gap structure gradually disap-
pear as the disorder becomes larger, and the only extended
level is left at the center of the Landau level in the strong
disorder limit. We here notice in � /V=1.5 that the two larg-
est plateaus between �=1 and 2 mentioned above are more
easily destroyed around �=1 than around �=2, or the right
end is detached from �=1 while the left sticks to �=2. This
is because the tiny gaps around �=1 are easily swallowed up
by the large density of states around the center.

VI. SELF-SIMILARITY

The interesting observation in the Hofstadter butterfly is
that the identical spectrum with the identical distribution of
the Hall conductivity repeatedly appears in different fluxes.
In Fig. 1�b�, we can see that the spectrum and the Hall con-
ductivity at � correspond to the middle part of �+2 with the

FIG. 7. Schematic figure of pair creation of the extended levels.
The left and right panels show �xy�E� in smaller and larger disorder,
respectively, where a solid curve is for a finite system and a gray
line for an infinite system. The pair of extended levels are newly
created when a dip touches the line of �xy =0.5�−e2 /h�.

FIG. 8. Hall conductivity �xy in the flux
�=5/4 and the disorder � /V= �a� 0.4 and �b�
0.525 �in different vertical scales�, with the sys-
tem sizes L /a=16 and 36.
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top and bottom branches excluded, so that the entire struc-
ture repeats over �+2m with integer m. The proof of the
correspondence is presented in the Appendix. We note that,
while the Hofstadter butterfly has similar gap structures ev-
erywhere in a fractal fashion, the Hall conductivities in the
corresponding gaps do not always coincide. An example of

the incomplete correspondence is seen between � and
��=1/ �1−1/�� �such as �=3 and 3/2�. In the tight-binding
model, it was shown that the distributions of the Hall con-
ductivity within a cluster resemble each other up to a scale
factor among some series of fluxes.27

In the following we show that, in the presence of disorder,
the corresponding clusters with identical Hall conductivity
have qualitative agreement also in the localization length.
Here we particularly take a pair of fluxes �=3/2 and 7/2, in
both of which the central three subbands have the Hall con-
ductivity �1,−1,1�. In Fig. 11 we compare the disorder ef-
fects on the density of states and the localization length. We
set the disorder as �=0.25 and 0.20 for �=3/2 and 7/2,
respectively, so that the renormalized DOS broadening
� /Wtot is equivalent, where we defined � by putting in
Eq. �11� the full width of three subbands Wtot. The result
shows that the densities of states are broadened equivalently
as expected, and that the localization lengths Lloc then agree
qualitatively without any scale factors.

Figure 11�c� shows the evolution of the extended levels as
a function of the disorder, which are obtained by taking the

FIG. 9. �a� Hall plateau diagram in the lowest Landau level at
the disorder � /V=0.25, plotted against the magnetic flux and the
Fermi energy. Solid lines show the energy of �xy =n+1/2 �n is an
integer�, which are identified as the extended levels in an infinite
system, and the integers indicate the Hall conductivity in units of
−e2 /h. The ideal spectrum is shown as the gray scale. �b� Corre-
sponding plots for the density of states in units of 1 / �Va2�. �c�
Localization length in units of a. The dashed lines indicate the
extended levels shown in �a�.

FIG. 10. Hall plateau diagram �left� and the density of states
�right� in the disorder � /V=0.15 �top� and 0.5 �bottom�, plotted
against the magnetic flux and the Fermi energy. The corresponding
parameter region is shown as the dashed line in Fig. 9�a�.
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points of �xy =1/2. Three extended levels in �=3/2 and 7/2
evolve in a parallel fashion with the disorder strength � /Wtot,
where they come closer as � becomes larger and combine
into one at � /Wtot�0.4. The critical disorder at which the
combination occurs is slightly smaller in �=7/2 than in 3/2,
presumably because in �=7/2 the level repulsion from the
outer subbands �out of the figure� pushes the states in the
central three subbands toward the center of the spectrum and
that enhances the contraction of the extended levels. We ex-
pect that the critical behavior of the three extended levels at
the combing point is universal, but we could not estimate the
critical exponent in this simulation due to statistical errors.
The evolution of the plateau diagram should become basi-
cally similar among �+2m, so we know all from the infor-
mation of the first unit.

The similar subband structures with the identical Hall
conductivity can be found in other hierarchies in the Hofs-
tadter butterfly. The smallest unit that we have found is sche-
matically shown in Fig. 12, where the structure indicated by
A between �=0 and 1 repeats over the entire region. We can
show similarly that each unit has the identical distribution of
the number of states to each subband so that we have the
identical Hall conductivity for every gap. We expect that the
localization length in each single unit A becomes similar
when the disorder is weak enough that the mixing among
different units can be neglected.

VII. CONCLUSION

We studied the quantum Hall effect in a Landau level in
the presence of a two-dimensional periodic potential with
short-range disorder potentials. It is found that, in all the
cases we studied, the Hall conductivity becomes size inde-
pendent at �xy =n+1/2 �in units of −e2 /h�, and those points
are identified as the extended levels in an infinite system. We
propose a possible model for the evolution of the extended
levels by tracing �xy =n+1/2, which predicts that a subband
with �xy =n has n �or more� bunches of extended levels, and
possibly that pair creation in the extended level can occur in
increasing disorder, as well as pair annihilation. We also find
that the clusters of subbands with an identical Hall conduc-
tivity, which compose the Hofstadter butterfly in a fractal
fashion, have a similar localization length in the presence of
the disorder.
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APPENDIX: CONCIDENCE IN THE HALL
CONDUCTIVITY

The equivalence in the gap structure with the Hall con-
ductivity between � and �+2, discussed in Sec. VI, is ex-
plained as follows. The number of subbands in a Landau
level is given by the numerator of the magnetic flux �, so
that we have p bands in �= p /q and p+2q bands in �+2.
Each single subband in � and �+2 consists of the equal
number of states per unit area, 1 / �qa2�, since two fluxes have
a common denominator q so that they have equal foldings of
the Brillouin zone. We can then see that each of the top and

FIG. 11. �a� Density of states and �b� the inverse localization
length calculated for disordered systems with �=3/2 �solid lines�
and 7/2 �dashed�. The energy scale is normalized by the whole
width of the Landau level in the ideal system, Wtot, and the density
of states in units of 1 / �Wtota

2�. The parameter of the disorder is
� /Wtot=0.035. �c� Evolutions of the extended levels with changing
disorder �, in �=3/2 �filled circles� and 7/2 �triangles�.

FIG. 12. Schematic diagram showing decomposition of the Hof-
stadter butterfly into identical units, where the gap structure and the
Hall conductivity inside each gap coincide. The letter A indicates
the direction.
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bottom branches in �+2 contains q subbands, because each
has a constant number of states 1 /a2 as explained in Sec. II.
Thus the number of subbands in the middle part in �+2
�the top and bottom branches removed� becomes �p+2q�
−2�q= p, which is equal to the total subbands in �. Now

we see that the corresponding spectra between � and �+2
have the same number of subbands with equal numbers of
states, so we come to the conclusion that the Hall conductiv-
ity becomes identical between the corresponding gaps, by
using the Strěda formula �9�.
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