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We consider orbital magnetic field effects in a spin liquid phase of a half-filled triangular lattice Hubbard
system close to the Mott transition, continuing an earlier exploration of a state with spinon Fermi surface.
Starting from the Hubbard model and focusing on the insulator side, we derive an effective spin Hamiltonian
up to four-spin exchanges in the presence of magnetic field, and find that the magnetic field couples linearly to
spin chirality on the triangles. The latter corresponds to a flux of an internal gauge field in a gauge theory
description of the spin liquid, and therefore a static internal flux is induced. A quantitative estimate of the effect
is obtained using a spinon mean-field analysis, where we find that this orbital field experienced by the spinons
is comparable to or even larger than the applied field. We further argue that because the stiffness of the
emergent internal gauge field is very small, such a spinon-gauge system is strongly susceptible at low tem-
peratures to an instability of the homogeneous state due to strong Landau level quantization for spinons. This
instability is reminiscent of the so-called strong magnetic interaction regime in metals with the usual electro-
magnetic field, but we estimate that the corresponding temperature–magnetic-field range is significantly
broader in the spinon-gauge system.
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I. INTRODUCTION

Experimental studies1–3 of the quasi-two-dimensional or-
ganic material �-�ET�2Cu2�CN�3 strongly suggest a spin
liquid state in the insulating phase at ambient pressure.
�-�ET�2Cu2�CN�3 is a strongly correlated half-filled Hubbard
system on an almost isotropic triangular lattice. The material
is just near the boundary of the insulator-metal transition.1–7

It is an insulator at ambient pressure with a charge gap of
order 350 K, and shows no signs of magnetic ordering down
to 32 mK despite a relatively large exchange coupling J
�250 K. Experiments find that this spin liquid maintains a
finite susceptibility and a finite 1 / �T1T� for the 13C nuclear
spin relaxation rate down to low temperatures,1,5 and also
that this insulator has large spin entropy.2,3

These observations and related numerical studies7,8 led
the present author9 and also the authors of Ref. 10 to propose
a spin liquid state with spinon Fermi surface as a likely can-
didate. In Ref. 9, this state was shown to be energetically
favored in a spin model with Heisenberg and ring exchanges
appropriate for the description of the insulator, while Ref. 10
used the mean-field slave-particle approach and also derived
an effective gauge theory description of the proposed spin
liquid.

Here, we examine the response of this spin liquid to
strong magnetic fields. One motivation is to look for possible
direct probes of the spinon Fermi surface similar to the ones
used in metals such as magneto-oscillations or magneto-
acoustic resonance. Another motivation is the observations in
Refs. 3 and 5 of significant broadening of the 13C NMR line
in a large magnetic field up to 9 T at low temperatures below
10–30 K. Systematic studies3 reveal that the lines broaden
symmetrically and the broadening increases with increasing
field and also with decreasing temperature. At the present, it
is not clear whether this anomalous behavior is intrinsic, or

is the result of extrinsic disorder effects in the critical spin
liquid.

A simple intuition about the Mott insulator would be that
the charge motion is suppressed and only spin degrees of
freedom couple to the magnetic field. If this were the case,
then one would not expect strong intrinsic effects in the pres-
ence of the magnetic field. In particular, in the spin liquid
state with spinon Fermi surface and just the Zeeman spin
coupling to the applied field one would expect only Pauli
spin paramagnetism. We argue, however, that orbital effects
need to be carefully included when analyzing the response of
the spin liquid in �-�ET�2Cu2�CN�3. This is because charge
fluctuations, which become more prominent in the vicinity of
the insulator-metal transition, also induce an effective “or-
bital” coupling to the magnetic field. The effect of such cou-
pling on the proposed spinon Fermi sea state is further am-
plified by the fact that this phase itself is stabilized against
other competing spin liquids or the antiferromagnetically or-
dered state by charge fluctuations that produce the four-spin
ring exchange terms.9,10

First, we show that in the presence of the external mag-
netic field the spinons effectively experience an “internal”
orbital field that is comparable to and maybe even larger than
the applied field. This is despite the fact that spinons do not
transport electrical charge, but follows when we derive an
effective spin Hamiltonian from electronic degrees of free-
dom in the presence of the applied magnetic field. We find
that the magnetic field couples linearly to the spin chirality
on the elementary triangles. The effective description of the
spin liquid state contains spinons coupled to a dynamically
generated “internal” gauge field. The physical meaning of
the flux of the internal gauge field is precisely the spin chiral-
ity, and the external magnetic field therefore induces a static
internal flux seen by the spinons that is comparable to the
applied field.
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Second, we argue that because the stiffness of the internal
gauge field is very small �see Appendix C for numerical
estimates�, the response of the spinon-gauge field system
changes dramatically at low temperatures such that the Lan-
dau quantization of the spinons in the static internal field is
not smeared by the temperature. These effects are similar to
strong electronic magnetism in quantizing field at low tem-
peratures familiar in magneto-oscillation studies of
metals11–13 �which we also review in Appendix D�. In par-
ticular, the homogeneous state with continuously varying in-
ternal field becomes unstable below some temperature,
which for the �-�ET�2Cu2�CN�3 spin liquid we estimate to be
several kelvin in typical laboratory fields. The instability re-
gime is significantly wider in the spinon-gauge system than
in metals because the internal gauge field stiffness is so much
smaller than that of the physical electromagnetic field.
Crudely, the spinon states with integer Landau level filling
are more stable than the states with a continuously varying
filling, and it becomes advantageous for the internal gauge
field to adjust itself discontinuously to achieve this. This in-
stability also preempts the possibility of a direct observation
of the spinon Fermi surface using magneto-oscillation
probes, but can be viewed as an extreme manifestation of
such magneto-oscillations.

The objective of the present paper is to characterize the
above two predictions in the spinon-gauge system focusing
on the �-�ET�2Cu2�CN�3 material. The paper is organized as
follows. In Sec. II �and also Appendix A�, we describe the
effective spin Hamiltonian derived from the triangular lattice
Hubbard model in the magnetic field. In the main part of the
paper, Sec. III, we perform a spinon mean-field study of the
effective Hamiltonian. We start with a review of the system
in zero field9 and progressively add the needed ingredients
for the discussion of the response to the magnetic field such
as the appearance of the static internal gauge field and the
importance of the spinon Landau level quantization at low
temperatures. We then argue that a homogeneous spin liquid
state with continuously varying static internal flux becomes
unstable at low but experimentally relevant temperatures of
few kelvin. We finalize this section with a more careful
discussion of the physical setting in the real system. Helpful
connections with the gauge theory description and analogies
with magnetic interaction effects in metals are summarized
in Appendixes C and D. Throughout, we use the
�-�ET�2Cu2�CN�3 parameters as a guide for the relevant
questions. In Sec. IV, we collect the main estimates for the
�-�ET�2Cu2�CN�3 material and consider some experimental
aspects.

II. RING EXCHANGE HAMILTONIAN
IN THE PRESENCE OF MAGNETIC FIELD

The approach adopted in Ref. 9 and pursued here is to
focus on the spin degrees of freedom when describing the
insulating state. This is achieved by considering an effective
spin Hamiltonian obtained from the microscopic Hubbard
model by a canonical transformation that projects out the
double occupancy. The importance of the charge fluctuations
is retained in the form of more complicated multispin ex-

changes. The spin system is still more amenable to analysis
because there is much less disproportion between the rel-
evant energy scales and the couplings in the effective Hamil-
tonian, unlike in the original Hubbard model.

The effective Hamiltonian to order t4 /U3 on the isotropic
triangular lattice reads �see also Appendix A�

�1�

Here we use multispin exchange operators defined as
P1,2,. . .,n : ��1 ,�2 , . . . ,�n�→ ��n ,�1 , . . . ,�n−1�. For two spins,
this reduces to the familiar Heisenberg exchange P12= P12

†

=2S1 ·S2+ 1
2 . The first two lines give the effective Hamil-

tonian in the absence of the magnetic field. As discussed in
Ref. 9, important terms in this Hamiltonian are the nearest-
neighbor two-spin exchanges and the ring exchanges around
the rhombi of the triangular lattice. The corresponding cou-
pling constants are given in terms of the Hubbard model
parameters as

J2 =
2t2

U
�1 −

32t2

U2 �, J4 =
20t4

U3 . �2�

The second- and third-neighbor Heisenberg exchanges J�=
−16t4 /U3 and J�=4t4 /U3, though nominally of the same or-
der as the ring exchange coupling, were argued to play a
minor role because of the weak correlations between such
further-neighbor spins in the magnetically disordered state.

The last line in Eq. �1� shows a new term that appears at
order t3 /U2 in the presence of the magnetic field. This term
involves three-spin exchanges around the elementary tri-
angles and is proportional to the enclosed flux with the cou-
pling constant

J3 =
6t3

U2 . �3�

The dimensionless flux is ��
ext=eBA� /�c, where B is the

field and A� is the area. The Hamiltonian Eq. �1� is written to
linear order in the external flux, which is assumed to be
small, ��

ext�1. Each triangle is counted once and is tra-
versed in the same direction. We can write the J3 term more
explicitly as sin��123

ext �i�P123−H.c.�, where �123
ext is the com-

plex phase of the loop product t12t23t31 of the electron hop-
ping amplitudes in the field. In general, each contribution
from an exchange path that encloses flux is affected by the
magnetic field �cf. Appendix A�. However, the couplings J2,
J4, J�, and J� are modified only at quadratic order in �ext.
The exhibited three-spin terms represent the full effect linear
in �ext to order t4 /U3. The effective Hamiltonian contains
only terms P12, �P1234+H.c.�, and i�P123−H.c.�, which was
achieved with the help of the following identities valid in the
spin-1 /2 case:
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P123 + H.c. = P12 + P23 + P31 − 1, �4�

P1234 − H.c. =
1

2
�P123 + P234 + P341 + P412 − H.c.� . �5�

The three-spin operator i�P123−H.c.� has a simple physi-
cal meaning—it represents the spin chirality

i�P123 − H.c.� = − 4S1 · S2 � S3. �6�

Thus, the external field couples linearly to the spin chirality
and therefore induces such chirality density in the system.

In the above discussion, we have not mentioned the origi-
nal Zeeman coupling of the electrons to the magnetic field.
Since the Zeeman term involves the conserved total Sz, we
can simply reinstate it in the final effective spin Hamiltonian.

For �-�ET�2Cu2�CN�3, we use t=55 meV and U / t=8.2 to
obtain J2�7 meV, J4 /J2�0.3, and J3 /J2�0.7; the Heisen-
berg exchange coupling is J=2J2�160 K, which is compa-
rable with the estimate J�250 K in Ref. 1.

To summarize, when charge fluctuations are significant,
the effective spin Hamiltonian in the presence of the applied
magnetic field is modified beyond the direct Zeeman term
and contains a linear coupling of the spin chirality to the
external field. This orbital effect is important when consider-
ing the response of such insulator to the magnetic field.

III. SPINON MEAN-FIELD DESCRIPTION

A. General setting

In Ref. 9 we considered the situation with no magnetic
field and argued that the four-spin ring exchanges stabilize
the spin liquid state with spinon Fermi surface. This state can
be viewed as a Gutzwiller projection of a fermionic mean-
field state in which spinons hop on the triangular lattice. We
performed a direct variational wave function study, and also
provided an intuitive mean-field argument for the stabiliza-
tion of this state.

A similar mean-field treatment is pursued here to under-
stand the effects of the magnetic field. To simplify the dis-
cussion, we will focus on the J2-J3-J4 terms in Heff. As men-
tioned earlier, the second- and third-neighbor Heisenberg
exchanges are not expected to have significant effect.

Each spin-1 /2 is represented in terms of two “spinon”
operators f↑, f↓, with the occupancy constraint14,15

fr�
† fr� = 1. �7�

In this representation, the J2-J3-J4 Hamiltonian reads

Ĥ = J2 	
links

�f1	
† f1
��f2


† f2	�

+ J4 	
rhombi


�f1	
† f1
��f2


† f2���f3�
† f3���f4�

† f4	� + H.c.�

+ J3 	
triangles

sin��123
ext �i
�f1	

† f1
��f2

† f2���f3�

† f3	� − H.c.� .

For clarity, we use the form of the J3 term valid for general
�ext �cf. Appendix A�, even though we are interested in the
case of small ��

ext�1.

We consider trial spinon hopping Hamiltonians15,16

Ĥtrial = − 	
�rr��

�trr�
spinonfr	

† fr�	 + H.c.� − 	
r


rfr	
† fr	, �8�

with general hopping amplitudes trr�
spinon= �tr�r

spinon�*. The occu-
pancy constraints are implemented on average by the appro-
priate chemical potentials 
r. The mean-field scheme that we
use here is to evaluate the above exchange terms by contract-
ing only the fermions with the same spin index. This ap-
proach can be justified in a large-N fermionic generalization,
since any other contraction is down by a factor of 1 /N.
While the present N=2 is not large, the other contractions do
not introduce qualitatively new terms, and this scheme is
expected to capture the relevant physics rather well. The
mean-field energy is

Emf = − 4g2J2 	
links

��12�2 − 16g4J4 	
rhombi

��12�23�34�41 + c.c.�

− 8g3J3 	
triangles

sin��123
ext ��− i���12�23�31 − c.c.� . �9�

Here �rr�
�fr�
† fr� are link expectation values evaluated for

one spin species, and the powers-of-2 numerical factors ap-
pear from the spin summations. We also introduce phenom-
enological renormalization factors g2, g4, and g3, to keep us
aware of the schematic character of the mean-field treatment.
In a more quantitative treatment, these factors can be esti-
mated by matching to numerical evaluations with the
Gutzwiller-projected wave functions. This is done in Appen-
dix B, where we find that g2�1.7, g4�8, and g3�5 repro-
duce fairly well such direct trial wave function computations.

The mean-field energy is to be minimized over the trial
spinon hopping amplitudes trr�

spinon. We focus on the states that
describe translationally invariant spin liquids.15 These are the
projected Fermi sea state with real hopping amplitudes and
the so-called flux states with complex trr�

spinon realizing non-
trivial “internal” fluxes through the hopping loops. The flux
can be either uniform or have a staggered pattern. The pro-
jected Fermi sea state is a special case with zero flux. Here,
we are primarily interested in the uniform flux states since
these are natural candidates in the presence of the external
magnetic field if one starts with the zero-flux state in the
absence of the magnetic field.

The mean-field energy per site for a uniform flux state is

�mf = − 12g2J2����2 − 96g4J4����4 cos��1234
int �

− 32g3J3����3 sin��123
ext �sin��123

int � . �10�

Here, �rr�= ����exp�iarr�� and �int is the flux of the “internal”
gauge field arr�. Note that the link expectation values �rr�
obtain the same flux pattern as the input amplitudes trr�

spinon.
The gauge theory language is explained in Appendix C.

B. Review of the zero-field case

Let us first consider �ext=0 following Ref. 9. We find that
for small g4J4 / �g2J2��0.69, the lowest-energy state has
��=� /2 flux through each triangle, while for larger ring
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exchanges the best state has zero flux �see Fig. 1�. The cor-
responding numerical values of ���� for the half-filled trian-
gular lattice are

���=�/2� = 0.2002, ���=0� = 0.1647. �11�

It is known17 that flux states have large absolute value ����
and therefore good Heisenberg energies. On the other hand,
the ring exchanges are directly sensitive to the placket fluxes
and dislike any fluxes, as can be seen from Eq. �10�. This is
why the zero-flux state is stabilized for large J4 /J2. As ex-
plained in Ref. 9, we do not consider so-called dimer states
even though formally for fixed g2J2 these have the lowest
mean-field energy in the range g4J4 / �g2J2��2.4. Our reason-
ing is that J2 is fixed, and to go from the mean-field evalua-
tions to the projected wave functions, the renormalization
factor g2 is larger for the translationally invariant states.

For later convenience, Fig. 2 shows the behavior of ����
evaluated numerically for the triangular lattice flux states. It
is useful to note the enveloping function for small fluxes,
which we find to be

���� � ��0��1 + c��
2 � �12�

with c�0.1. In particular, it follows that for small
g4J4 / �g2J2��0.56—hatched region in Fig. 1—the zero-flux
state is also unstable against introducing weak fluxes �while
the � /2-flux state is the global translationally-invariant mini-
mum until a somewhat larger value of 0.69�.

A direct Gutzwiller wave function study gives that the
zero-flux state has lower energy than the � /2-flux state for
J4�0.145J2. From this and similar comparisons we estimate
that g4 /g2 is roughly 4 to 5—see Appendix B for more de-
tails.

In the �-�ET�2Cu2�CN�3 compound, we have J4 /J2�0.3,
which is not far from the regime where it would be
advantageous to spontaneously generate such internal flux.
We therefore reason that the spinon Fermi sea state in the
�-�ET�2Cu2�CN�3 compound is rather susceptible to the in-
ternal flux generation. In particular, we expect some en-
hancement in the response to the external magnetic field, to
which we now turn.

C. Mean field over homogeneous flux states in the presence
of the magnetic field

Consider the mean-field energy Eq. �10� with nonzero but
small �ext. Let us first try the enveloping function Eq. �12�

for small �int. Expanding �mf to quadratic order in �int and
minimizing over the internal flux, we find

�int =
g3J3

12g4J4��0��1 − 2c�1 +
g2J2

16g4J4��0�2��
�ext 
 ��ext.

�13�

The different ingredients have the following physical origin.
The J3 in the numerator represents the coupling of the mag-
netic field to the internal gauge flux through the corres-
ponding three-spin term. On the other hand, the J4 in
the denominator represents the stiffness of the internal
gauge field that originates from the four-spin exchanges.
For the �-�ET�2Cu2�CN�3 parameters, we estimate
g3J3 / �12g4J4��0���0.7. The term in the square brackets in
the denominator reflects the enhanced susceptibility to the
fluxes discussed above; it can be also viewed as a suppres-
sion of the internal gauge field stiffness. In particular, when
this term goes to zero, the spinon Fermi sea state becomes
unstable to spontaneous flux generation even in the absence
of the external field. Given the proximity of the competing
states, it is therefore reasonable to estimate this number to be
of order one-half, so for the �-�ET�2Cu2�CN�3 material we
roughly estimate

��-�ET�2Cu2�CN�3
� 1 – 2. �14�

Thus, we conclude that due to the triangular ring exchanges
and the proximity to the flux �or antiferromagnetic� instabil-
ity, the effective orbital field seen by the spinons is compa-
rable and can even be larger than the applied magnetic field.

We now examine the mean-field energy Eq. �10� more
carefully. In the presence of the static internal gauge flux, the
spinon spectrum consists of Landau bands. For either spin

FIG. 2. Mean-field numerical data for uniform flux states on the
half-filled triangular lattice. The figure shows the absolute value of
the bond expectation value ����
��fr�

† fr�� as a function of the
spinon filling factor � with respect to the internal flux �one spin
species is considered�. The dotted line is the enveloping function
Eq. �14�, while the dash-dotted line is the full model function Eq.
�15�. The data plotted correspond to rather large �int, but the same
behavior is expected to continue for small fluxes.

FIG. 1. “Phase diagram” from the mean-field energy optimiza-
tion over translationally invariant states in the absence of the mag-
netic field. In the hatched region, the zero-flux state is also unstable
against introducing small internal flux. For the �-�ET�2Cu2�CN�3

parameters, we estimate g4J4 / �g2J2��1.2–1.5.
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species, the filling factor of these Landau levels is �
=� / �2��

int�, and the flux states are special when � is integer.
Thus, the bond expectation value ���� has upward-pointing
cusps at these fluxes as can be seen in Fig. 2. The states with
integer � are therefore expected to be more stable. In fact,
when the mean-field energy is minimized with respect to �int

using the material parameters quoted above, we find that the
optimal such flux does not change continuously but instead
goes through this discrete set corresponding to the integer
filling of the spinon Landau levels. This is shown in Fig. 3.
The overall magnitude is still given by Eq. �13�.

Let us exhibit the structure of the discussed mean field in
a more transparent way. The reason behind the elementary
manipulations below is to draw a connection with the so-
called strong magnetic interaction effects in the magneto-
oscillation studies in metals. These are reviewed in Appendix
D, which contains useful interpretations of the expressions
below. At the expense of being repetitious, what follows will
allow us to estimate appropriate effective parameters, which
we will then use in our discussion of the spinon system at
finite temperature.

First of all, we model the behavior of ����, Fig. 2, as

���� = ��0��1 + c��
2 � − ��

osc, �15�

where we separate the envelope Eq. �12�, which is the band
structure effect, and the oscillating part ��

osc due to the dis-
creteness of the spinon Landau levels. The latter is well ap-
proximated by the familiar expression for the oscillating
piece of the energy of the continuum Landau problem,

��
osc � �−2�� − k��k + 1 − �� �16�

for the filling factor � between integers k and k+1. This
approximation is also plotted in Fig. 2 with a suitably chosen
numerical amplitude for ��

osc. In particular, from the numeri-
cal data we estimate the cyclotron mass for the half-filled
triangular lattice band to be mc� tspinon

−1 in units with the lat-
tice spacing set to 1, while the corresponding cyclotron fre-
quency at filling � is

��c � 3.57tspinon/� . �17�

Returning to the mean-field energy Eq. �10�, we expand to
quadratic order in �int bearing in mind that the oscillating
piece ��

osc has an overall magnitude ��int�2:

�mf = �4
���
int�2 − 2���

ext��
int� + �osc, �18�

�osc = �4y�
��

osc

��0�
= 12tspinon��

osc, �19�

with the effective parameters

�4 = 192g4J4��0�4�1 − 2cy� , �20�

tspinon = 2g2J2��0� + 32g4J4��0�3. �21�

Here � is defined in Eq. �13�; y
1+g2J2 / �16g4J4��0�2�; and
y�
2y / �1−2cy�. We recall that the energy here is per trian-
gular lattice site, and see that �4 is the corresponding mea-
sure of the stiffness of the internal gauge field—see Appen-
dix C. We also see explicitly how the magnetic field acts to
induce the internal gauge flux. On the other hand, using Eq.
�15�, we can interpret �osc as an oscillating piece of some
fermion kinetic energy of spinful fermions hopping on the
triangular lattice with amplitude tspinon. It is useful to remem-
ber that we are analyzing the mean-field energy Eq. �10�, and
from this we are separating out what looks like an effective
spinon kinetic energy. The division of the mean-field energy
into the gauge field and the spinon parts is somewhat arbi-
trary, but represents a useful separation by the character of
their dependence on �int. In particular, we can now see the
similarity with Eq. �D3� and thus connect with the studies of
magnetic interaction effects in metals summarized in Appen-
dix D. The above equations constitute the main result of this
section.

To emphasize the variational energetics character of the
mean-field procedure and the intrinsically common origin of
the gauge field and the spinon parts, we do not use such
suggestive separation explicitly in the treatment below. A
formal condition for an extremum of �mf reads

���
ext = ��

int +
y�

2��0�
���

osc

���
int 
 ��

int − Mosc
��
int� , �22�

which can be solved graphically by plotting the right-hand
side as a function of �int and seeking crossings with the
horizontal line ��ext. This can be compared with Eq. �D4� in
Appendix D. Here we remark that the oscillations of the
“magnetization” Mosc have roughly the sawtooth pattern fa-
miliar in two dimensions, with the amplitude which can be
estimated from the data in Fig. 2. Note that the internal

FIG. 3. Result of the mean-field energy minimization with re-
spect to �int in the presence of the magnetic field at zero tempera-
ture. The optimal spinon filling factor �int is plotted vs the nominal
filling factor �ext for the applied magnetic field. The figure shows a
sequence of first-order transitions with �int stepping through integer
values. The parameters roughly correspond to our estimates for the
�-�ET�2Cu2�CN�3 from Sec. II, with appropriate renormalization
factors from Appendix B. The dotted line shows the overall trend
Eq. �13�. The data plotted correspond to unrealistically large fields,
but the same behavior is expected to continue for smaller laboratory
fields.
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gauge field stiffness is implicitly included in Mosc, cf. Eq.
�D4�. We estimate that the corresponding �Mosc�max is as
large as 1. In particular, we conclude that at zero temperature
essentially each oscillation period supplies such graphical
solutions of Eq. �22�. Solutions are found even in the region
with ��1 �corresponding to very large internal flux� even
when �ext is small. Remembering the cusps in ����, this
means that each integer filling gives a locally stable mini-
mum, which we can also verify directly by plotting �mf as a
function of �int. The global minimum is given by an integer
filling near that corresponding to Eq. �13�. This provides a
more complete description of our direct minimization result
Fig. 3 at zero temperature, and is useful when generalizing to
finite temperature.

The multiple solutions signify an instability of the flux
states with continuously varying �int. The instability occurs
whenever the derivative of the right-hand side of Eq. �24�
becomes negative:

�Mosc

���
int � 1 Þ �2�Mosc�max � 1. �23�

This is just a more formal restatement of our discussion in
the preceding paragraph: given �Mosc�max�1, the instability
condition is satisfied all the way to very large internal fields
corresponding to ��1. This is unlike the ordinary metals
where the largest magnetic field that allows such an instabil-
ity is typically much smaller. As explained in Appendix D,
the origin of this is the very small internal gauge field stiff-
ness, which is implicitly built into the numerical estimate
�Mosc�max�1 in the above formalism. However, such large
numerical value of �Mosc�max is unavoidable since it is the
same mean-field energetics that stabilizes the Fermi sea state
and determines both the gauge field stiffness and the spinon
kinetic energy.

D. Mean-field description at finite temperature

The preceding analysis was performed at zero tempera-
ture. Also, we ignored the Zeeman spin coupling to the mag-
netic field. We first note that for integer filling � the spinon
spectrum has a gap given roughly by the corresponding cy-
clotron frequency. Such an integer quantum Hall state of
spinons is in fact a chiral spin liquid18 induced by the mag-
netic field, and the above treatment suggests a sequence of
first-order transitions stepping through such states rather than
a continuous variation of �int �see Fig. 3�. Finite temperature
smears the effects of the discreteness of the Landau levels,
and the instability of the flux states with continuously vary-
ing �int becomes weaker.

To proceed more quantitatively, we again use mean field
and apply standard magneto-oscillation results at finite tem-
perature in two dimensions supplemented with our estimates
of the effective parameters such as the cyclotron frequency
Eq. �17�. Thus, we can roughly incorporate the effects of the
finite temperature and the Zeeman spin splitting by multiply-
ing the oscillating magnetization Mosc by the corresponding
suppression factors RT and RS from Eq. �D2� in Appendix D.
The instability condition Eq. �23� then reads

RTRS�2�Mosc�max � 1. �24�

For a fixed external magnetic field, we can use Eq. �13� to
estimate the corresponding spinon filling � in the internal
gauge field. Focusing on the temperature suppression factor,
the homogeneous flux state becomes unstable when the tem-
perature is below

Tinstab =
x��c

2�2 ,
sinh�x�

x
� �2�Mosc�max. �25�

For high filling factors � and using �Mosc�max�1, we esti-
mate with logarithmic accuracy x�2 log���. We give nu-
merical estimates for the �-�ET�2Cu2�CN�3 material in
Sec. IV.

Let us briefly think what happens beyond the mean field.
The chiral spin liquid states are stable topologically ordered
phases18 at zero temperature, but strictly speaking do not
survive on long length scales at any nonzero temperature in
two dimensions. Instead, the spin system can be continu-
ously connected to the featureless high-temperature para-
magnet. In this case, we interpret the mean-field estimate Eq.
�25� as delineating the temperature-field regime in which the
spin system becomes particularly “soft” in its response to the
magnetic field. It is also possible for a T=0 first-order tran-
sition between chiral states to extend to small finite tempera-
tures even though the paramagnetic phases on both sides do
not have a symmetry or topological distinction any more.
Note also that in the above schematic treatment, we have not
considered the temperature dependence of the effective pa-
rameters 
for example, even in the formal mean field, the
effective tspinon decreases with temperature and disappears
above T�50–100 K for the �-�ET�2Cu2�CN�3 parameters�.
Such detailed questions on the behavior of the spin system at
finite temperature remain open for future investigations.

E. Inhomogeneous state in the physical system
at low temperatures

We conclude the mean-field description with a discussion
of some experimentally relevant aspects. Our analysis indi-
cates the instability of the homogeneous flux states with con-
tinuously varying �int at temperatures below Tinstab. Through-
out, we treat the external magnetic field as fixed, and the
instability represents a strong nonlinear back action of the
spinons onto the internal gauge field in the presence of such
fixed external source. Treating the magnetic field as fixed is
justified since, as we describe in Appendixes C and D, the
electromagnetic field is six to seven orders of magnitude
more stiff than the internal gauge field and will not adjust
itself to the electronic system until much lower temperatures.
Of course, there is a slight effect on the local magnetic field
depending on the state of the spin system, but for example
for the uniform flux mean field state we estimate the orbital
contribution to be one order of magnitude smaller than the
Pauli spin contribution. The physical setting therefore has
fixed �ext. In particular, we do not have access to different
sample “demagnetization geometries” considered for the
magnetic interaction phenomenon in conventional
metals11,12—the internal gauge field does not “leak out” of
the sample.
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In such setting in an ideal crystal system at zero tempera-
ture, we predict a sequence of first-order transitions,19 but
each phase is still a uniform flux state with the corresponding
integer �. This situation, however, is highly susceptible to
large-scale imperfections of a real system, and an outcome
with many domains is likely. Another important consider-
ation is the possible crystal mosaic in the sample, since the
discussed orbital effects are determined by the component of
the magnetic field H� normal to the two-dimensional plane.
A detailed characterization of possible inhomogeneities
clearly requires much more material knowledge.

IV. APPLICATION TO �-„ET…2Cu2„CN…3

Throughout, we have used the �-�ET�2Cu2�CN�3 param-
eters to motivate various approximations and make the oth-
erwise formal discussion more physical. Here we want to
focus more on the material itself and collect the relevant
numbers in one place.

We first want to point out that the material is rather clean.
Thus, we estimate kFl�50 in the metallic phase at 0.8 GPa.
Shubnikov–de Haas �SdH� oscillations are observed20 at
temperatures around 1.5 K, which is another indication
of the material quality. The SdH signal is consistent with
the Fermi surface and the one-band model description. For
reference, the Landau level filling factor for the
�-�ET�2Cu2�CN�3 material is given by �ext=3595/H �T�. In
Appendix D, we estimate the characteristic magnetic field
H0�5 T and temperature Tdm�0.16 K for the magnetic in-
teraction instability21–23 in this metallic phase coupled to the
electromagnetic field.

Turning to the spin liquid phase, in Ref. 9 we used the
low-temperature susceptibility to estimate the spinon hop-
ping amplitude tspinon�350 K. We can also use the mean-
field estimate Eq. �23�, which gives a smaller but reasonable
value tspinon�100 K. Using Eqs. �17� and �25�, and �int

=�ext /� with ��1–2, we obtain the characteristic tempera-
ture at B=8 T to be Tinstab�1–2 K. Above this temperature,
we expect uniform flux state.

We now summarize qualitative predictions for the inho-
mogeneous state induced by large magnetic fields at low
temperatures below Tinstab. As discussed in the paragraph fol-
lowing Eq. �22�, the characteristic field H0 for the spinon
system is beyond any practical fields, and we predict that in
the laboratory fields the instability temperature will increase
roughly linearly with the applied field, Eq. �25�. Manifesta-
tions of this instability become more pronounced with in-
creasing field and decreasing temperature below Tinstab. Since
this is an orbital effect, we expect distinction for fields per-
pendicular and parallel to the conducting planes. One conse-
quence of this scenario is that magneto-oscillation measure-
ments in their usual sense cannot be used to detect the spinon
Fermi surface in the spin liquid state considered here. This is
because the regime where such oscillations can become vis-
ible is likely preempted by the instability of the homoge-
neous state. Since the instability is in some sense an extreme
manifestation of the magneto-oscillations, conditions of the
magnetic field uniformity and the crystal mosaic are impor-
tant experimental considerations, as discussed in Sec. III E.

Other measurements in the spin liquid phase performed in
high magnetic field and at low temperature may also require
more careful interpretation.

V. CONCLUSIONS

The main content of this work was summarized in
the introduction, and possible application to the
�-�ET�2Cu2�CN�3 experiments including some numerical es-
timates was discussed in the preceding section. Here we want
to conclude with a more general point. While there has been
a significant progress in the theoretical understanding of
exotic quantum phases, the lack of the material evidence
is viewed as a major obstacle. Recently, several candidate
spin liquid systems have been found in frustrated
spin systems,1,24,25 of which the �-�ET�2Cu2�CN�3 is a very
promising example. This material motivated and guided the
detailed theoretical considerations in the present work on the
magnetic field response of the spin liquid state stabilized
near the Mott transition. Without such a guide, the proposed
effects would be hard to anticipate. More work matching
experiment and theory focusing on material properties will
likely be fruitful in developing our understanding and in fur-
ther pursuits of such unusual quantum phases. One specific
motivation for the present study has been the anomalous
NMR line broadening reported in Refs. 3 and 5. While some
of our expectations for the inhomogeneous state at low tem-
peratures resemble the experimental phenomenology, the
gradual development of the broadening starting from rather
high temperatures and also the magnitude of the inhomoge-
neous fields are more suggestive of a stronger impurity
mechanism. Experiments in parallel field can further clarify
the role of the impurity and orbital effects. The main predic-
tions in the present paper of the spinon orbital field and the
fragility of the spinon Fermi sea state in the applied magnetic
field represent intrinsic response of the spin liquid and are
expected to play an important role at low temperatures. It is
hoped that our proposals will stimulate further experimental
and theoretical questions.

Note added. Recently, the author learned of Ref. 28,
which also discusses the coupling of the external field to the
spin chirality and considers possible effects in some different
contexts for Hubbard systems with triangles.
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APPENDIX A: HUBBARD TO HEISENBERG
HAMILTONIAN IN THE PRESENCE OF MAGNETIC

FIELD

This appendix gives the effective spin Hamiltonian to or-
der t4 /U3 for a general lattice Hubbard system with complex
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hopping trr�= �trr� �eiArr�, which extends previously available
results26 to the case in the presence of the magnetic field.

The starting point is the Hubbard Hamiltonian at half fill-
ing

H = U	
r

nr↑nr↓ − 	
rr�

trr�cr�
† cr��, �A1�

with tr�r= trr�
* . The hopping part is treated as a perturbation,

and a canonical transformation is performed into the sector
with no double occupancy. The effective Hamiltonian to or-
der t4 /U3 reads

H = U	
r

nr↑nr↓ − 	
rr�

trr�cr�
† cr��, �A2�

�A3�

�A4�

�A5�
Here P12, P123, and P1234 denote two-spin, three-spin, and
four-spin exchange operators respectively. The latter two op-
erators move the spins in a ringlike manner. For example, the
three-spin exchange in terms of the fermions is P123
= �c1	

† c1
��c2

† c2���c3�

† c3	�, and acts on the spins as
P123: ��1 ,�2 ,�3�→ ��3 ,�1 ,�2�. To simplify the final expres-
sions, we used the identities Eqs. �4� and �5� specific to the
spin-1 /2 case.

The sum in H2 is over all bonds of the lattice. The sum in
H3 is over all three-site loops, where each group of three
sites connected by the links enters the sum precisely once.
Similarly, the sum in the second line for H4 is over four-site
loops, which are counted with no base point or orientation.
Finally, the primed sum in the first line for H4 is over distinct
sites 1,2,3 with nonzero t12 and t13 �each contribution will
therefore appear two times�. Equation �1� in the main text is
obtained by specializing to the isotropic triangular lattice.

Note that the complex phase of a loop product of trr�
measures the flux of the magnetic field through the loop.
Without such fluxes, H3 vanishes and after some transforma-
tions we reproduce the result of Ref. 26.

As a side remark, we observe that in the absence of three-
site loops, there is no linear coupling to the magnetic field to
this order in t /U. One can also show that for a half-filled
Hubbard model on a bipartite lattice, the effective Hamil-
tonian in the presence of the magnetic field can only contain
terms that are even in the applied field.

APPENDIX B: RENORMALIZED MEAN FIELD

In this appendix, we estimate the renormalization factors
g2, g4, and g3 used in the mean-field treatment in Sec. III. We
consider the uniform flux states and measure the relevant
expectation values of P12, �P1234+H.c.�, and i�P123−H.c.� in
the Gutzwiller-projected wave functions. The variation of the
expectation values with �int is matched with the correspond-
ing mean-field estimates—see Eq. �9�. Figures 4–6 show this
matching and are self-explanatory. We note that the
Gutzwiller wave function evaluations can be performed only
for small system sizes and large values of �int. However, we
expect the same trend to remain for small fluxes as well. For
small fluxes, an analytical mean-field treatment is then per-
formed �Sec. III� using the estimated renormalization factors.

FIG. 4. Expectation value of the two-spin exchange P12 on each
link evaluated in the Gutzwiller-projected uniform flux state. The
data are for commensurate fluxes on triangular lattice cuts with
sizes 36�12 �squares� and 48�12 �circles� with periodic boundary
conditions. The line shows the renormalized mean-field estimate
with g2=1.7 �the mean-field data are obtained using Fig. 2�. Since
we are interested only in the variation with �int, a constant offset is
added to the mean-field values.

FIG. 5. Same as in Fig. 4, but for the ring exchange operator
P1234+H.c. around a rhombus.
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This is the main idea of the so-called renormalized mean-
field approach.27

APPENDIX C: SPINON-GAUGE THEORY

In the main text, we often use the gauge theory
language,14 and it is useful to state the connection more ex-
plicitly. We follow the treatment of Ref. 10 as an example.
One starts with a slave-rotor representation cr�

† = fr�
† ei�r of the

Hubbard model and obtains the following effective theory
for the spinons fr� and chargons ei�r:

S =� d��L f + L�� ,

L f = 	
r

fr�
† ��� − iar

0 − 
�fr� − 	
rr�

tfe
iarr�fr�

† fr��,

L� =
1

2U
	

r

����r − ar
0�2 − 	

rr�

t�ei��r−�r�−arr�+A
rr�
ext�. �C1�

The imaginary time is continuous, while the space lattice is
retained to indicate similarity of the spinon part with that in
Eq. �8�. The spinons and the chargons are coupled with op-
posite charge to the internal gauge field �a ,a0�, whose spatial
components represent fluctuations of the phase of the spinon
hopping field, trr�

spinon= tfe
iarr�, while the temporal ar

0 imple-
ment the slave-particle constraints. The coupling to the ex-
ternal field Aext is included schematically by assigning the
electron charge to the chargon field.

Assuming the chargons are gapped and integrating them
out, we are left with the spinon-gauge system where the
gauge field now has some stiffness �,

La =
�

2
�� Ù a − � Ù Aext�2 +

��

2
���a − �a0�2. �C2�

Here �Ùa=�xay −�yax
b; we separated this “spatial” part
for later convenience.

Our mean-field treatment Eq. �9� roughly corresponds to
considering the spinon-gauge system with static but possibly
spatially varying gauge field a. Observe that the internal
gauge field obtains its stiffness after integrating out the mas-
sive chargons, and also observe how the magnetic field
couples to the internal gauge field. This is similar to our
discussion of the effective spin Hamiltonian, where the cru-
cial ingredient is also charge fluctuations. Note however that
the effective Hamiltonian treatment is more explicit. Thus,
the gauge field stiffness originates primarily from the four-
spin ring exchanges, while the coupling to the magnetic field
comes from the three-spin processes—see Eqs. �9� and �18�.
In the schematic gauge theory derivation this distinction is
not being made. The result �=1 of such schematic treatment
roughly agrees with our estimate using Eq. �13�, but this is
rather fortuitous—e.g., as we mention toward the end of Ap-
pendix A, in a Hubbard model on a lattice with no elemen-
tary triangles the linear coupling of the internal gauge flux to
the applied magnetic field does not appear even to order
t4 /U3. To capture the detail present in our Eq. �13� in the
gauge theory approach, one needs to go back to the original
slave particle rewriting and carefully consider saddle point
conditions and integrations over massive fields when deriv-
ing Eq. �C1� in the presence of the external field. As an
example, the suppression of the gauge field stiffness due to
the proximity to the flux phase discussed after Eq. �13� origi-
nates from some modes which become soft near the flux
phase. The effective spin Hamiltonian approach is more
transparent in this respect and also allows quantitative esti-
mates of the physical quantities.

In particular, from Eq. �20� we quote the internal gauge
field stiffness in terms of the energy cost per triangular lattice
site, �int=�4���

int�2,

�4 � 192g4J4��0�4 � 0.14g4J4 � 2 meV. �C3�

Here we used the Sec. II estimate J4�2 meV, and used the
Fig. 5 estimate g4�8.

This can be compared with the corresponding stiffness of
the physical electromagnetic �EM� field in the bulk of the
�-�ET�2Cu2�CN�3 compound, �EM=VB2 / �8��
�EM���

ext�2,

�EM =
V�2c2

8�A�
2 e2 = 1.1 � 104 eV. �C4�

Here V=850.6 Å3 is the three-dimensional �3D� volume per
triangular lattice site, A�=28.76 Å2 is the area of an elemen-
tary triangle, and ��

ext=eBA� / ��c� is the appropriate dimen-
sionless external flux.

We therefore conclude that the bare internal gauge field
stiffness is �107 times smaller than the electromagnetic field
stiffness. As we discuss in the following Appendix D, this
makes a dramatic difference in the response of the spinon-
gauge system to the external field compared with that of
electrons in a conventional metal.

APPENDIX D: ANALOGY WITH MAGNETIC
INTERACTION EFFECTS IN METALS

The purpose of this appendix is to clarify the status of our
mean-field treatment in Sec. III by pointing out the analogy

FIG. 6. Same as in Fig. 4, but for the three-spin operator
i�P123−H.c.� around an elementary triangle. The orientation of the
triangular loop 1→2→3→1 coincides with that of �123

int =��
int.
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with the so-called magnetic interaction effects in the study of
magneto-oscillations in metals. This material is available in
textbooks.11,12 The presentation below parallels some of our
discussion in Sec. III in a different language, but we hope
that the reader will benefit from this duplication.

For ease of reference, we first write down the oscillating
part of the magnetization of a two-dimensional electron gas
in a field H at a finite temperature T:

Mosc�H� = RTRS
ne�

�m*c
sin�2�F

H
� . �D1�

Only the main harmonic is shown. The magnetization is
given per unit area, and n is the 2D electron density �includ-
ing spin�; m* is the cyclotron mass; F=n�c� /e so that
F /H=� is the Landau level filling for each spin species. The
suppression factors RT and RS due to finite temperature and
Zeeman spin splitting are

RT =
2�2T/��c

sinh�2�2T/��c�
, RS = cos

g�m*

2me
, �D2�

where g is the spin g factor.
The essence of the magnetic interaction effects is the back

action of the electrons onto the electromagnetic field, which
can be significantly enhanced by the oscillating character of
M. Specifically, consider fermions coupled to a dynamical
gauge field a in the presence of the external field Aext, with
the Lagrangian density L f +La given by Eqs. �C1� and �C2�.
The microscopic magnetic field is b=��a and the external
field is Hext=��Aext. In the case of electrons, a represents
the physical electromagnetic field and � is the appropriate
EM stiffness; e.g., in a 2D layered material the magnetic
field energy per unit area is d*b2 /8� where d* is the spacing
between the layers.

The key observation is that electrons see the average mi-
croscopic field B because the typical Larmor orbits are large.
The mean-field treatment is then to assume a static but pos-
sibly spatially varying such field B�r� and solve the Landau
problem for electrons moving in this field. The mean-field
functional including the energy of the gauge field is11–13

�mf = �ferm�B� +
�

2
�B − Hext�2, �D3�

where �ferm�B� is the free energy density for fermions in the
static field B�r�. The mean-field functional is to be mini-
mized with respect to B�r�. If we look for a uniform solution,
we obtain

Hext = B +
1

�

��ferm

�B

 B −

1

�
M�B� , �D4�

where in the last equation we defined the magnetization den-
sity M�B�. For a 2D electron gas, the oscillating piece of the
magnetization is given in Eq. �D1�, and the mean-field treat-
ment is to replace H→B.

Equation �D4� is to be solved for B. It is customary to plot
the right-hand side as a function of B and seek the intersec-
tion with the horizontal line Hext. When this is unique, the

corresponding uniform field is the sought for stable solution.
However, M�B� contains an oscillating piece, and if we find
that

1

�

�M
�B

� 1, �D5�

then the solution is no longer unique, which signals an insta-
bility. Note that while the amplitude of the oscillations
�M�max�T=0�=ne� / �2m*c� is small in metals compared to
typical �H, the amplitude of the “susceptibility” �M /�B ob-
tains an additional factor �F /H2, and the instability condi-
tion can be satisfied at low temperatures and not too large
fields. After simple transformations, the instability condition
reads

RTRSn
�2kF

2

2m* �
�

2
H2, �D6�

where kF is the Fermi wave vector. When this condition is
satisfied, the gain in the fermion energy when the field B is
adjusted to obtain integer Landau level filling overweighs the
magnetic field energy cost. Since RT and RS do not exceed 1,
the above equation sets the maximal value H0 for the insta-
bility to occur at zero temperature. On the other hand, at a
finite temperature, we also require the Landau levels to be
resolved, which is determined by RT. Roughly, for fields of
order H0, we require 2�2T���c with �c set by H0.

The 2D Landau problem for free electrons can be solved
beyond the above single-harmonic treatment, and Ref. 21
contains such expressions for the phase boundary of the in-
stability region. For example, the field H0 is determined from

n
�2kF

2

2m* = �H0
2 = d* H0

2

8�
. �D7�

Reference 21 also contains formulas directly appropriate for
the layered organic materials. As a numerical application,
consider the metallic phase of the �-�ET�2Cu2�CN�3 com-
pound obtained under pressure of 0.76 GPa, in which
magneto-oscillations were reported in Ref. 20. Using �F
�100 meV, the cyclotron mass ratio �c=m* /me�4, the in-
terlayer spacing d*=14.84 Å2, and ignoring sample demag-
netization effects, we estimate H0�5 T; the peak tempera-
ture on the phase boundary of the instability regime is
estimated to be Tdm�0.16 K.

Various aspects of what happens once the homogeneous
state becomes unstable are discussed in textbooks.11,12 There
is also a growing recent literature on the observation of Con-
don domains22 in metals; see Ref. 23 and references therein.

The point that we want to make is that our mean-field
treatment in Sec. III has the same character as the described
treatment of the magnetic interaction effects in metals. Thus,
our mean-field energy Eq. �18� can be readily identified with
Eq. �D3�, while the self-consistency condition Eq. �22� cor-
responds to Eq. �D4�. Clearly, the treatment of the magnetic
interaction effects requires taking into account the energy of
the gauge field. This is implicit in our mean-field treatment
of Sec. III. At this mean-field stage, we do not need to dis-
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entangle the gauge field energy from the total energy and
worry about the emergent nature of the gauge field, and this
makes the procedure more simple.

An important difference between the spinon-gauge system
and the electrons in metals coupled to the EM field is the
very small gauge field stiffness in the spinon case, as we
estimated in Appendix C. Because of this, the instability con-
dition is satisfied more readily in the spinon-gauge system.
Thus, because the internal gauge field stiffness is 106–107

times smaller while the kinetic parameters of spinons are not
far from those of electrons, the above estimate of H0 is to be
multiplied by a factor of order 103. This is an impractically

large field, and the spinon-gauge system in the laboratory is
in the regime of much smaller fields. In this regime, the
temperature at which the instability occurs in a given field H
can be estimated as

Tinstab =
x��c

2�2 ,
sinh�x�

x
�

n�2kF
2/m*

�H2 . �D8�

This temperature depends on the stiffness only logarithmi-
cally, but as numerical estimates in Sec. III show, even under
the logarithm the seven orders of magnitude difference in the
relevant stiffnesses produces a much wider temperature
range for the instability in the spinon-gauge system.
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