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The application of variational density functional perturbation theory �DFPT� to lattice dynamics and dielec-
tric properties is discussed within the plane-wave pseudopotential formalism. We derive a method to calculate
the linear response of the exchange-correlation potential in the GGA at arbitrary wavevector. We introduce an
efficient self-consistent solver based on all-bands conjugate-gradient minimization of the second order energy,
and compare the performance of preconditioning schemes. Lattice-dynamical and electronic structure conse-
quences of space-group symmetry are described, particularly their use in reducing the computational effort
required. We discuss the implementation in the CASTEP DFT modeling code, and how DFPT calculations may
be efficiently performed on parallel computers. We present results on the lattice dynamics and dielectric
properties of �-quartz, the hydrogen bonded crystal NaHF2 and the liquid-crystal-forming molecule 5CB.
Excellent agreement is found between theory and experiment within the GGA.
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I. INTRODUCTION

Density-functional theory1,2 �DFT� has become the most
commonly used methodology of calculating accurately the
physical properties of a vast range of materials. Density-
functional perturbation theory3,4 �DFPT� extends the scope
of the DFT Hamiltonian to allow the ab initio calculation of
lattice dynamics and response to external electromagnetic
fields. First-order DFPT yields the linear response of the
Kohn-Sham orbitals with respect to the external perturbation
and the second-order response of the energy by virtue of the
so-called “2n+1 theorem.”5

Many experimentally determined quantities are �often
second-order� responses of the total energy of the system
with respect to some perturbation. For example, derivatives
of energy with respect to atomic position give vibrational
frequencies, derivatives with respect to applied electric field
give molecular polarizability or dielectric permittivities, and
magnetic fields lead to nuclear magnetic resonance chemical
shifts and magnetic susceptibilities. It is sometimes possible
to calculate a response using a finite-difference approach to
obtain the necessary derivatives. However this method fails
when trying to compute the response to an incommensurate
phonon wave vector or a finite electric field in a periodic
solid. Obtaining these responses motivated the developments
in DFPT which is able to treat an incommensurate perturba-
tion using only a primitive-cell calculation and the response
to an infinitesimal electric field. Combined, these perturba-
tions contain all of the physics necessary for a complete ab
initio treatment of lattice dynamics in the harmonic approxi-
mation including the effect of long-range electric fields
which couple with longitudinal phonon modes giving rise to
the well-known phenomenon of LO-TO splitting.

Significant advances in the formalism of DFPT were
made by Baroni and co-workers3,4 and Gonze.5–7 The devel-
opments introduced in those seminal papers showed that
these responses, leading to important physical quantities, can

be calculated as accurately as the DFT ground-state proper-
ties which have become so familiar in recent years. Notable
examples include the calculation of macroscopic dielectric
constants in semiconductors such as silicon,8 phonon
spectra,4 Raman scattering,9 and nuclear magnetic resonance
chemical shift tensors.10,11

The variational formulation of DFPT due to Gonze5 is
particularly elegant. It is based upon the 2n+1 theorem
which states that the �2n+1�th-order response of the energy
may be calculated using only the nth-order response of the
Kohn-Sham orbitals. It can be deduced that even-order de-
rivatives obey a stationary principle, or for diagonal terms a
minimum principle. This allows the method to be formulated
as a problem of minimization with respect to the basis-set
coefficients which may be solved using efficient algorithms
such as conjugate gradients. The variational formalism has
the inherent advantage that it is intrinsically self-consistent
and does not require a separate self-consistency cycle. Fur-
ther, the computational cost is comparable to that of a single-
point energy self-consistent calculation, although there are
further implications when symmetry is considered.

We have implemented DFPT for lattice dynamics and
electric field responses using the plane-wave pseudopotential
formalism within the CASTEP code.12,13 In this paper we will
describe developments of the theory and implementation of
DFPT. In particular we give the formalism to compute the
first-order exchange-correlation potential in the generalized
gradient approximation �GGA� for incommensurate pertur-
bations in a fast Fourier transform–�FFT� grid consistent
manner. We present an efficient all-bands preconditioned
conjugate-gradient solver for the self-consistent variational
minimization of the second-order energy. We discuss the use
of space group symmetry to optimize the number of self-
consistent calculations needed to obtain the full dynamical
matrix of lattice dynamics and the implementation on a mas-
sively parallel supercomputer. Finally we will present some
results of DFPT applied to lattice dynamical and dielectric
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problems. We also benchmark against previous calculations
�where results are available� to demonstrate the consistency
of our implementation and methods.

II. FUNDAMENTALS

The theory of DFPT is discussed in detail in the review by
Baroni et al.4 Our implementation is based on the variational
scheme of Gonze6,7 and we use the same notation. The
ground-state energy of the system is expanded in a perturba-
tion series in the parameter � which, for example, could be
an atomic perturbation described by some wave vector q, or
an external field

E = �0E�0� + �1E�1� + �2E�2� + ¯ , �1�

and similarly, so are the Kohn-Sham orbitals,

�k
i = �0�i,k

�0� + �1�i,k
�1� + �2�i,k

�2� + ¯ , �2�

and likewise for the density.
The diagonal elements of the dynamical matrix of lattice

dynamics are given by Eel,−q,q
�2� which is the second-order en-

ergy given by an atomic perturbation described by an arbi-
trary wave vector q. Our variational expression for this is
modified from that given by Gonze and Lee6 in order to
describe a first-order exchange-correlation �XC� potential
when the functional depends on the gradient of the density in
the GGA; namely,

Eel,−q,q
�2� �u�0�;u�1�� =

�0

�2��3�
BZ

�
m

occ

s��umk,q
�1� 	Hk+q,k+q

�0� − �mk
�0�	umk,q

�1� 
 + �umk,q
�1� 	vsep,k+q,k

�1� 	umk
�0�


+ �umk
�0�	vsep,k,k+q

�1� 	umk,q
�1� 
 + �umk

�0�	vsep,k,k
�2� 	umk

�0�
�dk

+
1

2
�

�0

��n̄q
�1��r��*�v̄loc,q

�1� �r� + v̄XC0,q
�1� �r�� + �n̄q

�1��r���v̄loc,q
�1� �r� + v̄XC0,q

�1� �r��*�dr

+
1

2
�

�0

�v̄XC,q
�1� �r� + v̄H,q

�1� �r��*n̄q
�1��r�dr + �

�0

n�0��r�v̄loc
�2��r�dr +

1

2
�d2EH XC

d� d�* �
n�0�

, �3�

where the symbols are defined in Ref. 6. A numeric super-
script �n� denotes the nth-order response of the correspond-
ing ground-state quantity. Alternatively superscripts �� and
	
,� denote first-order electric field and atomic displacement
perturbed quantities of Cartesian direction � and atom num-
ber 
. The overbar in the first-order charge densities and
potentials denotes that each is a complex, phase-factorized
cell-periodic quantity which may be stored on the usual FFT
grid for the primitive cell. The first-order charge density is
given by the expression

n̄�1��r� =
2

�2��3�
BZ

�
m

occ

sumk
�0�*

�r�umk,q
�1� �r�dk . �4�

Equation �3� is valid in the case of GGA XC functionals,
which Eq. �15� of Ref. 7 is not. Eel,−q,q

�2� �u�0� ;u�1�� is mini-
mized with respect to the first-order response orbitals under
the orthogonality constraint

�umk+q
�0� 	unk,q

�1� 
 = 0 �5�

in the parallel transport gauge.
In our implementation, we use a real-space integration to

evaluate the Hartree contribution. Though this might appear
less efficient than the reciprocal-space sum of Ref. 7 the
energy is most efficiently computed by summing all the first-
order potentials

v̄tot,q
�1� �r� = v̄XC,q

�1� �r� + v̄H,q
�1� �r� + v̄loc,q

�1� �r� �6�

whereupon only a single integral of a first-order local poten-
tial multiplied by a density is required in the evaluation of
Eq. �3�.

A similar modification yields the expression for the
second-order energy with respect to electric field perturba-
tions also valid for GGA functionals,

Eel
��

*
���u�0�;u��� =

�0

�2��3�
BZ

�
m

occ

s��umk
�� 	Hk,k

�0� − �mk
�0�	umk

�� 


+ �umk
�� 	iumk

k� 
 + �iumk
k� 	umk

�� 
�dk

+
1

2
�

�0

�vXC
�� �r� + vH,q

�� �r��*n���r�dr . �7�

Evaluation of the second-order energies due to either an
atomic position or electric field perturbation is the first step
in obtaining phonon frequencies or bulk polarizabilities.
These expressions give the diagonal terms of a dynamical
matrix or polarizability tensor. Though the nonvariational ex-
pressions for off-diagonal terms are simple in principle, in
practice the different symmetries of the perturbations and
consequently different irreducible wedges complicates the
Brillouin-zone integration. This will be discussed in Sec. VI.
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The mixing of two perturbations is not constrained to two
perturbations of the same type. For example the Born effec-
tive charges may be obtained by a mixed atomic displace-
ment and electric field perturbation.

III. FIRST-ORDER XC POTENTIAL IN THE GGA

The treatment of the exchange-correlation term is rela-
tively straightforward in the case of the local density ap-
proximation �LDA�, but more complicated for the GGAs.
Here we describe a general method for incorporating a GGA
within the linear response formalism.

Equations �3� and �7� and their corresponding gradients
require the evaluation of the first-order exchange-correlation
potential,

v̄XC,q
�1� �r� =�� �2�XC

�n�r��n�r��
�

n�0��r�
e−iq·�r−r��n̄q

�1��r��dr�, �8�

where the quantities with overbars are, as usual, phase fac-
torized and cell periodic. In the case of the LDA this simpli-
fies to

v̄XC;LDA
�1� �r� =�dvXC

dn
�

n�0��r�
n̄q

�1��r� ,

where the derivative is straightforward to evaluate analyti-
cally. However, the second functional derivative of GGA
functionals is nondiagonal and the integral in Eq. �8� does
not disappear. Putrino et al.10 pointed out that evaluating the
second functional derivative was both analytically cumber-
some and numerically unstable. They suggested that vXC

�1�

could be calculated using a finite-difference derivative of the

XC potential, but that method is not applicable to incommen-
surate perturbations where vXC

�1� is not simply the derivative of
vXC with respect to the perturbation.

Favot and Dal Corso14 presented a formula where vXC
�1� is

given not as the analytical functional derivative of the GGA
formula but as a FFT grid-consistent derivative at finite cut-
off. However, they did not show how to treat incommensu-
rate perturbations. A very similar formula was presented by
Egli and Billeter.15

Our method for calculating v̄XC,q
�1� �r� begins from the work

of White and Bird16 who noted that the true analytic
exchange-correlation potential has Fourier components of
too high spatial frequency to be representable on the usual
FFT grid of a plane-wave basis set. They introduced an ap-
proximate XC potential defined only on grid points R,

vXC�R� =
�fXC

�n�R�
+ �

R�

�fXC

� � n�R��
·

d � n�R��
dn�R�

�9�

where fXC�n ,�n� is the particular GGA kernel. For nota-
tional convenience we define

fnn =
�2fXC

�n�R��n�R�
, fng =

�2fXC

�n�R�� � n�R�
,

fgn =
�2fXC

� � n�R��n�R�
, fgg =

�2fXC

� � n�R�� � n�R�
, �10�

and corresponding quantities fnn� , fng� , fgn� , and fgg� which are
evaluated at R� instead of R.

Taking a variation of Eq. �9� with respect to n�R� and
�n�R�, treating them as independent variables, and noting
that ��n�R�=��n�R� for a periodic density n�R� yields

�vXC = fnn�n�R� + fgn · � � n�R� + �
R�


 fng� ·
d � n�R��

dn�R�
�n�R�� + fgg� ·

d � n�R��
dn�R�

· � � n�R���
= fnn�n�R� + fgn · � � n�R� −

1

N
�
R�

�
G

iGeiG�R−R���fng� �n�R�� + fgg� � � n�R���

= fnn�n�R� + fgn · � � n�R� − � · �fng� �n�R� + fgg� · � � n�R�� , �11�

where both steps use the identity that on the periodic grid

�n�R� =
1

N
�
G

�
R�

iGn�R��eiG·�R�−R�. �12�

We identify �n�R� above with n�1��r� in the DFPT formal-
ism and �vXC with v�1��r�, which are incommensurate with
the primitive cell. To represent densities and potentials on the
periodic FFT grid we work with the complex, periodic �i.e.,
Bloch-function-like� quantities n̄�1��R� and v̄�1��R� given by,

n�1��R� = exp�iq · R�n̄�1��R� . �13�

Applying the chain rule to Eq. �13� gives

�n�1��R� = exp�iq · R��iqn̄�1��R� + �n̄�1��R�� . �14�

Substituting Eqs. �13� and �14� into Eq. �11� and expanding
the contents of the square brackets gives

v�1��R� = exp�iq · R��fnnn̄�1��R� + iq · fgnn̄�1��R�

+ fgn · �n̄�1��R�� − exp�iq · R�

��iq + �� · �fngn̄�1��R� + iqfggn̄�1��R�

+ fgg � n̄�1��R�� . �15�
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Defining v̄�1��R� by v�1��R�=exp�iq ·R�v̄�1��R� the incom-
mensurate phase factor is eliminated to yield

v̄�1��R� = �fnnn̄�1��R� + fgn · �iq + ��n̄�1��R��

− �iq + �� · �fngn̄�1��R� + fgg · �iq + ��n̄�1��R�� ,

�16�

where all density and potential terms are cell periodic, com-
mensurate, complex quantities, which have a straightforward
representation on the computational FFT grid.

The desired XC potential v̄�1��R� may be evaluated on the
FFT grid by first computing �n̄�1��R� �four FFTs� and then
applying Eq. �16� �another four FFTs�. Equation �10� require
the derivatives of the GGA kernel fXC�n , 	�n�R�	� with re-
spect to �n�R�. These are re-expressed as

fgn =
�n�R�
	�n�R�	

�fXC

�	�n�R�	�n�R�
, �17�

fgg = 
 1

	�n�R�	
−

�n�R� � n�R�
	�n�R�	3 � �fXC

�	�n�R�	

+
�n�R� � n�R�

	�n�R�	2
�fXC

�	�n�R�	�	�n�R�	
, �18�

where the last expression is interpreted as a tensor dyad
product. The derivatives of fXC on the right-hand side of the
above expressions are easily evaluated either analytically15

or numerically. We use a central-difference numerical differ-
entiation of the chosen GGA kernel. Thus we can evaluate
the first-order XC potential at an incommensurate wave vec-
tor while representing all quantities as Bloch-factorized, pe-
riodic functions which can be mapped onto the computa-
tional FFT grid.

IV. COMPUTATIONAL METHODS

A. All-bands conjugate-gradient solver

The central problem is to find a set of first-order orbitals
which minimize the second-order energies of Eqs. �3� and �7�
subject to the orthogonality condition. The prerequisite is a
set of zeroth-order orbitals umk

�0� and umk+q
�0� . For an incommen-

surate perturbation with wave vector q the zeroth-order or-
bitals at k+q are required. The approach of Gonze6,7 is to
make use of the orbitals computed during the ground-state
self-consistent procedure which are available on the
Monkhorst-Pack grid. This limits the choice of phonon wave
vector q to the difference between any pair of the
Monkhorst-Pack k points. We use a more general approach
which is to compute a set of umk+q

�0� using a non-self-
consistent band structure calculation in the self-consistent
Kohn-Sham potential of the ground state. With this ap-
proach, any q vector is allowed. Further to this, we make use
of the point group symmetry of the orbitals to reduce the
computational cost which we describe in detail, below.

We obtain the first-order orbitals using a preconditioned
conjugate-gradient minimizer. Our method varies the coeffi-
cients of all bands simultaneously using a method similar to

a ground-state search.17 This method uses more memory than
a band-by-band approach to store the gradients; however, the
computational time is considerably lower because only one
evaluation of the first-order density and potentials is required
per conjugate-gradient cycle. Construction of the first-order
density is an expensive operation involving many applica-
tions of a fast Fourier transform. In a band-by-band approach
the computation of the first-order density may be optimized
by incremental updates for each band but the nonlinear first-
order XC potential cannot.

We obtain a total gradient vector from Eq. �3� of the form


m,k
i = − Pc��H�0� − �m,k�	umk

�1�
 + H�1�	umk
�0�
� , �19�

where H�1� is the total self-consistent first-order perturbation
Hamiltonian, Pc is the projection orthogonal to the occupied
states, and i is an iteration count. This is a vector in the
product space of basis-set coefficients �G vector�, bands m,
and k points in the irreducible BZ. The preconditioning ma-
trix multiplies this total gradient

�i = PcK
i �20�

and the conjugate direction is formed as

�m,k
i = �m,k

i + �i�m,k
i−1 , �21�

where �i is given by the Fletcher-Reeves formula18

�i =

�
m,k

��m,k
i 	�m,k

i 


�
m,k

��m,k
i−1 	�m,k

i−1 

. �22�

The second-order energy is minimized along this direction
using a quadratic line minimizer. The step size is determined
using the initial gradient and value of the energy and a sec-
ond evaluation of the energy at a trial point. A full line search
is unnecessary because Eq. �3� is a quadratic form in the
presence of the orthogonality constraints. To obtain an accu-
rate location of the quadratic minimum in a single step re-
quires that the trial step is of similar numerical magnitude to
the final step. Our method chooses an initial guess for the
trial step based on the previous iteration and scales it if nec-
essary.

Within the spirit of this all-bands approach, we precom-
pute and store the nonlocal terms

vsep,k+q,k
�1� 	umk

�0�
 �23�

outside the iterative procedure, thus further increasing the
speed of the minimizer. We find that storage of this quantity
saves approximately 20% of the CPU time.

We investigated a number of different preconditioning al-
gorithms: that of Teter et al.19 �TPA�, the modification due to
Kresse and Furthmüller20 �RTPA�, and one due to Putrino et
al.10 �PSP� that was specifically designed for use in DFPT
applications.

An example of the convergence rate of the second-order
energy for an atomic position perturbation minimized with
these preconditioners is shown in Fig. 1. First, by comparing
Figs. 1�a� and 1�b�, it can be seen that a conjugate-gradient
algorithm converges approximately twice as fast as a simpler
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steepest-descent method. An iteration is defined as a minimi-
zation in a single search direction so that each iteration takes
a comparable amount of time. In both cases the TPA and
RTPA preconditioners converge the second-order energy at
approximately the same rate. The best performing precondi-
tioner was the original TPA variant, despite being intended
for a ground-state DFT search, and the PSP preconditioner
showed the worst performance despite being specifically de-
signed for DFPT calculations. However, the differences be-
tween each are relatively small. Though inclusion of a pre-
conditioner is obviously advantageous, the choice of which
variant should be a secondary consideration after use of con-
jugate gradients versus steepest descents.

V. DYNAMICAL MATRIX SYMMETRY

The central task in any lattice dynamics calculation is the
construction of the dynamical matrix. In the absence of sym-
metry �other than the Hermitian character of the dynamical
matrix� this requires 3N perturbations and variational mini-
mization using Eq. �3� and �9N2−3N� /2 mixed perturbation

calculations if there are N atoms in the unit cell. This number
may be reduced by a large factor by exploiting the symmetry
equivalence between elements of the dynamical matrix con-
sequent on the space group symmetry of the crystal and the
phonon wave vector q. For example, in the diamond struc-
ture containing two identical atoms per cell, only one varia-
tional minimization is needed instead of 6 at q=0.

The theory of the application of symmetry to lattice dy-
namics was set out by Maradudin and Vosko21 and Warren22

using the irreducible multiplier representations of the space

group. The dynamical matrix D���


��q� is a 3N�3N matrix

where the indices 
 and 
� refer to atoms and � and �� refer
to Cartesian directions and q is the phonon wave vector.
They showed that if q is invariant under the operation of a
space group symmetry operation �S 	vS� with rotation matrix
S and translation vector vS then the dynamical matrix trans-
forms as

D���


��q� = T−1�q;S�D���



��q�T�q;S� , �24�

where

T�q;S� = S���„
,F0�
�;S�…exp�iq · �x
 − Sx
��� �25�

is a matrix from the irreducible multiplier representation of
the group of q. Here F0�
� ;S� is the index of the atom re-
lated to atom 
� by the symmetry operation �S 	vS�, x
 is the
coordinates of atom 
, and � is the usual Kronecker delta
symbol. If one of the space group operations carries q→−q
�including but not limited to the case of an inversion� then
the time-reversal symmetry gives rise to additional invari-
ances �detailed in Ref. 21�.

From a computational perspective the problem is to deter-

mine a minimal subset of the elements of D���


��q� and the

relationships between elements needed to construct the com-
plete matrix. Our approach is similar to that of Worlton and

Warren.23 A matrix Drand of the same dimensions as D���


��q�

is constructed to be maximally random while satisfying all of
the invariances of the form of Eq. �24� and also Hermitian.
This is accomplished by the following algorithm. A Hermit-
ian matrix Drand

init is constructed using a pseudo-random-
number generator, and Drand is generated by the formula

Drand = �
j=1

g�q�

T−1�q;S�Drand
init T�q;S� �26�

from which it is straightforward to demonstrate23 that Drand
satisfies Eq. �24� for all operations in the space group. A very
similar procedure is subsequently applied to make Drand also
satisfy the time-reversal invariances.

The Drand generated by this procedure thus satisfies all of
the symmetries of the crystal but is otherwise random. The

desired relationships among elements of D���


��q� are deter-

mined from an analysis of those of Drand. These may take the
form of elements equal to zero, elements that are equal in
magnitude and complex phase, elements that are equal in
magnitude but of opposite phase, and elements that are equal
in magnitude but rotated or counter-rotated in phase. These
conditions are satisfied to a high degree of numerical preci-

FIG. 1. �Color online� �a� The second-order energy as a function
of iteration number �scaled to show equivalent computational ef-
fort� for the steepest-decent �SD� and conjugate-gradient �CG�
methods. �b� The effect of various preconditioning schemes for both
CD and SD methods. Note the change in the x axis from �a�.
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sion and are easily identifiable from the values of Drand. To
be sure that a value of zero is not produced accidentally, the
initial random elements of Drand

init are biased away from zero.
A further consequence of the symmetry is to fix the

phases of some elements of the dynamical matrix, to either
an absolute or a q-dependent value. Our analysis goes further
than that of Worlton and Warren23 in detecting symmetry-
determined phases and relative phases of elements. This is
achieved by repeating the analysis with a new initial Drand

init

generated using an independent sequence of pseudo-random-
numbers. Those phases and phase relationships that are in
common are marked as being symmetry determined.

In addition to the symmetry relationships so far discussed,
it is possible in some structures with hexagonal and trigonal
space groups for linear relationships to exist among three or
more elements. The linear symmetry analysis is unable to
detect these relationships, and in such cases more than the
irreducible minimum of variational DFPT calculations will
be performed.

During the calculation of D���


��q� the symmetry informa-

tion is used as follows. Elements that are zero by symmetry
are not calculated. On every calculation of a dynamical ma-
trix element of a given a value, all elements which have
equal magnitude by symmetry are also set to the same value.
The symmetry-determined phase information is used to set
the phases of the related elements. After an element has been
assigned to, it is marked as “already computed” and subse-
quent iterations of the atom or direction loops omit any cal-
culations if this flag is set for a particular element.

A very similar analysis is performed to establish the sym-
metries of the set of Born effective charge tensors. These
resemble those of the leading 3�3 block diagonal of the
dynamical matrix with the difference that there is no require-
ment for matrix symmetry.

Finally the symmetry of the dielectric permittivity �and
polarizability� is that of a symmetric tensor. A simplified ver-
sion of the algorithm used for the dynamical matrix is used
to avoid unnecessary recomputation.

VI. SYMMETRY AND BRILLOUIN-ZONE SAMPLING

Space group symmetry also plays an important role in the
sampling of the electronic BZ for sums such as those in Eq.
�3� and the first-order electron density nq

�1��r� constructed ac-
cording to

nq
�1��r� = �

S=1

NS

S�
k=1

Nk

wk�
m

occ

umk
�0�*�r�umk

�1��r� , �27�

where NS is the number of symmetry operations, Nk is the
number of k points in the irreducible set, wk is weight ap-
plied to k and m indexes the occupied bands. The set of k
points is usually derived from a Monkhorst-Pack grid24 and
folded to a symmetry irreducible set under the operations of
the group �S�, the subgroup of the space group under which
the perturbation is invariant. In the case of an atomic dis-
placement perturbation this is the group of q and �, which is
smaller than the full space group. The irreducible set of k
points �k� and weights �wk� is in general larger than for the

self-consistent-field calculation. In particular expression �3�
in not invariant under time-reversal symmetry and the set
must include both k and −k unless 2q is zero or a reciprocal
lattice vector.

As mentioned in Sec. IV A, the �umk
�0�� are constructed us-

ing a non-self-consistent “band structure” calculation using
the self-consistent ground-state density and potential. It is
possible to economize on the number of these calculations by
using the symmetry relations among the set which arise be-
cause of the higher symmetry of the unperturbed space
group. In reciprocal space the wave function coefficients
transform under �S 	vS� as

cmSk�SG� = exp�− 2�iS · �k + G� · vS�cmk�G� . �28�

This is straightforward to implement if the FFT grid is
mapped onto a three-dimensional array as it is in the serial or
k point parallel case. When the grid is distributed across
processors for G-vector parallelism, then interprocessor com-
munication is required since the coefficients on the left and
right hand sides of Eq. �28� in general reside on different
processors. In that case the grid is reconstructed by gathering
coefficients onto the master node, transforming according to
Eq. �28�, and scattering to the new locations. This is done
one band at a time to limit the additional storage of a full
grid on a single processor.

While the above procedure suffices for terms diagonal in
the perturbation, off-diagonal terms in the dynamical matrix
and dielectric permittivity tensor must be evaluated using a
“mixed-perturbation” formula such as Eq. �16� or �38� in
Ref. 7. This involves the first-order orbitals with respect to
just one of the perturbations which have been evaluated on a
k point set irreducible with respect to its symmetry. The
other perturbation does not in general have the same symme-
try, and so the Brillouin-zone integral cannot be evaluated
using the same weighted sum as used to obtain the first-order
orbitals. Using Eq. �28� it is straightforward to show that

FIG. 2. �Color online� The phonon dispersion curve for �-quartz
is shown along several lines of high symmetry. Experimental results
are shown by solid symbols.
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�
k=1

full BZ

�umk
�0�	v	
�	umkq

	� 


=
1

NS
�
S=1

NS

�
k=1

Nk

wk exp�− 2�iq · vS��umk
�0�	v	
�S�	umkq

	� 
 ,

�29�

where the sum on the right hand side is over the same irre-
ducible set used for the diagonal term and where the umkq

	� are
already available. Similar formulas hold for the other terms
including the nonvariational contribution to the dynamical
matrix and the off-diagonal terms of the dielectric permittiv-
ity tensor.

The different symmetry and set of electronic k points in
the irreducible BZ means that some flexibility is required to

optimize the performance when executing on a massively
parallel supercomputer. Our implementation is able to dy-
namically choose an optimum strategy to distribute both k
points and G-vector components of the FFT grid for each
perturbation. This enables efficient use of very large numbers
of processors with good load balancing. Alternative schemes
which distribute perturbations or q points among processors
have the disadvantage that the computation time varies con-
siderably due to the different numbers of k points in the
irreducible BZ, making good load balancing hard to achieve.

VII. APPLICATIONS

A. Introduction

Applications of DFPT have been presented in abundance
elsewhere showing that it has become a highly successful

TABLE I. Zone-center vibrational frequencies of �-quartz �in cm−1� compared with previous calculations
and experiment. Previous plane-wave �PW� and all-electron �AE� results are from Refs. 35 and 36, respec-
tively. Experimental results are extrapolated to the athermal limit as cited in results.

Mode PW LDAa AE LDAb PW LDAc AE PBEb PW GGAc Expt.d

A1 238.9 261.6 216.5 220.8 91.7 219.0

339.3 332.3 331.4 332.0 356.5 358.0

461.7 482.1 446.6 451.8 432.2 469.0

1061.2 1089.1 1102.5 1050.3 1116.1 1082.0

A2 �TO� 341.4 326.3 336.2 326.3 387.5 361.3

493.4 504.6 474.3 481.6 444.9 499.0

762.4 791.1 780.2 764.6 783.1 778.0

1056.5 1086.4 1097.5 1038.5 1103.7 1072.0

A2 �LO� 365.7 351.3 360.0 350.2 398.8 385.0

540.5 543.9 523.3 528.9 518.5 553.0

784.7 816.8 796.1 778.2 784.8 791.0

1218.3 1249.6 1256.4 1210.4 1274.5 1230.0

E �TO� 133.3 143.4 125.1 128.8 110.0 133.0

261.3 263.5 250.5 252.8 264.4 269.0

377.6 376.9 369.5 372.4 392.2 393.5

443.8 443.8 426.1 424.0 421.4 452.5

690.8 721.7 696.1 681.5 679.6 698.0

791.7 835.0 801.0 797.0 780.9 799.0

1045.0 1070.3 1087.2 1030.8 1100.1 1066.0

1128.1 1141.7 1159.8 1117.9 1198.9 1158.0

E �LO� 133.4 143.7 125.1 128.8 110.1 133.0

263.2 266.9 252.1 255.4 246.6 269.0

389.2 389.1 379.2 380.4 395.3 402.0

498.6 497.2 481.7 479.8 487.1 512.0

694.5 726.5 699.1 685.2 679.9 701.0

803.9 844.7 811.6 806.2 792.6 811.5

1209.5 1234.7 1245.9 1201.4 1266.2 1227.0

1123.9 1137.3 1156.8 1115.4 1198.4 1155.0

aReference 35.
bReference 36.
cThis work.
dCorrected values from Ref. 35.

VARIATIONAL DENSITY-FUNCTIONAL PERTURBATION¼ PHYSICAL REVIEW B 73, 155114 �2006�

155114-7



addition to the density-functional total-energy toolbox. In
this section, we describe a selection of results using the
CASTEP DFPT code. First we demonstrate some results
for �-quartz to show reliability, but also to illustrate the
methods described above, such as the directional dependence
as q→0 of the nonanalytic behavior of phonon frequencies.
Second we explain the results of some DFPT calculations for
the ionic crystal NaHF2 which contains some surprising and
nonintuitive results, such as an effective charge of +2e for a
H ion. We also use this example to demonstrate that the
choice of XC functional is crucial in determining the dy-
namical properties of such a hydrogen-bonded material. Fi-
nally we demonstrate the application to the polarizability
tensor of an important molecular system, the prototypical
liquid-crystal-forming molecule 5CB �4-4-pentyl-cyano-
biphenyl�. Further applications of CASTEP DFPT may be
found in Refs. 25–27.

B. �-quartz

The low-temperature ��� phase of quartz is one of the
more complex crystals for which high-quality experimental
dispersion curves are available. Its dielectric permittivity and
Born effective charges are strongly anisotropic giving it a
rich behavior which has been the subject of an extensive
literature. It exhibits structural phase transitions in whose
mechanism soft modes play an important role.28 It therefore
makes an excellent test case for our methods.

We have calculated an extensive set of phonon dispersion
curves for �-quartz. Our calculations used the Perdew-
Burke-Ernzerhof �PBE� variant of the GGA exchange-corre-
lation functional.29 The pseudopotentials were of the opti-
mized norm-conserving variety,30,31 generated using the
LDA, and gave very well-converged results at a cutoff en-
ergy of 600 eV. A 5�5�4 Monkhorst-Pack grid was used
to compute the electronic Brillouin-zone integrals24 giving
essentially converged results �	F	�5 meV/Å and 	�	
�16 MPa�. The phonon calculations were carried out at the
zero-pressure optimized structure with resulting lattice pa-
rameters of a=4.940 Å and c=5.413 Å and the results are
plotted in Fig. 2 along with experimental results.32,33 The

agreement with experiment is reasonable, but some of the
branches in the center of the frequency range are shifted to
lower frequencies.

A detailed comparison of zone-center frequencies using
both LDA and GGA with previous results is given in Table I.
Our LDA results are in good agreement with earlier plane-
wave calculations and with recent all-electron calculations.
The agreement is less good in the case of the PBE functional,
where in particular the lowest A1 mode drops below the E
modes. Elsewhere in the spectrum discrepancies of up to
60 cm−1 are present. This calculation is not directly compa-
rable with all-electron GGA results because the LDA was
used to generate the pseudopotentials. This approximation
makes some error, usually no greater than that due to the XC
functional error, and in particular gives lattice parameters
and bond lengths intermediate between LDA and consistent
GGA values.34 However, quartz frequencies are highly sen-
sitive to crystal geometry �requiring tighter geometry conver-
gence tolerances than usual to converge the result� due to the
low-frequency rigid unit modes.28 We suspect this to be the
origin of the unusually large discrepancy observed in quartz.
A definitive answer to this question will require careful test-
ing of the accuracy with GGA-generated pseudopotentials
and is beyond the scope of the present work.

We have also computed the infrared �ir� absorption spec-
trum of �-quartz, which is shown in Fig. 3. The intensities
were computed using a spherical average approximation
from the mode effective charges.

The Born effective charges and dielectric permittivity are
given in Tables II and III. We find little significant difference
in the values of the Born effective charges compared to ei-
ther our or previous LDA calculations.35 However, our GGA
high-frequency permittivities are in excellent agreement with
experiment38 in contrast to LDA results which are 10%
higher. �We have checked that the pseudopotential error in
these permittivities and Born effective charges is around the

FIG. 3. The calculated ir absorption spectrum for �-quartz is
shown �solid line� along with experimental results �dashed line�
�Ref. 37�.

TABLE II. The Born effective charge tensors of �-quartz �units
of electronic charge�.

Atom GGA LDA

O −1.34 0.55 0.40 −1.29 0.46 0.26

0.57 −2.04 −0.81 0.51 −2.01 −0.76

0.42 −0.79 −1.74 0.32 −0.71 −1.72

Si 3.00 0.00 0.00 2.97 0.00 0.00

0.00 3.76 0.13 0.00 3.64 0.30

0.00 −0.15 3.48 0.00 −0.35 3.43

TABLE III. Low- and optical-frequency dielectric permittivities
�r of �-quartz. Experimental results are from Refs. 38 and 39.

Frequency Direction GGA LDA Expt.

�=0 xx 4.427 4.803 4.42

zz 4.632 5.029 4.60

�→� xx 2.381 2.602 2.356

zz 2.404 2.641 2.383
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1% level.� In Ref. 35 agreement between LDA values and
experiment was obtained only by upshifting the conduction
band energies by 1.8 eV. A very similar decrease in the high-
frequency dielectric permittivity was found in a recent all-
electron calculation using Gaussian basis sets.36 Given that
the GGA does not correct the LDA underestimation of band
gaps and that GGA dielectric permittivities for quartz are in
good agreement with experiment, the earlier conclusion that
the band-gap error is responsible for the overestimation of
permittivities35 is not supported.

To illustrate the directionally dependent behavior, we
have determined the zone-center frequencies of �-quartz as a
function of the approach of q to the Brillouin-zone center. In
Fig. 4, we show the zone-center frequencies as q tends to
zero from directions within the q= �qx ,qy ,0� plane, where the
approach angle is measure relative to the qx axis. As one can
see, for particular modes this has a pronounced effect, and in
the case of �-quartz the frequency can vary by as much as 50
wave numbers. This example highlights the need to always
quote the direction with which q tends to zero when report-
ing the frequency of any LO mode.

C. Sodium hydrogen fluoride

Sodium hydrogen fluoride �NaHF2� is a strongly
hydrogen-bonded ionic molecular crystal, which presents a
challenging test of our methods. The nature of the chemical
bonds within the linear FHF− ion is unusual and generates
interesting crystal structure polymorphs and a rich phase
diagram.40 This molecular anion is highly polarizable with a
significant anisotropy, which it is difficult to describe accu-
rately using local basis-set methods.41 Finally we will show
that the LDA description of this system is grossly in error,
but that the GGA results are in excellent agreement with
experiment.

CASTEP calculations were performed using optimized
norm-conserving pseudopotentials30,31 which gave well-
converged-results at a cutoff of 850 eV. For Na the semicore
2s and 2p electrons were treated as valence states. Brillouin-
zone integration was carried out using a 5�5�5 mesh ac-
cording to the recipe of Monkhorst and Pack.24 The experi-
mental zero-pressure crystal structure of NaHF2 is

rhombohedral R3̄m. An initial geometry optimization was
performed to relax the structure yielding lattice constants of
a=3.538 Å and c=13.908 Å compared to experimental val-
ues a=3.474 Å and c=13.788 Å.40 The H-F bond length was
1.146 Å compared to 1.13 Å.42 DFPT calculations were per-
formed to compute the dynamical matrices which were di-
agonalized to give vibrational spectra. Electric field DFPT
calculations yielded the the Born effective charges and di-
electric permittivity as well as the nonanalytic corrections to
the dynamical matrix at q=0. The phonon dispersion curves
are plotted in Fig. 5, the Born effective charges are given in
Table IV, and some selected zone-center frequencies are
tabulated in Table V.

The most striking feature of the dispersion plot is the
extraordinarily large LO-TO splitting observed in the
highest-frequency FHF− stretch mode of 1474 cm−1. This re-

FIG. 4. The variation in zone-center frequencies for �-quartz is
shown as a function of the direction from which the center of the
Brillouin zone is approached. In �a� we show the variation in fre-
quency for all modes, while in �b� and �c� we emphasize the effect
by illustrating the change in two particular modes.

FIG. 5. �Color online� Phonon dispersion of NaHF2. The hex-
agonal setting and its labeling scheme are assumed here.

TABLE IV. The Born effective charges of NaHF2.

Direction H F Na

xx /yy 0.337 −0.686 1.057

zz 2.017 −1.510 1.044
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sults from a coupling of the internal FHF− anion mode to the
crystal’s electrostatic field. The anomalous magnitude is in
part a consequence of the very high Born charges which give
rise to a large electric dipole in the distorted ion. This also
accounts for the anomalously large dispersion of this mode
in the �hexagonal� basal plane; internal modes ordinarily ex-
hibit very small dispersion.

The Zeff of over +2 on a hydrogen atom along the molecu-
lar axis at first seems paradoxical, as it would appear to
imply that displacing the proton moves more charge than
surrounds it. In fact this is easily explained. Figure 6�a�
shows an isosurface of the first-order charge density associ-
ated with a displacement of the proton perpendicular and
parallel to the molecular axis. It can be seen that the bulk of
the charge which moves upon proton displacement actually
belongs to the fluorine atoms. Also shown in Fig. 6�b� is the
first-order charge density response to an applied electric
field.

A final point which merits a remark here is the very large
error in the phonon dispersion made by the LDA in a similar
calculation. Although the lattice parameters are only slightly
changed, showing the usual LDA underestimation �a
=3.345 Å, c=13.656 Å� the highest branch is increased in
frequency to a range of 1718–2306 cm−1 compared to
1473–2111 cm−1 using the PBE GGA. This is not simply a
consequence of a grossly underestimated bond length as ob-
served in other hydrogen-bonded systems; in this case the
H-F bond length is shortened by only 0.6% to 1.140 Å.

D. „4−4�…-pentyl-cyano-biphenyl (5CB)

The 5CB molecule is the smallest that forms a liquid-
crystal phase and as such has been the subject of many com-
putational studies.45 In studies of the liquid crystal phases it
is found that small changes in the molecular structure and
electronic properties strongly influence the macroscopic
properties of the liquid crystal. As such, accurate knowledge
of molecular properties is essential to understanding the be-
havior of the bulk material. For example, 5CB has a large
molecular dipole moment of 6.55 D mainly due to the polar
cyano group accepting electrons from � orbitals of the phe-
nyl groups. This will create a significant internal electric field

if the molecules are aligned as in a nematic phase, and will
tend to polarize 5CB molecules, making the molecular po-
larizability an important influence on the liquid crystal struc-
ture.

Previous work on 5CB has used a finite-field, finite-
difference approach to calculate the polarizability tensor.45

That approach can be problematic; in particular Zener break-
down will eventually occur for the elongated cells necessary
to model longer molecules than this. A DFPT approach is
also more effective for periodic crystals which can require
extremely large supercells to converge a finite-difference cal-
culation.

Our calculation was performed using norm-conserving
pseudopotentials as before and a plane-wave cutoff of
800 eV. The PBE GGA functional was used to describe the
XC interactions and a geometry optimization was performed
to relax the molecular structure. For this molecular case a
single k point at �0,0,0� was used to sample the BZ of the

TABLE V. Selected zone-center frequencies in units of cm−1 of
NaHF2 are shown and compared to experimental results, where
available. ir frequencies are from Ref. 43, Raman data from Ref. 40,
and inelastic neutron scattering �INS� frequencies from Ref. 44.

DFPT
��→K�

DFPT
��→A� Raman ir INS

146.6 146.6 144.5 158

184.3 146.6

204.4 204.4 212

646.0 646.0 630.3 635

1201.0 1201.0 1202

1235.2 1201.0 1234

1473.9 2111.2 1550 1413

FIG. 6. �Color online� Isosurfaces of the first-order charge den-
sity in NaHF2 shown for �a� an atomic perturbation associated with
the H atom moving and �b� the response to an applied electric field.
The light �green� isosurfaces represent motion or field parallel to the
molecular axis and the dark �blue� perpendicular.
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supercell. The supercell had dimensions of 30�15�15 Å3.
Both lattice dynamical and electric field perturbations were
calculated in order to evaluate both electronic and ionic con-
tributions to the polarizability. These are shown in Table VI.
The results agree well with previous finite-difference
calculations,45 although in the DFPT case given here, we are
able to compare the difference that the ionic contributions
make. We find that the most significant difference between
the low- and high-frequency limits affect the transverse di-
rections increasing the polarizability by approximately 10%.

We have also examined the effect that the electric field
perturbation has on the molecule. In Fig. 7 we show the
first-order charge density for an electric field perturbation
applied along the length of the molecule. It is found that the
response density is not localized at any particular site but
distributed over the entire molecule with a slightly larger
response on the cyano group at the right hand end of the
figure.

VIII. CONCLUSIONS

In this paper, we have described the implementation de-
tails of the plane-wave density-functional methodologies not
described elsewhere; in particular the terms required for the

GGA response potential for a general phonon wave vector
and some symmetry considerations such as an algorithm for
obtaining the symmetry of the dynamical matrix. We have
also compared steepest-descent and conjugate-gradient mini-
mizers applied to the variational DFPT formalism and also
the effect of several preconditioners.

These methods have been applied to three test systems,
namely, �-quartz, the hydrogen-bonded NaHF2 crystal, and
the liquid-crystal-forming molecule 5CB. It was found that
the results obtained are in excellent agreement with both ex-
perimental and other theoretical results where available.
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