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We investigate the two-orbital Hubbard model in infinite dimensions by means of the self-energy functional
method. By calculating the entropy, susceptibility, and quasi particle weight at zero temperature, we determine
the phase diagram for the system with same and different bandwidths, which is compared with that obtained
recently. It is clarified that orbital fluctuations play a key role in controlling the nature of the Mott transitions
in the system.
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I. INTRODUCTION

Transition metal oxides have attracted much interest in
their various aspects.1,2 Among them, heavy-fermion behav-
ior in d-electron systems stimulates experimental and theo-
retical investigations. One of typical examples is the lithium
vanadate LiV2O4,3 where heavy-fermion behavior with the
enhanced specific-heat coefficient �e=0.42 J /mol K2 has
been observed at low temperatures. It has been suggested
that the large mass enhancement in this system may originate
from geometrical frustration.4–6 Recently, it has been pointed
out that degenerate orbitals in the t2g subshell also play an
important role in realizing heavy-fermion behavior in
LiV2O4.7,8 Another example is the isovalent ruthenate arroy
Ca2−xSrxRuO4. In the compound, the substitution of Ca2+

ions for x�0.5 realizes heavy fermions in the t2g subshell,9

where some of physical quantities have a cusp singularity
around x=0.5. Furthermore, the unexpected s=1/2 moment
per Ru ion coexisting with the metallic state has been ob-
served in that region,9 which suggests the existence of the
orbital-selective Mott transition �OSMT�.10,11 This type of
the Mott transition has also been suggested to occur in the
compound Lan+1NinO3n+1,12,13 stimulating further experi-
mental investigations of the multiorbital systems.

In the above compounds, electron correlations in the sys-
tem with orbital degeneracy are important in understanding
heavy-fermion behavior. In particular, the concept of the
OSMT provides a new paradigm of metal-insulator transi-
tions in multiorbital systems. Although intensive theoretical
studies of these topics have recently been done,10,11,14–49there
are some controversial conclusions even in the simplest mul-
tiorbital model. In fact, in the infinite-dimensional two-band
system with equivalent orbitals, the existence of Hund cou-
pling induces the first-order Mott transition to the insulating
phase.17,28,44 However, recent results obtained by dynamical
mean-field theory50,51 �DMFT� combined with the numerical
renormalization group claim that the Mott transition is of
second order in a certain parameter region.29 In addition,
there are some open questions about the system with differ-
ent bandwidths. It has been pointed out that double OSMTs
occur in general, which merge to a single Mott transition
only under special conditions.31–33,35 On the other hand, it
has been proposed that double transitions always occur if the
system has a large difference of the bandwidths.38,39 There-
fore, it is highly desired to discuss the nature of the Mott

transition in order to clarify what triggers the single or
double transitions in the system with different bandwidths.

Motivated by this, we investigate Mott transitions in mul-
tiorbital systems. In particular, we focus on orbital fluctua-
tions in this paper, which may play an important role in
stabilizing the metallic state in the system.24,36 By making
use of the self-energy functional approach �SFA� proposed
by Potthoff,52,53 we confirm some previous works38,39 and
determine the phase diagrams. We examine how orbital fluc-
tuations are affected by the Hund coupling and/or the differ-
ence of the bandwidths to clarify that the enhanced orbital
fluctuations make single Mott transitions stable against
double OSMTs.

This paper is organized as follows. In Sec. II, we intro-
duce the two-orbital Hubbard model and briefly summarize
the SFA.52,53 The nature of the Mott transitions in the two-
orbital system with same bandwidths is discussed in Sec. III.
We also discuss how the OSMT is realized in a system with
different bandwidths in Sec. IV. A brief summary is given in
Sec. V.

II. MODEL AND METHOD

We consider the two-orbital Hubbard model with different
bandwidths, which is given by the Hamiltonian H=H0
+H�, H�=�iHi� with

H0 = �
�i,j�,�,�

�t� − ��ij�ci��
† cj��, �1�

Hi� = U�
�

ni�↑ni�↓ + �
���

�U� − ����J�ni1�ni2��

− J�ci1↑
† ci1↓ci2↓

† ci2↑ + ci1↑
† ci1↓

† ci2↑ci2↓ + H . c . � , �2�

where ci��
† �ci��� creates �annihilates� an electron with spin

� �=↑ , ↓ � and orbital � �=1,2� at the i th site and ni�� is the
number operator. Here, t� denotes the hopping integral for
the �th orbital, � the chemical potential, U �U�� the intra
orbital �inter orbital� Coulomb interaction, and J the Hund
coupling including the spin-flip and pair-hopping terms. In
the paper, we impose the condition U=U�+2J due to the
rotational symmetry of degenerate orbitals.

To discuss the Mott transitions in the multiorbital systems,
we make use of the SFA. Since this method is based on the
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variational principle, it has an advantage to discuss the prop-
erties of the Mott transition systematically. In fact, it has
successfully been applied to various systems such as Hub-
bard models in infinite dimensions52–56 and finite
dimensions.57–63

In this approach, the ground potential � is given as

���� = F��� + Tr ln�− �G0
−1 − ��−1� , �3�

where F��� is the Legendre transformation of the Luttinger-
Ward potential.64 G0 and � are the bare Green function and
the self-energy, respectively. Here the Dyson equation G−1

=G0
−1−� is obtained under the condition ����� /��=0,64

where G is the full Green function. We wish to note that the
potential F��� does not depend on the details of the nonin-
teracting Hamiltonian.52 This allows us to introduce a refer-
ence system with the same interacting term. The Hamiltonian
is explicitly given by Href�t��=H0�t��+H� with the param-
eter matrix t�. Then we obtain the grand potential as

����t��� = ��t�� + Tr ln�− �	 + � − t − ��t���−1	

− Tr ln�− �	 + � − t� − ��t���−1	 , �4�

where ��t�� and ��t�� are the grand potential and self-
energy for the reference system. The condition
�����t��� /�t�=0 gives us an appropriate reference system
Href�t�� in the framework of the SFA.

If the SFA is applied to infinite-dimensional correlated
electron systems, an Anderson impurity model is one of the
most appropriate reference systems, which is given by

Href = �
i

Href
�i� , �5�

Href
�i� = �

��


0�
�i� ci��

† ci�� + �
k=1

Nb

�
��


k�
�i�ak��

�i�† ak��
�i�

+ �
k=1

Nb

�
��

Vk�
�i��ci��

† ak��
�i� + H . c . � + Hi�, �6�

where ak��
�i�† �ak��

�i� � creates �annihilates� an electron with spin
� and orbital � at the k�=1,2 , . . . ,Nb�th site, which is con-
nected to the ith site in the original lattice. In the limit of
Nb→�, the condition �����t��� /�t�=0 reproduces the self-
consistent equations of DMFT.52–54

The grand potential per site is rewritten as

�/L = �imp − 2�
�

�
m

F�	�m� � − 2�
�

�
k=1

Nb

F�	k�
b �

+ 2�
�

�
m



�

−�

dz���z�F�	�m�z�� , �7�

F�x� = − T ln�1 + exp�− x/T�� , �8�

where �imp is the grand potential for the reference system.
	�m�z� �	�m� � is the pole of Green function G �G�� for the
original �reference� system, and 	k�

b =
k�−�. The Green
function of the reference system is given as

G���	� = �	 + � − 
0� − ��	� − ���	��−1, �9�

��	� = �
k=1

Nb Vk�
2

	 − 	k�
b , �10�

where ���	� is the self-energy for the �th orbital. On the
other hand, the full Green function is given as

G��	;z� = �	 + � − z − ���	��−1. �11�

Note that the following differential equation is efficient to
deduce the poles 	�m�z� in the Green function:

d	�m�z�
dz

= �1 −
����	�

�	
�

	=	�m�z�

−1

. �12�

By solving these equations, we estimate the grand potential
numerically to discuss the effect of electron correlations.

To clarify the nature of Mott transitions, we calculate
various physical quantities. In the metallic phase, the quasi-
particle weight for the �th orbital, Z�, is useful to discuss
how the Fermi-liquid states are renormalized by the Cou-
lomb interactions. This quantity is proportional to the inverse
of the effective mass, which is defined as

Z�
−1 = �1 −

����	�
�	

�
	=0

. �13�

Furthermore, we calculate the local susceptibilities, which
may clarify how spin, orbital, and charge fluctuations affect
the stability of the metallic state. These read

�s = 

0

�

�T�n↑��� − n↓�����n↑�0� − n↓�0���d� ,

�o = 

0

�

�T�n1��� − n2�����n1�0� − n2�0���d� ,

�c = 

0

�

�T�n��� − 2��n�0� − 2��d� , �14�

where n=���n��, n����=�����n�� and n��=ci��
† ci��, T the

time-ordered operator, A���=e−H�AeH�, and � the inverse
temperature. Note that in infinite dimensions, these local
quantities coincide with those for the reference system with
Nb→�.50 In this paper, calculating these quantities approxi-
mately in terms of the reference system with a finite Nb, we
discuss how fluctuations affect the stability of the metallic
state. We also calculate the residual entropy in the system to
characterize the Mott insulating phase, where localized elec-
trons are realized with the free spins. It is given as

S = −
d�

dT
�15�
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=Simp + 2�
�

�
m

F��	�m� � + 2�
�

�
k=1

Nb

F��	k�
b �

− 2�
�

�
m



�

−�

dz���z�F��	�m�z�� , �16�

F��x� = �F�x� − �x − �x/�T�f�x��/T , �17�

f�x� = 1/�1 + exp�x/T�� , �18�

where Simp=−��imp/�T is the entropy of the reference sys-
tem and we have used the condition �� /�t�=0. Note that the
temperature derivative of the poles for the reference system
is zero: �	�m� /�T=0. By estimating �	�m�z� /�T carefully,54

we can calculate the entropy for the system.
Here, we use the semicircular density of states ���	�

=4/�W�1− �2x /W��2, where W� �=4t�� is the bandwidth
for the �th orbital, which corresponds to an infinite-
coordination Bethe lattice. In this paper, we restrict our
discussions to the paramagnetic case in the half-filled system
by setting the chemical potential �=U /2+U�−J /2. In the
following, by varying the ratio of the bandwidths
R�W1 /W2 ��1� with a fixed t2=1 �that is, an energy unit�,
we proceed to discuss the Mott transitions in the two-orbital
model.

III. MOTT TRANSITION IN THE SYSTEM WITH THE
SAME BANDWIDTHS

Let us consider the two-orbital system with the same
bandwidths. Mott transitions in the system have been dis-
cussed so far by combining DMFT with numerical
techniques.10,11,14–49An exact diagonalization study claimed
that the first-order transition occurs with the jump in physical
quantities.28 In contrast, it was suggested that the second-
order transition occurs in a certain parameter region by
means of the numerical renormalization group.29 In this sec-
tion, to resolve the controversial conclusions for the proper-
ties of the Mott transition, we make use of the SFA with
Nb=1. At the end of the section, we check the validity of our
analysis by comparing the results of Nb=1 with those of
Nb=3.

We first calculate the ground potential � as a function of
V�V1,1=V1,2 at zero temperature, as shown in Fig. 1.

When U is small, it is found that the grand potential has a
minimum at finite V. The hybridization V in the reference
system, roughly speaking, represents the effective bandwidth
for the original system. Therefore, the metallic state is stabi-
lized in this case. It is seen that the increase of the Coulomb
interaction with a fixed ratio J /U=0 shifts the stationary
point toward the origin continuously. This implies that the
effective bandwidth is gradually decreased and the transition
occurs to the Mott insulating phase at U=Uc. In contrast, the
introduction of the Hund coupling leads to different behav-
ior. For instance, we focus on the system with the weak
Hund coupling J /U=0.03. When U=5, a minimum appears
at V�0.58, where the metallic ground state is realized. The
increase of the Coulomb interaction induces another mini-

mum around V�0, which represents the insulating state.
This double-well structure in the grand potential suggests the
existence of a first-order Mott transition in the system. By
comparing the energy for each state, we determine the criti-
cal value Uc=5.84. A similar structure is also observed in the
case J /U=0.25. However, the potential barrier between these
two states becomes small at a first-order transition point, as
shown in Fig. 1. Therefore, it is expected that the singularity
characteristic of the first-order transition is more difficult to
be observed in this case.

These features mentioned above can be seen in the
physical quantities. Here, we show the entropy per site S /L
in Fig. 2. J /U=0, the increase of the Coulomb interaction
triggers the Mott transition at U=Uc, where the entropy
jumps up to S /L=ln 6. The value is explained by the fact that
sixth-degenerate states are lowest in the atomic limit. On the
other hand, the Hund coupling forms triply degenerate states
in the limit. Therefore, when J /U�0, S /L=ln 3 appears in
the insulating phase. It is found that the second-order transi-
tion occurs in the system J /U=0, while the first-order tran-
sition with the hysteresis occurs in the system with the Hund
coupling. For example, when J /U=0.03, the metallic state is

FIG. 1. The grand potential as a function of the variational pa-
rameter V. Thick lines correspond to the critical value Uc.

FIG. 2. The entropy per site as a function of U.
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stabilized up to the critical point Uc
M =6.12, while the insu-

lating state is stabilized down to the critical point Uc
I =4.82.

Note that these critical points Uc
M and Uc

I induced by the
Hund coupling at zero temperature are different from critical
points Uc1 and Uc2, which are defined as Mott critical points
at finite temperatures. Therefore, an inequality Uc

I �Uc
M is

not necessarily satisfied, which will be discussed in detail in
the next section.

By performing similar calculations, we obtain the phase
diagram as shown in Fig. 3. We find that the phase boundary
Uc

M is always larger than Uc
I except for the special condition

J /U=0. This implies that the first-order Mott transition, in
general, occurs in the two-orbital system with the same
bandwidths. When the system has the special condition
J /U=0, the critical point Uc

I �=Uc
M =9.24� is different from

the extrapolation of the curve Uc
I .44 This exception may

originate from the discontinuity of the residual entropy for
the Mott insulating phase. It is also found that the coexisting
region bounded by these two lines shrinks with an increase
of the Hund coupling J. This interesting feature may be due
to orbital fluctuations, which sometimes play an important
role in understanding the Mott transitions in the two-orbital
system.

To make this point clear, we also calculate the local or-
bital susceptibility in the metallic state �U�Uc

M�, as shown
in Fig. 4. When J /U=0, the increase of the Coulomb inter-
action enhances the spin and orbital susceptibilities �the spin
susceptibility is not shown�. Eventually, these quantities di-
verge simultaneously at the transition point. On the other
hand, when one turns on the Hund coupling �J /U=0.01�,
different behavior appears. The introduction of the Coulomb
interaction first enhances orbital fluctuations by reflecting the
high symmetry U�U�. Further increase of the interactions
renormalizes electrons in both orbitals, where the Hund cou-
pling has a tendency to suppress orbital fluctuations. In fact,
in contrast to the case U=U�, the orbital susceptibility is
much smaller around the Mott critical point. We also find a
sudden decrease of the orbital susceptibility where the first-
order Mott transition occurs. When the system is located far
from the condition U=U�, the increase of the Coulomb in-

teraction suppresses orbital fluctuations strongly. Therefore,
a tiny jump appears in the curve at Uc

M =3.54 �J /U=0.25�.
The results obtained may shed light on the nature of the

Mott transitions in the two-orbital systems with same band-
widths. When J /U=0, the second-order Mott transition oc-
curs to the insulating phase. On the other hand, the introduc-
tion of the Hund coupling induces the first-order transition
with the hysteresis in the physical quantities. It is also found
that as J is increased, orbital fluctuations are suppressed
strongly, where the singularity for the transition becomes ob-
scure. In this case, the system can be regarded as the system
with independent orbitals. Therefore, the OSMT is expected
to occur if the bandwidths are different from each other,
which will be discussed in the next section. We wish to com-
ment on related recent work.28,29 The introduction of Hund
coupling is known to induce a first-order transition, while the
nature of transitions in the large-J region has not been clari-
fied up to now. In the region, the first- �second-� order tran-
sition was suggested by the exact diagonalization �numerical
renormalization group�. On the other hand, our systematic
analysis shows a jump singularity in the curve for each
physical quantity, except for the J=0 case. Therefore, we
believe that a further increase of the Hund coupling does not
induce a second-order Mott transition in the system with the
same bandwidths.

Before closing this section, we would like to check the
validity of our analysis. In Fig. 5, we show the quasiparticle
weights obtained by the SFA with Nb=1 and Nb=3. If the
Coulomb interactions are introduced, the quasiparticle
weight is decreased from unity. In this region, it is found that
the quasi particle weight obtained for the system Nb=1 is
slightly larger than that for the system Nb=3. On the other
hand, when the system approaches the Mott transition point,
the quasiparticle weight is hardly affected by the number of
the sites for the reference system. This result may be ex-
plained by the fact that the simplified reference system �Nb

=1� can describe the low-energy physics around the Fermi
level and thereby we can determine the critical point
quantitatively.52–54 However, the reference system Nb=1
does not describe the high-energy part properly, resulting in
an overestimate of Z in the intermediate region.

Similar behavior is also observed in the finite-J case, as
shown in Fig. 6. As the Hund coupling is increased, the

FIG. 3. The zero-temperature phase diagram for the degenerate
Hubbard model with same bandwidths R=1. Uc

I �Uc
M� is the critical

point where the insulating �metallic� state disappears. Uc represents
the first-order transition points and the shaded region represents the
coexisting state.

FIG. 4. The local orbital susceptibility in the system with same
bandwidths. The inset shows orbital and charge susceptibilities in
the case J=0.03U.
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Fermi-liquid state is stabilized up to Uc
M �7.3 and 3.5 at

J /U=0.01 and 0.25, respectively, where the first-order tran-
sition occurs. It is found that the jump singularity for Nb=3
is weaker than that for Nb=1, which may cause one to expect
that the transition becomes of second order in the Nb→�
case. According to the results for the single-band model,52–54

however, the physical quantities for Nb=3 nearly equal those
for Nb�3. Therefore, we believe that the nature of the Mott
transition is hardly affected by Nb and the first-order transi-
tion remains in the Nb→� case. In addition, we also find that
the critical point Uc

M weakly depends on the number of sites,
Nb, implying that the obtained phase boundaries shown in
Fig. 3 have been determined rather well even by the refer-
ence system Nb=1.

IV. ORBITAL-SELECTIVE MOTT TRANSITIONS vs
SINGLE MOTT TRANSITION

In this section, we consider Mott transitions in
the two-orbital system with different bandwidths
�R�1�.10,11,31–43,45–49It has been suggested that in the system
with R=0.5, the OSMT occurs in the case J /U=0.25, while
a single Mott transition occurs in the case J /U=0.32,35 On
the other hand, it was recently claimed that double transi-
tions always occur in the small-R case.38,39 By means of the

SFA with Nb=1, we determine a detailed phase diagram to
discuss the nature of the Mott transitions systematically.

First we consider the system without Hund coupling
�J /U=0�. In the system with the same bandwidths �R=1�, a
second-order Mott transition occurs at Uc=9.24, where the
quasiparticle weight continuously reaches zero and the or-
bital susceptibility diverges. Away from the condition �e.g.,
R=0.2�, the introduction of the interaction decreases the qua-
siparticle weights Z1 and Z2 in different ways, reflecting the
difference of bandwidths, as shown in Fig. 7. This enhances
the spin fluctuations and suppresses orbital fluctuations.
However, when the system approaches the Mott transition
point, the effect of the bare bandwidths is diminished due to
the strong renormalization, which enhances both spin and
orbital fluctuations. Therefore, in the case R=0.2, monotonic
�nonmonotonic� behavior appears in the curves of the spin
�orbital� susceptibility. As a consequence, a single Mott tran-
sition occurs, where the quasi particle weight for each orbital
vanishes simultaneously.35 On the other hand, somewhat dif-
ferent behavior appears in the case R�Rc�=0.192�, as shown
in the inset of Fig. 8. If the Coulomb interactions are in-
creased, orbital fluctuations are strongly suppressed due to
the difference of the effective Coulomb interactions. In this
case, the orbital susceptibility never diverges, which suggests
the existence of the OSMT, as discussed by de’ Medici et
al.39 and Ferrero et al.38 In fact, the OSMT yields a localized

FIG. 5. The quasiparticle weight Z as a function of U obtained
from the reference systems Nb=1 and Nb=3 when J /U=0.

FIG. 6. The quasiparticle weight Z as a function of U in the
cases J /U=0.01 and J /U=0.25.

FIG. 7. The quasiparticle weights for the �th orbital Z� when
R=1 and 0.2.

FIG. 8. The inverse of orbital and spin local susceptibilities as a
function of U when J /U=0. The inset shows orbital and charge
susceptibilities and the entropy per site when R=0.17.
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spin s=1/2 at each site. Therefore, the residual entropy
S /L=ln 2 appears and the orbital susceptibility merges to the
charge susceptibility at Uc

M �3.2, as shown in the inset of
Fig. 8. Further increase of the Coulomb interaction decreases
the charge and orbital susceptibilities and another Mott tran-
sition occurs at Uc

I �5.9.
By estimating the critical points systematically, we obtain

the phase diagram shown in Fig. 9. When R=1, the model is
reduced to the system with same bandwidths, where the Mott
transition occurs between the metallic and Mott insulating
phases. Even when the system has two distinct orbitals, a
single Mott transition still occurs �Uc

M =Uc
I� owing to en-

hanced orbital fluctuations within the region �Rc�R�1�. In
this region, the phase boundary is simply deduced by the
Gutzwiller approximation as Uc��d������= �1+R� /2,
which is in good agreement with the results obtained by the
SFA. On the other hand, in the region R�Rc, double Mott
transitions occur �Uc

M �Uc
I� when the interaction is varied.

Then the orbital-selective Mott insulating �OSMI� phase ap-
pears between the metallic and insulating phases.38,39 In the
case, the system may be regarded as two independent single-
band systems. In fact, the phase boundaries Uc

I �ucR and
Uc

M �uc, where uc=5.85 is the critical point for the single-
band model,50,53 are in good agreement with our SFA results
in the caseR�1, as shown in Fig. 9. The phase diagram is
consistent with that obtained by de’ Medici et al.39 and Fer-
rero et al.38

Next, we consider the effect of Hund coupling in the sys-
tem with different bandwidths R=0.5. In Fig. 10, we show
the physical quantities as a function of U with a fixed ratio
J /U. When the Hund coupling is small J /U=0.01, the inter-
action renormalizes electrons depending on each bandwidth
and it triggers the first-order single transition to the Mott
insulating phase at Uc

M =5.47. Then, the singularity appears
in the curve of the susceptibility and entropy. This implies
that the existence of Hund coupling induces a first-order
Mott transition with the hysteresis, where the Mott insulating
phase is stabilized down to Uc

I =4.72. Although this result is
the same as that in the system with R=1, it does not neces-
sarily imply that the difference of the bandwidths is irrel-
evant in the whole parameter space. Indeed, further increase

of the Hund coupling suppresses orbital fluctuations, leading
to double transitions in the system. When J /U=0.1, the in-
troduction of the Coulomb interaction decreases the orbital
and charge susceptibilities. Consequently, these quantities
merge with each other and the spin susceptibility diverges
at the critical point Uc

M =3.34. This means that the second-
order OSMT occurs in the narrower band. Thus, free spins
s=1/2 are induced at each site, yielding the residual entropy
S /L=ln 2. Furthermore, as the interactions are increased,
both orbital and charge susceptibilities reach zero at
Uc

I =4.06.
Performing similar calculations with several choices of R,

we end up with the phase diagrams shown in Fig. 11. An
important point is that the phase boundaries Uc

M and Uc
I cross

each other at R=Rc, where Rc=0.30 and 0.82 for J /U=0.1
and 0.01, respectively. When R�Rc, the difference of the
bare bandwidths is essential to stabilize the OSMI phase be-
tween two phase boundaries �Uc

M �U�Uc
I�. However, when

R�Rc, the metallic phase and the Mott insulating phase co-
exist in the region Uc

I �U�Uc
M. In this case, the nature of

Mott transitions is similar to that in the system with same
bandwidths, where the first-order Mott transition occurs. The
above result may suggest that the existence of the OSMT is
associated with the first-order transition in the multiorbital
Hubbard model with same bandwidths.

To discuss how the coexisting phase competes with the
OSMI phase, we also show the phase diagrams with a fixed
R in Fig. 12. When R�0.192, there always appears an OSMI
phase due to the large difference of bandwidths. Note that the

FIG. 9. The phase diagram for the case J /U=0. Uc
I �Uc

M� is the
critical point where the insulating �metallic� state becomes unstable
with increasing �decreasing� U. The dotted lines denote the phase
boundaries obtained by a simple estimation �see text�.

FIG. 10. The local susceptibilities and the entropy per site in the
system with different bandwidths R=0.5.

FIG. 11. The phase diagram when J /U=0.01 and J /U=0.1. The
gray region denotes the coexisting state.
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phase boundary sometimes has a discontinuity at J /U=0,
which may originate from the spin and orbital degeneracy of
the Mott insulating ground state, as discussed in the previous
section. In contrast, the OSMI phase and the coexisting re-
gion appear in the case 0.192�R�1. When the system has
large Hund coupling, orbital fluctuations are suppressed and
the OSMI phase is stabilized. The decrease of J enhances
orbital fluctuations in the metallic phase, making the OSMI
phase unstable. The phase boundaries then merge at the criti-
cal point. Further decrease of the Hund coupling induces a
first-order single Mott transition due to enhanced orbital
fluctuations, where the coexisting phase appears instead of
the OSMI phase. When R→1, the difference of the band-
widths becomes irrelevant. Therefore, the region of the
OSMI phase shrinks and the coexisting phase becomes
stable.

Up to now, there were some controversial conclusions for
the nature of the OSMT. Most of studies claimed that the
second-order OSMT occurs in general.35,45 In contrast, de’
Medici et al.39 and Arita and Held40 recently claimed that the
OSMT is of first order by combining DMFT with the exact
diagonalization and the projective quantum Monte Carlo
simulations. In our paper, we have calculated the grand po-

tential in the system carefully to clarify that the OSMT is of
second order. Although the accuracy of our calculations de-
pends on the size of the reference system in the framework
of the SFA, the nature of the Mott transition is hardly af-
fected by the size, as discussed before. Therefore, we believe
that the obtained results may shed light on the nature of the
Mott transitions in the two-orbital systems.

V. SUMMARY

We have investigated the two-orbital Hubbard model in
infinite dimensions to discuss the nature of Mott transitions
at half-filling. By making use of the self-energy functional
approach, we have clarified that the introduction of Hund
coupling induces a first-order transition in the system with
the same bandwidths. It has also been found that the increase
of the Hund coupling suppresses orbital fluctuations, where
the singularity characteristic of the first-order transition be-
comes obscure. Namely, the upper and lower critical points
for the transition approach each other closely, where the
weak first-order transition occurs. This behavior is also af-
fected by the difference of the bandwidths. In fact, the dif-
ference of the bandwidths suppresses orbital fluctuations,
making the first-order transition unstable. As a consequence,
the double second-order transitions occur, where the OSMI
phase appears between the metallic and Mott insulating
phases. Our obtained results reproduce some previous works
on the system with same and different bandwidths.28,29,38,39

Furthermore, taking into account orbital fluctuations care-
fully, we have resolved some controversial conclusions for
the nature of Mott transitions at half-filling.
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