
Two Anderson impurities in the Kondo limit: A systematic study of the ground states of the
many subspaces of the Hamiltonian

J. Simonin
Centro Atómico Bariloche and Instituto Balseiro, 8400 S.C. de Bariloche, Río Negro, Argentina
�Received 8 March 2005; revised manuscript received 7 February 2006; published 3 April 2006�

We analyze the two-Anderson-impurity problem, in the strong-Coulomb-repulsion limit, by means of varia-
tional wave functions whose equations we solve analytically. We found two pairs of doublet states, one odd and
one even with respect to the midplane between the impurities. These doublets make a significatively strong use
of the hybridization terms of the Hamiltonian and have a much larger Kondo-like correlation energy than a
single impurity �the Kondo energy�. Furthermore, these doublets combine to form a supersinglet. This super-
singlet makes use of the remaining hybridization probability to improve its energy with respect to the doublet
energy, but for low-dimensional systems and at the interimpurity distances where the doublets are fully
developed, its energy gain is exponentially small. The interaction behind the doublets is a first-order �in the
effective Kondo coupling� one; it also generates a parallel alignment of the impurity spins. This ferromagnetic
impurity-impurity response is thus generated without resort to the RKKY interaction. The effective range of
this first-order Doublet interaction is also much larger than the one of the RKKY interaction.
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I. INTRODUCTION

The two-impurity Anderson �TIA� model is a classic
problem in condensed matter physics, where it represents the
interaction of two magnetic impurities embedded in a metal-
lic host.1 The Anderson Hamiltonian is a generic Hamil-
tonian that describes how localized orbitals with a strong
internal Coulomb repulsion behave when they are connected
to or through a metallic bath. The current advance in nano-
technology allows for several man-made realizations of such
systems:2,3 quantum dots in the Coulomb blockade regimen
connected via a low-dimensional electron gas,4 magnetic at-
oms individually deposited on metallic surfaces, nanoclusters
or magnetic impurities connected to or through metallic car-
bon nanotubes, etc. This kind of circuits, characterized by the
low dimension of the metallic host, promises to be a relevant
circuit component in quantum electronics.

The TIA Hamiltonian has been the subject of many theo-
retical studies, ranging from perturbation theory1,5,6 and
narrow-band approximation7 to renormalization group
analysis,8–14 conformal field theory, and quantum Monte
Carlo simulations.15 With some approximations and simpli-
fications, as detailed in Ref. 16, some analytical results have
been obtained. Another theoretical approach to Anderson im-
purity systems has been the use of variational wave functions
�VWF’s�.17–20 In Ref. 20 a set of VWF equations that de-
scribes the lower-energy state of the TIA system has been
numerically analyzed. In this paper we present a systematic
VWF analysis of the TIA in the strong-Coulomb-repulsion
Kondo limit. By means of VWF’s we obtain several sets of
equations that describe the lower-energy states of different
subspaces of the system. We analytically solve those equa-
tions, identifying two Kondo-like energy scales9,13 that de-
pend strongly on the interimpurity distance. The higher one
corresponds to the formation of Kondo-like doublet states
and the lower one corresponds to the formation of a “com-

posite” Kondo singlet, based upon the screening of the dou-
blet states. Our equations depend on the details of the metal-
lic host through a simple coherence factor that, when needed,
we evaluate in the one-dimensional �1D� case because of its
importance for technological applications. The 2D and 3D
scenarios are also analyzed.

We found that the doublets states generate a ferro-
magnetic-impurity spin-spin correlation without resort to the
RKKY interaction. The effect of the RKKY terms on the
doublet structure and energy is also analyzed.

Whereas our analytical results confirm the general picture
of the system behavior that is already known from numerical
simulations, they also point out that the main interaction be-
tween the impurities, contrary to the general belief,21,22 is not
given by the RKKY process but by the simplest electronic
process behind the formation of the Kondo-doublet states.

This paper is organized as follows: In Sec. II we write
down the TIA Hamiltonian and we make a basis change to
the mirror symmetric basis. In Sec. III we make a prelimi-
nary study of the system, analyzing the main features of the
Hamiltonian at some special distances between the impuri-
ties. In Sec. IV we make a systematic analysis of the differ-
ent subspaces of the Hamiltonian. The effects of the intrinsic
RKKY interaction on our states are analyzed in Sec. IV D.
The high-dimensional scenarios are analyzed in Sec. V. The
impurity spin-spin correlation is evaluated in Sec. VI. In Sec.
VII we discuss the conclusions and perspectives open by the
method, its possible extension to similar situations, and its
relation to previous work.

II. HAMILTONIAN

The Anderson Hamiltonian for magnetic impurities di-
luted in a metallic host is
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H = �
k�

ekck�
† ck� +

V
�Nc

�
jk�

�eik·rjdj�
† ck� + H.c.�

− Ed�
j�

dj�
† dj� + U�

j

dj↓
† dj↑

† dj↑dj↓, �1�

where ck� and dj� are fermion operators which act, respec-
tively, on the conduction band states and on the orbital states
of the magnetic impurity placed at rj. Single-state energies
ek ,−Ed are referred to the Fermi energy �EF=kF

2 /2m�; i.e.,
there is an implicit −�N term in the Hamiltonian that regu-
lates the population of the system ��=EF is the chemical
potential and N the total number operator�, V is the d−c
hybridization, and Nc is the number of cells in the metal. In
the Kondo limit that we analyze here the impurity levels are
well below the Fermi energy �−Ed�0� and cannot be doubly
occupied due to the Coulomb repulsion in them �U→��. In
order to simplify the calculations we renormalize the vacuum
�denoted by �F�� to be the conduction band filled up to the
Fermi energy and we make an electron-hole transformation
for band states below the Fermi level: bk�

† �ck�̄ for �k��kF.
In this way the energy of a hole excitation is explicitly posi-
tive.

We consider here two impurities placed one at −r /2 �the
left impurity� and the other at r /2 �the right impurity�.

In this situation �−Ed�0, U→�� the lower-energy con-
figurations of the system are the ferromagnetic �FM� triplet
�dL↑

† dR↑
† �F� , . . . � and the antiferromagnetic �AF� singlet

��dL↑
† dR↓

† −dL↓
† dR↑

† ��F�	, with energies −2Ed. These states are
not eigenstates of the system because the hybridization term
�HV� mixes these states with configurations having excita-
tions in the band.

An important state for magnetic impurities in a metal is
the Kondo singlet, the ground state when a single impurity is
considered. If this impurity is at the origin, this singlet is
described by the VWF �Ref. 17�

�So� = �F� − �
q

Z�q��bq↑
† do↓

† �F� + bq↓
† do↑

† �F�� , �2�

where the function Z�q� is to be determined variationally. It
turns out that Z�q�=v / �EK+Ed−eq�. A self-consistent equa-
tion is obtained for the singlet energy EK,

EK = 2v2�
q

1

EK + Ed − eq
, �3�

where the q sum is over hole excitations ��q��kF� and v
=V /�Nc. After the form

EK = − Ed − �K �4�

is assumed Eq. �3� becomes an equation for the Kondo en-
ergy gain �K,

Ed + �K = 2v2�
q

1

�K + eq
. �5�

From here, in the Ed ,D	�K regime,

�K = D exp −
1

2Jn
�6�

is obtained. In this equation Jn�noV2 /Ed, no being the den-
sity of states at the Fermi level and D the half bandwidth. Jn,
the effective Kondo coupling, is the relevant parameter for
these systems, and D gives the energy scale. If we demand
that �K be one thousandth of D, a reasonable value, it follows
that Jn=0.072 38.

Note that although all the bq�
† dL�̄

† �F� configurations enter
in the definition of the Kondo singlet, only the holes with
eq
�K make a significant contribution given that the Z�q�
variational amplitude is proportional to 1/ ��K+eq�. The
Fermi state �F� plays the role of a nearly virtual state in the
Kondo singlet.

The Hamiltonian, Eq. �1�, conserves the total number of
electrons, NT, the total spin ST, and its projection Sz and has
also a mirror symmetry plane at the middle point between
the impurities. For example, the FM state has NT=2 �plus a
half-filled conduction band�, ST ,Sz=1,1 and is odd under the
mirror reflection �dL↑

† dR↑
† �F�=−dR↑

† dL↑
† �F��; the AF state has

NT=2, ST=0 and is even under reflection. Assuming a ca-
nonical ensemble in the thermodynamic limit, this allows the
Hamiltonian to be analyzed by subspaces corresponding to
different quantum numbers.

It is useful to rewrite the Hamiltonian, Eq. �1�, in terms of
one-electron operators of well-defined mirror symmetry. This
is easily done by changing to the symmetric and antisymmet-
ric combinations

cSk� =
1
�2

�ck� + ck̄��, cAk� =
1
�2

�ck� − ck̄�� ,

dS� =
1
�2

�dR� + dL��, dA� =
1
�2

�dR� − dL�� , �7�

where k̄ stands for �−kx ,ky ,kz�. The impurities are on the x
axis, at x= ±r /2, and the mirror plane is the x=0 plane. The
transformed Hamiltonian is

H = �
Xk�

ekcXk�
† cXk� − Ed�

X�

dX�
† dX�

+ 2v�
k�

cos

kxr

2
dS�

† cSk� + i sin
kxr

2
dA�

† cAk� + H.c.� ,

�8�

plus eight four-d-operator U Coulomb terms, which can be
evaluated when needed. In the Hamiltonian above X= �A ,S
and the k sum runs only in the right k half-space �kx�0�. The
electron-hole transformation for the conduction band states
in this basis is just bXk�

† �cXk�̄ for �k��kF.
The effect of the U terms in the U→� limit is to inhibit

two of the six two-electron-in-two-impurity states. The for-
bidden configurations are

�dA↓
† dA↑

† + dS↓
† dS↑

† �� �, �dA↓
† dS↑

† − dA↑
† dS↓

† �� � , �9�

i.e., the symmetric and antisymmetric combinations of the
forbidden configurations in the direct basis, dL↓

† dL↑
† �� and
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dR↓
† dR↑

† ��. The four allowed configurations are

�AF� = �dA↓
† dA↑

† − dS↓
† dS↑

† �� �, �FM↑� = dA↑
† dS↑

† � � ,

�FM0� = �dA↓
† dS↑

† + dA↑
† dS↓

† �� �, �FM↓� = dA↓
† dS↓

† � � , �10�

the first one being the AF two-impurity configuration, an
even state, the last three being the Sz=1, 0, and −1 compo-
nents of the FM triplet. Higher-impurity-population states are
forbidden.

III. MODEL

We base our theory on a careful analysis of the Hamil-
tonian in the symmetrized basis, Eq. �8�. First we notice that
in this basis the hybridization terms are decoupled; i.e., sym-
metric dS impurity orbitals only mix with symmetric cS con-
duction band states and the same is true for the antisymmet-
ric ones. Thus it is appropriate to think in terms of two nearly
independent magnetic impurities, the symmetric impurity
�SI� and the antisymmetric impurity �AI�, keeping in mind
that these are linear combinations of the two original impu-
rities. The symmetrized impurities are correlated through the
action of the Coulomb interaction because the forbidden im-
purity occupations are not the doubly occupied SI �or AI�
configurations �dS↓

† dS↑
† �� and dA↓

† dA↑
† ��� but the combinations

thereof given in Eq. �9�.
Second, we notice the factor of 2 in the hybridization term

of Eq. �8�, which originates in the change in the matrix ele-
ments of the Hamiltonian due to the change of basis states.
This has important consequences because the correlation en-
ergy for a magnetic impurity, Eqs. �5� and �6�, depends on
the effective hybridization raised to the power of 2.

A. Singlet

As a consequence of the above, when the two impurities
are at a distance such that �cos�kFr /2���1 and given that
only the conduction holes near the Fermi level are relevant
for the formation of a Kondo singlet, the effective coupling
for the SI impurity is nearly twice the bare coupling V
whereas the effective coupling for the AI impurity is near
zero. Therefore, the maximum Kondo-like correlation energy
�4 that can be obtained by forming a SI Kondo singlet is
given by

�4 = D exp −
1

4Jn
. �11�

Notice the factor of 4 in the exponential, while the single-
impurity Kondo energy �K has only a factor of 2. The effec-
tive hybridization coupling provides a 22 factor but half the q
states in the sum of Eq. �5� have already been summed in
doing the basis change, and this is the reason for the change
from 2 to 4 in going from �K to �4. This result is exact for
r=0 and a good approximation for the next few maxima of
the effective SI hybridization coupling �r�n�F, n a small
integer, �F the Fermi wavelength�. This is a very large cor-
relation energy gain for the two-impurity case compared with
the single-impurity Kondo energy. For the above given value

of Jn=0.072 38 and assuming D=EF=10 000 K, one obtains
�K=10 K and �4=316 K, a remarkable effect. In fact the
�4 /D ratio is given by the square root of the �K /D ratio; thus,
this magnification effect is higher the lower �K /D.

Let us examine this situation in more detail. Consider first
the values of r for which the effective symmetric hybridiza-
tion coupling is enhanced and the antisymmetric one is de-
pressed, �cos�kFr /2���1, �sin�kFr /2���0—i.e., r�n�F. To
analyze these regions we can write down the two-impurity SI
singlet �SI�, changing bq�

† dL−�
† by bSq�

† dS−�
† in the Kondo sin-

glet, Eq. �2�. The maximum correlation energy gain for such
a state is �4; thus, the energy of the SI singlet is ESI−Ed
−�4—i.e., a very high correlation energy gain but a not too
low total energy because the average total population of the
impurities is 1 for such a state. In Appendix A we show that
ESI is always greater than the ground-state energy expected
when the two impurities are far apart,

E2K = 2EK = − 2Ed − 2�K, �12�

the ground-state energy for the two-magnetic-impurity prob-
lem in the r→� uncorrelated limit.

B. Doublet

We can try to take advantage of the correlation energy
gain �4 of the �SI� singlet by making the SI singlet the core of
an odd doublet formed by adding an electron in the inactive
AI impurity—i.e., forming the doublet �Do↑�=dA↑

† �SI�. This
state has an average total population of two electrons in the
impurities but it contains the dA↑

† dS↓
† �� impurity configuration,

which is not within the configurations allowed by the U
terms of the Hamiltonian, Eqs. �9� and �10�. This can be
corrected by noting that

2dA↑
† dS↓

† � � = �dA↑
† dS↓

† + dA↓
† dS↑

† �� � + �dA↑
† dS↓

† − dA↓
† dS↑

† �� � .

�13�

The first combination is the �FM0� allowed state and the
second a forbidden one; thus, we project it out of the wave
function. In doing this we are losing 1/4 of the active states
of the �SI� singlet; we will see that this loss reduces the factor
of 4 in Eq. �11� to a maximum of 3 for the correlation energy
of the doublet. Thus, the odd doublet is given by

�Do↑� = dA↑
† �F� + �

k

Sk�2Z1�k�bSk↓
† �FM↑� + Z2�k�bSk↑

† �FM0� ,

�14�

where Sk=cos kxr /2. We use the notation of Eq. �10� for the
doubly occupied impurity states. We apply the standard ana-
lytical Euler-Lagrange minimization procedure to the expec-
tation value of the energy, EX= �X�H�X� / �X �X�, of this state.
For the variational functions in the amplitudes of the wave
function components we obtain

Z1�k� = Z2�k� =
v

EDo
+ 2Ed − ek

. �15�

We see that they depend on the energy of the doublet EDo
,

which is determined by the self-consistent relation
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EDo
= − Ed + 3v2�

q

1 + cos qxr

EDo
+ 2Ed − eq

, �16�

where the sum index runs over the symmetric hole states—
i.e., �q��kF and qx0. As we are looking for the lowest-
energy solution of this equation, we assume EDo

=−2Ed−�o.
Equation �16� becomes a self-consistent equation for �o,

Ed + �o = 3v2�
q

1 + cos qxr

�o + eq
. �17�

Two limits can be immediately obtained by just comparing
this equation with the self-consistent equation for �K, Eq. �5�.
At r=0 one has cos qxr=1 for all q’s, and thus

�3 = �o�r = 0� = D exp −
1

3Jn
. �18�

This is still a great enhancement. For the values used in the
previous analysis we obtain �3=100 K �whereas �K=10 K�.
This is an exact result because the AI impurity is strictly
inactive for r=0, this result having been previously found in
Ref. 20. For r	0 the contribution from the cos qxr term in
the sum vanishes by decoherence effects; therefore, �o�r
	0�=D exp�−1/ � 3

2Jn�	��K. This is a physically wrong re-
sult; one expects �o=�K in this limit, but by the same deco-
herence effects the AI impurity is active in this limit even if
r=M�F, M being a very big integer, and its contribution to
the odd doublet can no longer be ignored. We correct this
point in Sec. IV A.

For the values of r other than the analyzed limits, we must
evaluate the sums in Eq. �17�. The first one is the Kondo
integral

IK��� =
2

noNc
�

q

1

� + eq
= ln
D + �

�
� , �19�

and the second one can also be summed analytically. We call
it the quantum coherence integral, and in 1D we obtain

IQ��,r� =
2

noNc
�

q

cos qxr

� + eq
= cos�����Ci���� − Ci
��

D
��

+ sin�����Si���� − Si
��

D
�� , �20�

where �=kFr, �= D+�
D , and Ci �Si� is the cosine integral �sine

integral� function, as defined in Mathematica. The quantum
coherence integral has a logarithmic dependence on � that
goes like IK. Notice that IQ�� ,0�= IK���, so it is useful
to define the two-impurity coherence factor CQ�� ,r�
= IQ�� ,r� / IK���, which is a decaying oscillatory function that
depends weakly on �. In Fig. 1 we plot CQ as a function of r
for various values of �; the r dependence of the 1D-RKKY
interaction, JR�r�, is also plotted for comparison. It can be
seen that JR�r� decays rather rapidly, with range r��F,
whereas CQ has the much larger range �K ���FEF /�K�, the
Kondo length. In 1D the dominant decoherence effect is that
of the energy width ��� of the packet of holes that forms the
Kondo cloud. In higher dimensions also angular effects ap-

pear that contribute to the decoherence with typical length of
the order of �F.

Using the results of the sums, Eqs. �19� and �20�, Eq. �17�
reads

Ed + �o = V2no
3

2
�1 + CQ��o,r�	ln

D + �o

�o
, �21�

which can be recast as

�o�r� = D exp −
1

3

2
�1 + CQ��o,r�	Jn

, �22�

still a self-consistent equation, but given the weak depen-
dence of CQ on �, it converges very rapidly when used itera-
tively. It can be easily checked that it gives the two limits
already discussed, corresponding to CQ=1 �r→0� and CQ

=0 �r→��. We will show later, by evaluating the energy of
the full odd doublet, that this approximation is in fact good
enough at r�n�F, more precisely around the maxima of CQ.
At r��n+1/2��F the more active impurity is the AI one.
Therefore for these points we could repeat all the arguments
of this section, but for an even doublet based on the AI
singlet, however, it is enough to observe that the square of
the effective hybridization coupling of the AI impurity goes
as sin�kxr /2�2� �1−cos�kxr�	. The final result for the corre-
lation energy gain of the even doublet is in fact Eq. �22� but
with a minus sign in front of CQ. We show these energies in
Fig. 2 as a function of r. We see that between two consecu-
tive maxima of each of them there is a flat region in which
the other one has a maximum. This coincides with the be-
havior of �1±CQ�r�	 exponentially amplified. Also when �o

is at one maximum �e is very small and vice versa; for the
first maxima, their ratio is exponentially small.

FIG. 1. The two-impurity 1D coherence factor CQ�� ,r� and the
r dependence JR�r� of the RKKY interaction as a function of r. Note
that CQ depends weakly on �. The period of JR�r� is half the one of
CQ, and its amplitude decays rather rapidly. These characteristics
are due to the fact that the RKKY interaction depends on two ex-
citations, whereas the coherence factor involves just one.

J. SIMONIN PHYSICAL REVIEW B 73, 155102 �2006�

155102-4



From Eqs. �17� and �22� and its equivalent for the even
doublet, one can say that �1+CQ��D ,r�	 /2 determines the
relative strength of the square of the SI impurity hybridiza-
tion as function of r better than cos�kFr /2�2. In fact CQ��D ,r�
has embodied in it the r decoherent effects on the packet of
the no�D relevant holes of this two-impurity Kondo-like in-
teraction.

C. Supersinglet

At this point of our analysis we see that the odd doublet
seems to obtain all the Kondo-like correlation energy of the
SI impurity. This is because it is formed out of the ground
state of the SI impurity. Furthermore, this doublet, at r=0, is
probably the ground state of the system, given that coherence
effects are at their maximum and the AI hybridization is
strictly zero. Furthermore, when �o is at one of its maxima,
there is very little energy to be gained from the AI impurity,
as we can see from the value of �e at those same points. Thus
it seems that it makes little sense to modify further the struc-
ture of these doublets.

However, we see that the vertex state of the �Do↑� doublet
is the dA↑

† �F� configuration and dA↓
† �F�, the one corresponding

to the Sz=−1/2 component of the doublet. These states are
the ones that can be connected through an AI singlet. There-
fore we try the following supersinglet:

�SS� = �F� − i�
k

Z�k�Ak�bAk↓
† dA↑

† + bAk↑
† dA↓

† ��F�

− i�
k,q

Y�k,q�AkSq��bAk↓
† bSq↑

† + bAk↑
† bSq↓

† ��FM0�

+ 2bAk↓
† bSq↓

† �FM↑� + 2bAk↑
† bSq↑

† �FM↓� , �23�

where Ak=sin kxr /2. The variational amplitudes Z�k� and
Y�k ,q� and the supersinglet energy ES turn out to be

Y�k,q� = vZ�k�/�ES + 2Ed − ek − eq� , �24�

Z�k� = 2v/Dz�k� , �25�

ES = 2v�
k

�1 − cos�kxr�	Z�k� , �26�

where the denominator of Z�k� is

Dz�k� = ES + Ed − ek − 3v2�
q

1 + cos qxr

ES + 2Ed − ek − eq
.

To find ES we must transform this denominator. It closely
resembles Eq. �16� for EDo

, with the change EDo
�ES−ek. In

fact Dz�k� comes from the contribution of the odd doublet to
the �SS� energy. Therefore we assume

ES = EDo
− � = − 2Ed − �o − � . �27�

Thus, using �IK , IQ ,CQ for the sums in Dz and then Eq. �21�
for Ed+�o, −Dz�k� becomes

− Dz�k� = �� + ek� +
3

2
V2no�1 + CQ��o,r�	ln

�o + � + ek

�o
;

�28�

now, note that if ��0 �i.e., ES�EDo
	, −Dz�k� is always posi-

tive. Furthermore, we expect this reduced version of the su-
persinglet to be good just in the regions in which the odd
doublet is. In those regions the contribution to be expected
from the AI hybridization channel is very small—i.e., �o
	�—and thus the holes that will contribute the most to the
sum in the ES equation �26� are the ones at an energy dis-
tance of the order of � from the Fermi level. In these condi-
tions the argument of the logarithm in Eq. �28� is very close
to 1, and thus it is safe to take −Dz�k�= ��+ek� when used in
the sum of Eq. �26�. The next-order correction �ln�1+x�
�x	 can be included at no mathematical cost, but it requires
introducing a new parameter, the Ed /D ratio. We keep it
simple, just disregarding this correction. Therefore, Eq. �26�
becomes

2Ed + �o + � = 4v2�
k

�1 − cos�kxr�	
� + ek

= 2V2no�1 − CQ��,r�	ln
D + �

�
, �29�

from which

��r� = D exp −
1

�1 − CQ��,r�	Jn
. �30�

This is a very small number when �o�r� is strong �CQ near
1�. Notice that the CQ factor in Eq. �30� depends on �, not on
�o; thus, it is closer to 1 than CQ��o�.

Near the second maximum of �o, at r=1.1�F, and for
Jn=0.072 38, Eq. �22� converges in five iterations to
�o=0.003 24 �and CQ=0.607� starting with �o=�K as itera-
tion seed. Equation �30� converges in seven iterations to
�=1.394�10−29 �CQ=0.792�. Near the first maximum, at
r=0.1�F we obtain �o=0.009 22, �=5.70�10−124.

These are very small numbers indeed, but � is positive
and small enough to justify the approximations made to re-
duce Eq. �26�, and thus the supersinglet is a better option as
a possible ground state of the system than the odd doublet.

FIG. 2. Correlation energy gains of the odd �o and even �e

doublets as a function of the distance between the impurities, for
Jn=0.072 38 ��K=0.001D�.
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At r=0, CQ�1 and ��0, and thus, ES�EDo
and the super-

singlet collapses into the odd doublet; i.e., it is an uncorre-
lated combination of the bAkF↑

† �Do↓� and the bAkF↓
† �Do↑� states.

At r→� �CQ=0� or at the CQ�r�=0 points, this version of
the supersinglet fails to give some expected results, mainly
that it must be ES�−2Ed−2�K for r→�. This is not surpris-
ing since we already expect this “partial” supersinglet not to
give good results outside the r�n�F regions.

The previous analysis gives us a clear indication of what
to look for in the different subspaces of the Hamiltonian, and
the chemical potential tells us not to go too far from NT=0
�plus the half-filled conduction band�; thus, given the limits
that U impose in the population of the impurities, NT=2
seems to be a reasonable upper value. In the next section we
proceed to a systematic analysis of those subspaces, looking
for the lowest-energy state of each one of them. We start with
the NT=1 one and finish with the one corresponding to NT
=2. This order is not arbitrary because the NT=1 subspace is
the less explored of them and NT=2 the most explored one.

IV. SYSTEMATIC ANALYSIS

A. Doublet subspace, NT=1

The NT=1, odd subspace is the odd doublet subspace. As
follows from the previous analysis the odd doublet lacks the
action of the AI hybridization channel on its vertex state—
i.e., the bAk↑

† dA↓
† dA↑

† �F� and bAk↓
† dA↑

† dA↑
† �F� configuration

groups. The last group is forbidden by the Pauli exclusion
principle and must thus be ignored. For the first group we
must use the same procedure as in Eq. �13�. Thus we analyze
the following variational wave function in this subspace:

�Do↑� = dA↑
† �F� + i�

k

ZA�k�AkbAk↑
† �AF�

+ �
k

ZS�k�Sk�2bSk↓
† �FM↑� + bSk↑

† �FM0� , �31�

the now full odd doublet. The self-consistent equations for
the variational amplitudes and energy are

ZA�k� = ZS�k� =
v

EDo
+ 2Ed − ek

, �32�

EDo
= − Ed + 2v2�

q

�3Sq
2 + Aq

2�
EDo

+ 2Ed − eq
. �33�

After expanding the Sq
2 and Aq

2 factors in Eq. �33� and assum-
ing EDo

=−2Ed−�o, Eq. �33� transforms into

Ed + �o = 2v2�
q

2 + cos qxr

�o + eq
; �34�

now, using �IK���, and CQ�� ,r�, Eqs. �19� and �20�, Eq. �34�
becomes

�o�r� = D exp
− 1

�2 + CQ��o,r�	Jn
�35�

in the D ,Ed	� limit. This formula for �o�r� replaces the
previous partial result, Eq. �22�. It can be taken as an ap-

proximate solution by evaluating CQ at �K or used iteratively
to find the exact result with fast convergency. At its first
maxima—i.e., at �CQ�1,r�n�F—�o��3 as previously
analyzed. At the CQ�� ,r�=0 points, including the r→�
limit, Eq. �35� gives �o(r0 /CQ�r0�=0)=�K ���2�, the physi-
cally expected result.

In the NT=1, even subspace, the relevant state being the
even doublet, its construction process being the same as for
the odd doublet but taking dS↑

† �F� as the vertex state. The
definition of the even doublet is similar to that of the odd
doublet, Eq. �31�, but with the change A↔S in the creation
operators and in the hybridization amplitude factors Ak and
Sk. A global minus sign appears for the ZX�k�, given that for
the AF and FM states we use the d† operator ordering shown
in Eq. �10�, the one of the allowed impurity configurations.
The energy EDe

of the even doublet states is given by

EDe
�r� = − 2Ed − �e�r� ,

�e�r� = D exp
− 1

�2 − CQ��e,r�	Jn
. �36�

If we compare Eq. �36� for �e�r� with Eq. �35� for �o�r�, we
see that the sign in front of CQ changes, this being because of
the Ak↔Sk change; i.e., the SI and AI impurities interchange
roles. The analysis of �e as a function of r is also very similar
to that of �o�r�. The odd-doublet correlation energy gain
�o�r� is higher than the even-doublet gain �e when
CQ��K ,r��0, and the opposite is true for CQ��K ,r��0.
They are equal and equal to �K=�2, at the rK distances for
which CQ��K ,rK�=0.

These correlation energy gains of the odd and even dou-
blets, �o and �e, are plotted in Fig. 3 as a function of r for
�K=0.001D. For very large r, such that CQ��K ,r� vanishes,
the energy gain of the doublets tends to that of one Kondo
singlet. This is not surprising since the doublets, in this limit,
can be written as

FIG. 3. One-dimensional correlation energy gains of the odd �o

and even �e doublets as a function of the distance between the
impurities, for Jn=0.072 38 ��K=0.001D�. The inset is �e up to very
long distances; it periodically beats 2�K up to r��K.
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�DX↑� = �L↑� � �SR� ± �SL� � �R↑� , �37�

i.e., the combination of a Kondo singlet in one of the original
impurities and the other single occupied plus �minus� the
mirror image of that state. The total energy of this state is
−2Ed−�K, as for the doublets in the uncorrelated limit �r
→��.

These energy gains must be compared with twice the
Kondo energy, because, for very large r, the latter is the
energy gain for a state that has simultaneously and, in a
uncorrelated way, both impurities forming a Kondo singlet
��SL� � �SR��. The doublet gains �D alternatively surpass 2�K

up to r��K.
This effect, ��=max��o ,�e�2�K, is present for values

of Jn lower than Jnc
=0.240 �defined by �3=2�2�; the lower

Jn, the greater this effect. The periodicity with which �Do�
and �De� alternate as ground states of the NT=1 subspace is
twice the RKKY period �they are ruled by CQ��K�	, and they
stand in this situation up to very long distances. These prop-
erties are due to the fact that the doublet coherence integral
involves just one hole excitation. At the intersection points
one has �e ,�o=�K and CQ=0.

The electronic process behind these correlated doublets is
second order in the hybridization coupling V. The jump of a
band electron from below the Fermi level to the impurities
and then back to its initial place is the only process allowed
by the doublet VWF, Eq. �31�.

B. Supersinglet, NT=0

In the NT=0 subspace there is the supersinglet, its full
expression, taking into account both the even and odd dou-
blet components, being

�SS� = �F� − �
k

��iZO�k�Ak�bAk↓
† dA↑

† + bAk↑
† dA↓

† �

+ ZE�k�Sk�bSk↓
† dS↑

† + bSk↑
† dS↓

† �	�F�

− �
k,q

��YO�k,q�AkAqbAk↓
† bAq↑

† + YE�k,q�SkSqbSk↓
† bSq↑

† 	

��AF� + iY�k,q�SkAq��bAq↓
† bSk↑

† + bAq↑
† bSk↓

† ��FM0�

+ 2bAq↓
† bSk↓

† �FM↑� + 2bAq↑
† bSk↑

† �FM↓�	 . �38�

The ZO�E��k� configurations are the odd- �even-� doublet
component of the supersinglet. The “origin” of each one of
its components can also be traced down looking at the Ak and
Sk factors and/or the results obtained for their variational
amplitude functions. After the functional minimization pro-
cedure, these functions turn out to be

YO�k,q� = v�ZO�k� + ZO�q�	/DY�k,q� ,

YE�k,q� = v�ZE�k� + ZE�q�	/DY�k,q� ,

Y�k,q� = v�ZO�k� + ZE�q�	/DY�k,q� , �39�

where DY�k ,q�= �ES+2Ed−ek−eq� and

ZO�k� = − �2v + v2�
q

�1 − cqr�ZO�q�/DY�k,q�

+ 3v2�
q

�1 + cqr�ZE�q�/DY�k,q���DZO
�k� ,

�40�

DZO
�k� = − ES − Ed + ek + 2v2�

q

2 + cqr

DY�k,q�
, �41�

where cqr=cos qxr. For ZE�k� a symmetric expression holds,
with the changes, in Eqs. �40� and �41�, E↔O, A↔S, and
cqr�−cqr. For the supersinglet energy ES, the following ex-
pression is obtained:

ES = 2v�
k

��1 − ckr�ZO�k� + �1 + ckr�ZE�k�	 . �42�

To solve these equations, which are self-consistent and recur-
sive, one must proceed in a similar way as in the case of the
partial supersinglet analyzed in Sec. III C. We work them out
in the same approximation as before, disregarding higher-
order terms that depend on the Ed /D ratio.

First, we analyze the points at which coherence effects are
suppressed—i.e., r→� and the rK points such that
CQ��K ,rK�=0. For these points �o=�e=�K and thus, assum-
ing ES=−2Ed−�K−�, we obtain

ZX = − 2v/DZX
, �43�

DZX
= �� + ek� , �44�

2Ed + �K + � = 8v2�
k

1

� + ek
, �45�

from which �=�K follows. Therefore, the energy of the su-
persinglet at these points is

ES = − 2Ed − 2�K. �46�

The value CQ��K ,rK�=0 marks the boundary between two
regions. For CQ��K ,r��0 the odd doublet is the lower-
energy doublet and it is the main component of the super-
singlet; conversely, for CQ��K ,r��0 the behavior of the su-
persinglet is determined by the even doublet. We work out
now the energy of the supersinglet in the odd-doublet region.
In these regions �o��e and thus we take ES=−2Ed−�o−�.
With this replacement Eqs. �40� and �42� become

DZO
= �� + ek�, DZE

= �� + �� + ek� , �47�

ES = − 4v2�
k
�1 − ckr

DZO
�k�

+
1 + ckr

DZE
�k� � . �48�

Using the definitions of �IK , IQ ,CQ and the proposed form of
ES, Eq. �47� transforms into
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1

Jn
= IK����1 − CQ��,r�	 + IK�� + ����1 + CQ�� + ��,r�	 ,

�49�

from which one obtains

��r� = De−1/Jn�1−CQ���	
 D

�� + �
��1+CQ��+���	/�1−CQ���	

,

�50�

where ��=�o−�e; only the energy dependence of CQ is
shown. This is the full expression for � when the odd doublet
is the dominant one. For CQ��K�=0 one has �o=�e=�K, and
Eq. �50� reduces to �2=D2 exp�−1/Jn�—i.e., �=�K; see Eq.
�46�.

At the maxima of CQ �r�n�F� one has �o	�e ,�—thus,
����o—and using Eq. �35� one obtains

� = D exp�−
1

Jn�1 − CQ���	�1 +
1 + CQ��o�
2 + CQ��o��� , �51�

i.e., nearly Eq. �30�, the previous “partial” result for � at
those regions. For these maxima, � is exponentially small if
CQ�� ,r� is still strong, as discussed in Sec. III C.

To analyze the r regions in which CQ��K ,r��0 one must
propose ES=−2Ed−�e−� given that for these regions �o
��e. The result for � is just Eq. �49� with the changes
�o↔�e and CQ→−CQ. In Fig. 4 we plot the correlation en-
ergy gains of the doublets and the supersinglet.

At the first maxima of the doublet energy gains—i.e., the
minima of their total energy—the additional energy gain of
the supersinglet � is very small and therefore small thermal
activation will destroy the correlation that generates it. This
is not the case for the energy gain of the doublets at those
points, �o or �e, which is very strong, as discussed in Sec.
III B.

C. NT=2 subspace

In this subspace there are the lower-energy configurations
of the system, the AF singlet and the FM triplet, whose con-
figurational energy is −2Ed. Given that these configurations
are already the lower-energy configurations of the subspace,
the effects of the hybridization on them can be directly
evaluated by standard perturbation methods. For the sake of
completeness we recalculated the result of Ref. 5 in the same
variational wave function framework as the previously ana-
lyzed subspaces. We use the “perturbation” property of the
AF and FM states to solve their self-consistent energy equa-
tion by series expansion. For these AF and FM states two
hybridization �HV� steps are needed to bring out the RKKY
energy term. For the Sz=1 component of the FM triplet, the
expanded VWF is

�FMRKKY↑�

= �FM↑� − �
k

Z�k��SkcSk↑
† dA↑

† + iAkcAk↑
† dS↑

† ��F�

+ �
k,q

Y�k,q���2AkAqbAk↓
† cAq↑

† + 2SkSqbSk↓
† cSq↑

† ��FM↑�

+ �AkAqbAk↑
† cAq↑

† + SkSqbSk↑
† cSq↑

† ��FM0�

+ i�SkAqbSk↑
† cAq↑

† − AkSqbAk↑
† cSq↑

† ��AF� . �52�

After minimization, it turns out that

Y�k,q� =
vZ�q�

DY�k,q�
, �53�

Z�k� =
2v

DZ�k�
, �54�

DZ�k� = EFM + Ed − ek − 2v2�
q

2 + cqr ckr

DY�k,q�
, �55�

EFM = − 2Ed + 2v�
k

Z�k� , �56�

where DY�k ,q�=EFM+2Ed−ek−eq. As in the previous cases,
the energy is to be determined self-consistenly. We can make
a Taylor series expansion on v2 on the right of Eq. �56�,
taking into account that EFM is also a function of v2. If this
expansion is carefully analyzed, it turns out that the expan-
sion parameter is Jn. The final result for EFM, to order v4, is
the well-known perturbation theory expression

EFM = − 2Ed − v2�
k

4

Ed + ek
+ v4�

k,q
� 16

�Ed + ek�2�Ed + eq�

−
16 + 8 cos qxr cos kxr

�Ed + ek�2�ek + eq� � , �57�

the first v4 term in the right being the second-order contribu-
tion of the v2 correction. This a well-known property of
variational wave functions like the Kondo Varma-Yafet sin-
glet. In the second v4 term there is a contribution that de-
pends on the interimpurity distance r,

FIG. 4. Correlation energy gains of the odd �o and even �e

doublets and supersinglet ��+� as a function of the distance be-
tween the impurities, for Jn=0.072 38 ��K=0.001D� in the 1D case.
The inset is �, the additional energy gained in forming the super-
singlet. For large r it tends to �K and the total energy of the super-
singlet to −2Ed−2�K.
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�R�r� � 8
v4

Ed
2�

kq

cos�qxr�cos�kxr�
�ek + eq�

= 4 ln 2DJn
2JR�r� ,

�58�

this being half the RKKY energy. The prefactor of 8 appears
because the sum in Eq. �58� is over kx�0 �qx�0� electron
�hole� excitations. The r-dependent part JR�r� of the 1D-
RKKY is given by23

JR�r� =
2

�
��

2
− Si�2kFr�� , �59�

which is plotted in Fig. 1. It decays very fast, its first extreme
values being 1.0 at r=0.0�F and −0.179 at �F /4. At
r=2.0�F its value 0.025 is already very small. The r=0 value
of �R is determined by integration of Eq. �58� in the half-
filled flatband approximation for the conduction band of the
metallic host. The Kondo energy, Eqs. �5� and �6�, is also
evaluated in that approximation. For the AF state, expanded
to the same order as the FM state, there appear the same
terms as in Eq. �57� but with a minus sign in front of �R;
thus, the RKKY interaction—i.e., the energy difference be-
tween the FM and AF states—is twice �R.

D. RKKY and doublet states

The doublet states are the results of a first-order interac-
tion present in the TIA Hamiltonian. Only the configurations
that are reached with one HV step from the corresponding
vertex state are included in the VWF’s we use to study them.
Note also that it depends on Jn �although in a nonperturbative
way� and that just one hole excitation is involved in the
calculus of CQ. The RKKY is a second-order interaction, two
HV steps are needed in their VWF, it depends on Jn

2, and both
a hole and an electron excitation are involved in its evalua-
tion. In fact, the correlation energy of the dominant doublet
is higher than that corresponding to the RKKY in most of the
�Jn ,r� parameter space of the Hamiltonian. At r=0 the equa-
tion �R�0�=�3 determines that for Jn�0.085 the doublet cor-
relation energy is greater than the RKKY energy. Note that
the one-impurity Kondo energy �K is never greater than
�R�0�. As a function of r the RKKY interaction decays at
shorter distances than the doublet one. In Fig. 5 we show the
“doublet-RKKY” “parameters-space phase diagram” for the
1D two-impurity system, determined by max��o ,�e�= ��R�.
This is not a true quantum-phase diagram given that neither
the doublet nor the FM �AF� states are the ground state of the
system. But it indicates the �Jn ,r� regions in which the
second-order RKKY must be included in the analysis of the
doublet structure. Over the near vertical dashed lines that
mark the limits between the odd and even doublets, deter-
mined by CQ��K�=0, there is little enhancement of the dou-
blet energies. These zones coincide with the AF maxima of
the RKKY interaction and thus over these lines there are the
highest indents of the RKKY regions.

How �R�r� modifies the internal structure of the doublets
has been analyzed in Ref. 24, where the doublets where in-
troduced. To include the RKKY effects in the VWF of the
odd doublet, two more HV generations of configurations must

be added to it. In the odd-doublet VWF, Eq. �31�, see that the
configurations with the ZA�k� amplitude factor correspond to
an AF state of the impurities, whereas the ones with the ZS�k�
factor are configurations with their impurity part in a FM
state. As in Sec. IV A we cut our VWF at that order thus both
amplitude factors result to be equal, ZA=ZS=v / �EDo

−
�−2Ed+ek�	=−v / ��o+ek�. We show in Appendix C that the
main effect of the configurations needed to include the
RKKY interaction in our doublet VWF is to modify those
amplitude factors. Their denominators will reflect now the
different energies of the FM and AF impurity configurations.
The self-consistent equation for the odd-doublet energy
when these higher-order processes are included is given by

ED = − Ed + �
k

3v2�1 + cos�kxr�	

ED + 2Ed + 2�0 +
1

4
JX + �R − ek

+ �
k

v2�1 − cos�kxr�	

ED + 2Ed + 2�0 −
3

4
JX − �R − ek

, �60�

where the first sum on the right comes from the contribution
of the ferromagnetic configurations in the doublet and the
second one from the antiferromagnetic configurations, �0 is
the one impurity correction �up to second order in Jn�, and
the terms proportional to JX appear, just with the VWF used
in Sec. IV A, if an external RKKY-like term �−JXSL ·SR� is
added to the TIA Hamiltonian. The effect of �0 is to shift the
“zero” of energy, and the effect of JX is similar to the one of
the intrinsic RKKY term �R; thus, in what follows we dis-
cuss just the effects of this last term in the doublet structure
and energy. With the considerations above, the variational
amplitude factor of the FM configurations in the doublet is
given by ZS�k�=−v / ��o−�R+ek� when RKKY effects are
taken into account. And for the AF configurations, ZA�k�
=−v / ��o+�R+ek� holds. �o= ��R�r��+�o

��r� is the total cor-
relation energy gain of the doublet, composed by the RKKY
and Kondo-doublet contributions.

FIG. 5. Doublet-RKKY 1D “quantum phase diagram” for the
TIA Hamiltonian. The horizontal dot lines mark the values of �K �in
units of D� for the corresponding values of Jn.
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For �R�0 �which corresponds also to the maxima of
�CQ��, the dominant components of the dominant doublet are
the FM configurations; thus, we assume ED=−2Ed−�R−�o

�,
and using the definitions of IK and CQ, we obtain

1

Jn
=

3�1 + CQ��o
��	

2
ln

D

�o
� +

�1 − CQ��o
� + 2�R�	

2
ln

D

�o
� + 2�R

,

�61�

a self-consistent equation that easily gives the value of the
odd-doublet correlation energy ��o

�� in a RKKY-FM region.
In the extreme case �R	�o one can neglect the AF-
configuration contributions to Eq. �61� �this is equivalent to
using for the doublets a VWF with ZA�k��0	 and thus

�o
� = D exp

− 1

�3/2��1 + CQ�Jn
, �62�

which gives �o
���K for values of �CQ� down to 1/3. Note

also that for high values of CQ there is little reduction of �o
�

compared with its bare ��R=0� value �o, because the AF-
configuration contribution ���1−CQ� /2	 is already very
small in this case.

Similarly, in the RKKY-AF regions ��R�0 and CQ�0�,
we assume ED=−2Ed− ��R�−�o

� and, with the notation �A
= ��R�=−�R, the general equation �60� can be expressed as

1

Jn
=

3�1 + CQ��o
� + 2�A�	

2
ln

D

�o
� + 2�A

+
�1 − CQ��o

��	
2

ln
D

�o
� ,

�63�

which in the extreme case �A	�K can be reduced to

�o
� = D exp

− 1

�1/2��1 − CQ�Jn
, �64�

which gives very small values for the correlation energy of
the doublet in this situation: for Jn=0.072 38, which corre-
sponds to �k=0.001D and �3=�o�r=0�=0.01D, one obtains
�o

�=0.000 000 000 001D. Therefore the formation of the
doublets in an extreme RKKY-AF region will be very diffi-
cult to detect in a numerical simulation of the system. Ex-
perimentally, nearly any thermal activity will destroy the
doublets in this regime.

The previous equations �Eqs. �60�–�64�	 are for the odd
doublet, which dominates for CQ�0. As the equations cor-
responding to the even doublet �which dominates for CQ
�0� are the same but with a minus in front of CQ; the final

result is that Eqs. �61�–�64� also apply to the even doublet
with the change CQ→−CQ. In Fig. 6 we show a “generic”
analysis of Eq. �60�: for Jn=0.072 38 and fixed values of CQ
we plot �o

� as a function of �R �−�R� on the right �left� panel,
energies being in units of �K. Actually, both CQ and �R are
precise functions of �Jn ,r� and not any value of �R can be
obtained for a given Jn. Anyway, we use this figure to show
the general trend of the solutions of Eq. �60�. It can be seen
that a positive �R has little effect on the dominant doublet
structure, and it nearly has just an additive effect on the total
energy of the doublet. This response is due to the fact that the
dominant doublet is primarily formed upon FM-like configu-
rations. By the same reason a negative �R, which energeti-
cally penalizes the FM-like configurations, has a catastrophic
effect on the energy gained by forming the doublet. The cor-
responding extreme limits are well described by Eqs. �62�
and �64�.

In Fig. 7 we plot the total correlation energy of the dou-
blets ��x=�x

�+ ��R�, x= �o ,e� as a function of the distance
between the impurities and for Jn=0.072 38. As discussed
previously the main contribution to the energy of the domi-
nant doublet comes from the Kondo-doublet interaction, the
RKKY contribution becoming negligible very rapidly when
the distance between the impurities is increased beyond
�F /2. For the dominated doublet, instead, nearly all the en-

FIG. 6. Correlation energy gain of the odd
doublet when a non-negligible RKKY interaction
is present. Note the change of scales �and behav-
ior� between the left panel, corresponding to the
�R�0 case, and the right panel, which corre-
sponds to the �R�0 case.

FIG. 7. Correlation energy of the doublets including RKKY
effects, for Jn=0.072 38 and as a function of the interimpurity dis-
tance r. The dominant doublet energy is mainly composed by the
Kondo-doublet energy. Only at kFr=� /2 is the correlation energy
nearly fully provided by the RKKY interaction. This point corre-
sponds to a maximum of the RKKY-AF energy and a zero of CQ.
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ergy gain comes from the RKKY contribution. Only at kFr
=� /2, a crossing point for the doublets �CQ=0�, does the
RKKY-AF interaction provide “all” the energy gain of the
dominant doublet. This point is an extreme RKKY-AF case,
as described by Eq. �64�.

These extreme RKKY-AF regions, which for the actual
TIA Hamiltonian are only present for low values of Jn, are
the subject of contradictory results in the literature. Numeri-
cal renormalization group �NRG� calculations seem to sup-
port a crossover from a Kondo-singlet to an AF-singlet for
these regions. Instead, quantum Monte Carlo15 and numeri-
cal VWF �Ref. 18� calculations do not give support for such
a quantum phase transition to occur in the U→� limit of the
TIA Hamiltonian. Our analytical VWF analysis is in line
with these latter results for these extreme RKKY-AF cases:
although with a very low correlation energy the Kondo dou-
blets are formed on top of the AF configurations. Note that
this result only applies in the analyzed limit of the TIA
Hamiltonian and assuming that the RKKY-AF effects can be
analyzed in a perturbative way. We have used this last prop-
erty to obtain the standard RKKY result in Sec. IV C and
also in Appendix C to obtain Eq. �60�. Note also that in this
limit one has �ZA�k��	 �ZS�k�� �1/ ��o

�+ek�	1/ ��o
�+2��R�

+ek�	 and thus the properties of the doublet are determined
mainly by its AF group of configurations.

We have restricted our previous analysis to scenarios that
are actually present in the analyzed limit of the TIA Hamil-
tonian: ferromagnetic RKKY regions coincide with the
maxima of �CQ�r�� and antiferromagnetic RKKY regions are
in correspondence with CQ�r��0. If one takes CQ and �R as
free parameters, as is often done in NRG simulations using
the Kondo Hamiltonian, one can achieve the following situ-
ation: a strong AF RKKY and CQ=1. In this case the self-
consistent solution of Eq. �64� gives �o

��0 and the doublet is
not formed. This is a possible explanation for the contradic-
tory numerical results present in the literature.

V. CQ IN THE 2D AND 3D SCENARIOS

In the previous sections, when needed for graphical pur-
poses and because of its technological applications, we have
evaluated our equations in the 1D case. In 1D the only de-
coherence factor, both for CQ and the RKKY interaction, is
the energy width of the packet of excitations involved in the
interaction. In higher dimensions the angular decoherence
effect dominates the behavior of CQ at values of r lower than
�K. In “sintetic” TIA systems �magnetic impurities deposited
over a carbon-nanotube, quantum dots connected to a quan-
tum wire or to a confined 2D electron gas in a semiconductor
heterostructure, etc.� the effective dimension is generally
within 1D and 2D. The “classical” two-impurity Anderson
problem corresponds to two magnetic impurities in a 3D
metallic host. Here we analyze the behavior of � and � in the
2D and 3D cases. At this effect we only needed to evaluate
CQ. For the 3D case it results in

CQ
3D � sin�kFr�/kFr �65�

and, for the 2D case,

CQ
2D � BesselJ�0,kFr� , �66�

for r��K, where the main decoherence effect is the angular
one and they depend very weakly on �. For r�K CQ decays
like the power D �=1, 2, or 3� of 1 over r. The RKKY �R has
already the last behavior at r a fraction of �F.

In Fig. 8 we show three 2D cases corresponding, from top
to bottom, to Jn=0.072 38, 0.054 28, and 0.043 43. The cor-
responding values of �k are 0.001D, 0.0001D, and 0.000 01D
and the ones of �3 �=�o�0�	, which do not depend on the
dimension, are 10.0�K, 21.5�K, and 46.4�K, respectively. It
can be seen that due to the angular decoherence effects, the
correlation energy gains decrease more quickly, as a function
of r, than in the 1D case �compare the top panel with Fig. 4�.
It can also be seen that the relative effect of the doublet
interaction is higher the lower Jn.

In Fig. 9 we show the 3D case for the same Jn values
analyzed in Fig. 8. The top panel �3D, �K=0.001D� is the
case numerically analyzed in Ref. 20 �Fig. 4�a�	. There are
very minor differences; for example, the numerical simula-
tion does not reach the �3 r=0 limit, although its authors
already obtained that limit analytically. It is known that
Kondo-like systems are very difficult to simulate numerically
due to the logarithmic scales involved in the problem.

VI. ŠSL ·SR‹ CORRELATION

A very important observable in these systems is the im-
purities spin-spin correlation �SL ·SR� because of its possible
application in quantum computation. It is commonly be-
lieved that this correlation is determined by the RKKY inter-
action. We have shown in Sec. IV A that there is a simpler
process than the RKKY one that leads to an impurity-

FIG. 8. Two-dimensional correlation energy gains �o �dashed
line�, �e �dotted line�, and ��+� �solid line� as a function of r, for
values of Jn corresponding to, from top to bottom, �K=10−3D,
10−4D, and 10−5D.
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impurity correlation, the Kondo-doublet interaction. In Sec.
IV D we have also shown that the correlation energy of the
doublets is greater than the RKKY correlation energy for
most of the Hamiltonian parameter space. Here we show that
the Kondo-doublet interaction generates a ferromagnetic
alignment of the impurity spins without resort to the RKKY
mechanism.

Using for the doublet VWF’s the simplest form given in
Eq. �31�—i.e., without the inclusion of the higher-order
RKKY effects discussed in Sec. IV D—the doublet spin-spin
impurity correlation �SL ·SR� is given by

�D�SL · SR�D�
�D�D�

= ±
3

4

DQ��,r�
�2 ± DQ��,r�	

, �67�

where DQ= ���IQ� / ���IK� and the upper �lower� sign holds for
the odd �even� doublet.

In Fig. 10 it can be seen that the dominant doublet favors
a parallel �ferromagnetic� alignment of the impurity spins.
Note that this mainly ferromagnetic response is obtained

without including the effects of the RKKY interaction in the
doublet structure.

This magnetic response can be clearly understood by a
closer look to the first-order interaction behind the doublets.
Correlations between the impurities are the consequence of
closed electron paths that involve both impurities, paths
driven by HV in configurational space. For example, the
second-order RKKY-FM path starts when one electron �say,
the one in the left impurity� hops to a band state k ��kF� and
then a second electron hops into the impurity, letting a hole q
��kF� in the band. The path is closed by reversing these
steps but at the other impurity. The matrix element for this
loop, taking into account the mirror path, is

�↑↑�HV
4 �↑↑�RKKY = � v4 cos�k + q� · r , �68�

where the plus sign holds for the AF state. This correlation
path produces the energy correction ��R�r� for the FM �AF�
state, which splits the FM and AF states. We use in this
section the direct orbital representation used in the unsym-
metrized Hamiltonian, Eq. �1�. Therefore, in the equation
above, �↑ ↑ ���FM↑ ��dL↑

† dR↑
† �F�.

In this representation the vertex state of the odd doublet,
dA↑

† �F�, is given by

�A�� �
1
�2

�dR�
† � dL�

† ��F� �
1
�2

��0�� � ��0�� , �69�

where the plus sign is for the vertex of the even doublet, the
symmetric one-electron-in-the-two-impurity dS�

† �F���S��
state. The hybridization HV connects the �A↑� state, by pro-
moting an electron from below kF to the empty impurity,
with the following ones:

�A↑↓k� =
− v
�2

bk↑
† �e−ik·r/2�↑↓� + e+ik·r/2�↓↑�� , �70a�

�A↑↑k� =
− v
�2

bk↓
† �e−ik·r/2�↑↑� + e+ik·r/2�↑↑�� . �70b�

Closing the loop, as depicted in Fig. 11, the following matrix
elements are obtained:

�A↑�HV�A↑↓k� = v2, �71a�

�A↑�HV�A↑↑k� = v2�1 ± cos k · r� , �71b�

where the minus sign corresponds to a similar path but for
the �S↑� state. The last element, which depends on the inter-
impurity distance r, determines the properties of the dou-
blets.

FIG. 9. Three-dimensional correlation energy gains �o �dashed
line�, �e �dotted line�, and ��+� �solid line� as a function of r, for
the same three Jn values analyzed in the 2D case.

FIG. 10. Impurity-spin correlation for the doublets, without
higher-order RKKY effects. The thicker section in each line is the r
region dominated by the corresponding doublet. The straight seg-
ments at 1 /4 �−3/4� correspond to the RKKY prediction.

FIG. 11. First-order loop paths for the dA↑
† �F� state. On the left

noncorrelated ��̄ channel is shown. On the right is the interference-
enhanced �� channel; the crossed arrows correspond to the inter-
impurity paths.
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As the starting state of the loop has a higher energy than
the bunches of “visited” ones the energy associated with this
interaction cannot be obtained by perturbative methods.17,20

This situation, a single state connected to bunches of lower-
energy states, is the hallmark of a Kondo structure, in this
case the Kondo doublets that we have analyzed in the previ-
ous sections.

With the analysis above at hand, the “ferromagnetic” be-
havior of the impurities induced by the doublets is easy to
understand. The correlated channel is the �� one, which cor-
responds to a ferromagnetic arrangement of the impurities
�Eqs. �70b� and �71b�	. The configurations connected via the
noncorrelated ��̄ channel are also mainly ferromagnetic
configurations at the maxima of �D. See also Eqs. �33� and
�60�, for the dominant doublet the connectivity factor of the
ferromagnetic configurations is �3�1+ �CQ�� /2, whereas that
of the antiferromagnetic ones is ��1− �CQ�� /2. Clearly, the
screening action of the hole is more effective when the im-
purity spins are aligned and the distance between them is
near the resonant condition for the lowest-energy holes �r
�n�F /2 , �cos kFr��1�; see Eq. �71b�.

At the transition points from one doublet to the other a
little negative value for �SL ·SR� is shown in Fig. 10 and then
a jump to positive values. Actually, at those transition points
the supersinglet has a maximum in its correlation energy
����K� and it is formed with similar weights in both dou-
blets; thus, an average of the response of the odd and even
doublets is to be expected at those regions, given a smooth
transition with a �SL ·SR� value near zero from one doublet
region to the next one. In Fig. 10 the RKKY prediction is
also shown, based upon �R�r��0. Taking into account both
interactions, the stronger of them determines the �SL ·SR� re-
sponse of the system; for max��o ,�e�	 ��R�, the response is
determined by the doublet curve �Eq. �68�, Fig. 10	 whereas
that in the opposite situation the impurity-spin correlation
tends to that of the RKKY.

Now we include the RKKY effects in the doublet wave
functions and thus in their �SL ·SR� correlation. Following the
analysis of Sec. IV D and Appendix C, we take the varia-
tional amplitudes in the doublets to be ZS�1/ ��D−�R+ek�
for the ferromagnetic configurations and ZA�1/ ��D+�R

+ek� for the antiferromagnetic ones, where �D= ��R�+�D
� as

evaluated in the RKKY-doublet section. Thus, including
RKKY effects, the impurity-spin correlation of the odd dou-
blet is given by

�SL · SR� =

1

4
3JK

S �1 + DQ
S � −

3

4
JK

A�1 − DQ
A�

3JK
S �1 + DQ

S � + JK
A�1 − DQ

A�
, �72�

where DQ
S�A�=DQ��Do

��R ,r� and

JK
S�A� =

2

noNc
�

k

1

��Do
� �R + ek�2 , �73�

and for the even doublet the change DQ�−DQ must be
done. The supra S�A� terms come from the contribution of
the ferromagnetic �antiferromagnetic� configurations of the
doublet. Equation �72� reduces to the previous equation �67�

for �D�r�	 ��R�r��. Equation �72� reflects the changes in the
energies of the FM and AF impurity configurations produced
by the RKKY interaction. Thus in a RKKY-FM region the
relative variational amplitude of the ferromagnetic configu-
rations is greater than the one of the antiferromagnetic ones,
1 / ��D+ek�	1/ �2�R+�D+ek�, given a ferromagnetic like
�SL ·SR� correlation. The opposite is true in a RKKY-AF re-
gion. Note instead that the ferromagnetic response induced
by the Kondo-doublet interaction depends on the
interference-enhanced matrix elements, the �1±DQ� factors
in Eq. �72�, not in the difference of energy between the FM
and AF impurity configurations.

In Fig. 12 we plot the �SL ·SR� response of the doublets,
RKKY effects included, for the same 1D case plotted in Fig.
10. There is an abrupt change in the response of the domi-
nated doublet �thin lines�: as �� is exponentially small �see
Fig. 3� the RKKY effects determine the response of the
dominated doublet. Thus the thin lines closely follow the
RKKY response, jumping from 1/4 to −3/4 �and back� at
the �R�r�=0 points. Instead, the dominant doublet response
�thick sections� is little modified by the RKKY interaction
except at the extreme RKKY-AF point at kFr�2, where
��R�r������r� and thus the RKKY-AF behavior dominates.
As discussed in Fig. 7 this point corresponds to a maximum
of the antiferromagnetic RKKY interaction and to a mini-
mum of the Kondo-doublet interaction �CQ�0�. Note also
that the ferromagnetic response induced by the Kondo-
doublet interaction persists well into the RKKY-AF region.

For the supersinglet, Eq. �38�, the �SL ·SR� correlation is
approximately given by a weighted average of the dominant
and dominated doublet response. The weighting factors are
proportional to the average of the square of the correspond-
ing amplitudes in the supersinglet VWF, ZO�k��1/ ��+ek�
and ZE�k��1/ ��+��+ek�, respectively �in the �o��e case�,
which turn out to be proportional to 1/� and 1/ ��+���.

In Fig. 13 we plot the supersinglet and doublet �SL ·SR�
correlations for a 3D and a 2D case �without RKKY effects�.
Note that in both the 2D and 3D cases the ferromagnetic
correlation induced by the doublets is present for interimpu-
rity distances of several times �F.

FIG. 12. Impurity-spin correlation for the doublets, RKKY ef-
fects included. The thicker section in each line is the r region domi-
nated by the corresponding doublet. The dominated doublet �thin
lines� closely follows the RKKY prediction.
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VII. CONCLUSIONS

We have presented a simple and complete analysis of the
two-Anderson-impurity system. The variational wave func-
tions we use to analyze the problem are generated in each
subspace of the Hamiltonian starting with the simplest con-
figuration and applying to it the hybridization terms—i.e.,
the nondiagonal part of the Hamiltonian. The configurations
so generated are grouped together with a variational ampli-
tude function according to their internal symmetry. This step
is repeated as many times as needed to bring out the physics
of the state. One step is necessary for the doublet states, two
for the supersinglet, one to connect the doublets through the
Fermi-sea state and one to retain the internal structure of the
doublets; two more are included in Appendix C to show how
the doublets are affected by the RKKY interaction. In this
aspect, the technical method we use is in fact an analytical
Lanczos method, to some point similar to the one used in
Ref. 25, but with variational functions as amplitude coeffi-
cients. Such variational functions are found by the classical
method—i.e., Euler-Lagrange minimization of the energy
functional, which is also evaluated analytically.

This method can be also applied to the case of M impu-
rities, especially if the symmetry group of the impurity ar-
rangement is contained in the symmetry group of the metal-
lic host. In such a case M steps will be needed in the
variational M supersinglet to arrive at the states with M elec-
trons in the impurities, starting from the �F� vacuum state.
But our conjecture is that, for a given set of system param-
eters, the physical relevant state is the M-multiplet con-
structed by forming a Kondo singlet in the higher effective
hybridization channel and filling the other effective impuri-
ties with one electron, as we do in Sec. III B, to form our first
approximation to the odd doublet. Starting from this

M-multiplet and going down, step after step, towards the �F�
state, each successive step will introduce a exponentially
small correction to the M-multiplet energy, as � correct �D in
the case we analyzed, Sec. III C. Other impurity configura-
tions, like three in a row, are also of interest. The equations
of the three-in-a-row case can be easily obtained from the
present study by adding an impurity at the origin. In Appen-
dix B we outline this case and show that for certain values of
r the effective hybridization is very large in the active chan-
nel. A full analysis will be presented elsewhere.

The TIA Kondo doublet states generate a ferromagnetic-
impurity–spin correlation, without resort to the RKKY inter-
action. The correlation energy gain of these doublets, which
is driven by a first-order direct coherence effect of the hy-
bridization, exceeds that of the second-order RKKY interac-
tion for most of the Hamiltonian parameter space �Jn ,r�.
These properties put the states we found well in the experi-
mentally accessible range for quantum dot systems built on
semiconductor devices,26 where most of the relevant param-
eters can be controlled by gate voltages.

A milestone of the two-magnetic-impurity problem is the
renormalization group analysis of Ref. 9. This work was car-
ried out in the symmetrized basis too, but the r dependence
of the effective hybridization was treated in a crude fashion,
just taking its value at k=kF, the relevance of the increased
value of the effective hybridization being missed. Neverthe-
less, the two energy scales found in that work can be traced
to be the � and �D correlation energy gains of the super-
singlet and doublets. Their coupling parameters Jo and Je are
related to the square of our effective hybridization terms—
i.e., ��1±CQ�� ,r�	—and their “Kondo temperatures” TK�Je�
and TK�Jo� to our �D and �, which are not the Kondo ener-
gies corresponding to Je and Jo but Eqs. �35� and �50�. We
show that their relative relevance depends on the value of
CQ��K ,r�; for CQ��K��0, both are equally relevant and both
tend to �K. Our results are also in perfect accord with the
VWF numerical analysis of Andreani and Beck.20

Summarizing, our results confirm the general picture of
the system behavior already known from numerical simula-
tions, but thanks to our explicit VWF that we analytically
solve in the different subspaces of the TIA, they also point
out important differences with the usual interpretation of that
numerical data. The main interaction between the impurities,
contrary to the general belief, is not generated by the RKKY
process but by the interference-enhanced hybridization that
generates the Kondo-doublet states. The strength of this
Kondo-doublet interaction depends on the one-hole quantum
interference factor CQ�r�.

For interimpurity distances r around the maxima of
�CQ�r�� a two-stage Kondo screening takes place. It is a cor-
related quenching of the total spin of the system, not the
successive “one-impurity” Kondo screening of the odd and
even hybridization channels.9,15 It also generates a strong
ferromagnetic correlation between the impurity spins be-
cause the interference effects increase the weight of the fer-
romagneticlike impurity configurations in the dominant dou-
blet. The ferromagnetic r regions of the RKKY interaction
are comprised in these zones. For low values of both the
coupling constant Jn and r the RKKY interaction is strongest

FIG. 13. �SL ·SR� for the supersinglet �solid line�, the dominant
doublet �dashed line�, and the dominated doublet �dotted line� as a
function of the distance between the impurities. The upper panel is
for a 3D case and the lower one for a 2D case.
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than the Kondo-doublet interaction ��R���	�K�. How-
ever, this has little effect in the structure of the TIA Kondo
states because the ferromagneticlike impurity configurations
are already their main component. In a “temperature
scheme”15 this situation ��R���� generates the intermediate
triplet spin-1 phase between the high-temperature uncorre-
lated impurity spin phase and the doublet spin-1 /2 region.

For r near the zeros of CQ�r� there is no enhancement of
the Kondo-doublet energies ��o ,�e��K� and the system be-
havior tends to that of two uncorrelated Kondo impurities.
The maxima of the antiferromagnetic RKKY coincide with
these points. If −�R��K, the antiferromagnetic like impurity
configurations dominate the structure and response of the
TIA Kondo states, but between the limits of our calculation,
there is not a true quantum phase transition from the Kondo
supersinglet to an AF singlet.14

We provide detailed formulas for the evaluation, in all
dimensions and for any value of Jn and r, of the Kondo
energies of the TIA Hamiltonian. We provide also explicit
formulas for the evaluation of the impurity spin-spin corre-
lation in a given experimental situation. As we provide the
explicit VWF of the involved states, other correlations can
also be easily evaluated.
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APPENDIX A: M-CHANNEL SINGLET

Given that for an arrangement of M magnetic impurities
is always possible to construct an M-channel singlet, the first
step of the M-supersinglet, it is worthwhile to show that,
although �2M 	�K, its total energy, EM =−Ed−�2M is always
greater than the energy of M decoupled Kondo singlets,
Edc=M�−Ed−�K�. Therefore, Eq. �5�, we must show that

− Ed − �2M = − 2Mv2�
q

1

�2M + eq
�A1�

is always greater than

− M�Ed + �K� = − M2v2�
q

1

�K + eq
. �A2�

Comparing the sums term to term, we see that in each of
them 1/�K+eq�1/�2M +eq for �2M ��K. Thus EM �Edc in-
dependently of the D ,Ed	� usual approximation and for
any distribution of the conduction band hole states �q�. In
particular, this applies for M =2, Sec. III A.

APPENDIX B: THREE-IN-A-ROW CASE

For the three-in-a-row impurity case, two as analyzed in
this paper plus one at the origin, one can take as normal
modes of the impurities the following symmetrized combi-
nations of the impurity orbitals:

A = �− 1/�2,0,1/�2� , �B1�

S1 = �1/�3,1/�3,1/�3� , �B2�

S2 = �1/�6,− 2/�6,1/�6� . �B3�

In each of these combinations the first coefficient is the am-
plitude of the normal mode at the left impurity, the second
coefficient is the amplitude at the impurity at the origin, and
the third coefficient is the one corresponding to the right
impurity. The hybridization matrix elements, with the sym-
metric ��2cos kxx� and antisymmetric �i�2sin kxx� conduc-
tion band orbitals, are

VA = �dA�Hhyb�cAk� = 2iv sin kxr/2, �B4�

for the combination A, as before �see Eq. �8�	, and

VS1
= �dS1�Hhyb�cSk� =�2

3
v�1 + 2 cos kxr/2� , �B5�

VS2
= �dS2�Hhyb�cSk� =�2

6
v�− 2 + 2 cos kxr/2� , �B6�

for the symmetric combinations S. Therefore for r=2�F one
has �VA�0,VS1

��6v ,VS2
�0 and a strong 3-multiplet can

be proposed, formed upon a Kondo singlet in the S1 impurity
plus one electron in each one of the other impurity normal
modes.

APPENDIX C: THE ODD DOUBLET IN AN EXTREME
RKKY-AF REGION

In order to show the validity of Eq. �60� to analyze the
RKKY effects in our doublets, we present here a partial de-
duction of it. Assuming we are in an extreme RKKY-AF
region, we can drop the contribution of the FM-like impurity
configurations to the odd doublet. Therefore we start with

�Do↑� = dA↑
† �F� + i�

k

ZA�k�AkbAk↑
† �AF� . �C1�

Applying HV to the ZA configurations, one electron is re-
moved from the impurities and transferred to the band states.
Given the structure of �AF� there are four possibilities, two
corresponding to the transfer of a symmetric electron �with a
probability amplitude proportional to Sq� and the other two
corresponding to the transfer of an antisymmetric electron
��iAq�; therefore, the following states are added to the
VWF:

+ �
k,q

AkbAk↑
† �iSq�Y1�k,q�cSq↓

† dS↑
† �F� − Y2�k,q�cSq↑

† dS↓
† �F�	

− Aq�Y3�k,q�cAq↓
† dA↑

† �F� − Y4�k,q�cAq↑
† dA↓

† �F�	 , �C2�

applying again HV, a big set of new configurations is gener-
ated. The ones with one electron in each impurity are the
ones of lower energy, and of these, in order to maintain this
presentation as simple as possible, we include here only the
ones that contribute to the RKKY interaction:

TWO ANDERSON IMPURITIES IN THE KONDO¼ PHYSICAL REVIEW B 73, 155102 �2006�

155102-15



+ �
k,q,p

AkbAk↑
† �− SqAp�X1�k,q,p�bAp↓

† cSq↓
† �FM↑�

− X2�k,q,p�bAp↑
† cSq↑

† �FM↓�	

+ AqSp�X3�k,q,p�bSp↓
† cAq↓

† �FM↑�

− X4�k,q,p�bSp↑
† cAq↑

† �FM↓�	 . �C3�

The discarded ones, with their impurity part in a �FM0� or a
�AF� state, contribute only to the “one-impurity” correction.
They were included in Sec. IV C. The energy of the doublet
is given by

ED = �Do↑�H�Do↑�/�Do↑�Do↑� . �C4�

The variation of Eq. �C4� with respect to
ZA�k� , . . . ,X4�k ,q , p� gives nine coupled equations. These
equations can be used to reduce Eq. �C4� to the form

ED = − Ed + 2v�
k

sin 
 kxr

2
�2

ZA�k� . �C5�

The variational equations are solved in a progressive way,
starting with the higher-order amplitude factors

X1�k,q,p� = − 2vY1�k,q�/DX�k,q,p� ,

X2�k,q,p� = − v�Y2�k,q� − Y2�p,q�	/DX�k,q,p� ,

X3�k,q,p� = − 2vY3�k,q�/DX�k,q,p� ,

X4�k,q,p� = − 2vY4�k,q�/DX�k,q,p� , �C6�

where

DX�k,q,p� = − ED − 2Ed + ek + eq + ep. �C7�

Using the above results, the Yi factors are found:

Y1�k,q� = − 2vZA�k�/DYS�k,q� ,

Y2�k,q� = − 2vZA�k�/DYS�k,q�

+ 4v2�
p

�Ap
2Y2�p,q�/DX�k,q,p�	DYS�k,q� ,

Y3�k,q� = − 2vZA�k�/DYC�k,q� ,

Y4�k,q� = − 2vZA�k�/DYC�k,q� , �C8�

where

DYS�k,q� = − ED − Ed + ek + eq − 4v2�
p

Ap
2/DX�k,q,p� ,

DYC�k,q� = − ED − Ed + ek + eq − 4v2�
p

Sp
2/DX�k,q,p� .

�C9�

The Yi factors carry the RKKY effects into the variational
equation obtained for ZA, which is

�ED + 2Ed − ek�ZA�k�

= v + v�
q
�cos2
qxr

2
��Y1�k,q� + Y2�k,q�	 + sin2
qxr

2
�

��Y3�k,q� + Y4�k,q�	� . �C10�

This is a self-consistent equation, the Yi factors depending
themselves on ZA. In order to solve it and to obtain the stan-
dard expression for the RKKY contribution, the Yi factors
must be expanded in powers of v, as already done in Sec.
IV C:

Y1�k,q� = ZA�k��vy0�k,q� + v3y2S�k,q�	 ,

Y2�k,q� = Y1�k,q� + v3y2X�k,q� ,

Y3�k,q� = ZA�k��vy0�k,q� + v3y2C�k,q�	 ,

Y4�k,q� = Y3�k,q� , �C11�

where, with DY�k ,q�=−ED−Ed+ek+eq,

y0�k,q� = − 2/DY�k,q� ,

y2S�k,q� =
− 8

DY
2�k,q��p

sin2
 pxr

2
��DX�k,q,p� ,

y2C�k,q� =
− 8

DY
2�k,q��p

cos2
 pxr

2
��DX�k,q,p� ,

y2X�k,q� =
− 8

DY�k,q��p

ZA�p�sin2�pxr/2�
DY�q,p�DX�k,q,p�

. �C12�

Using the above equations in the variational equation for
ZA�k�,

ZA�k� =
− v�1 − v3�Z�

− ED − 2Ed + ek − �Z
, �C13�

is obtained, where

�Z = 8�
q,p

ZA�p�sin2�pxr/2�cos2�qxr/2�
DY�k,q�DY�q,p�DX�k,q,p�

,

�Z = 4v2�
q

1

DY�k,q�
+ 8v4�

q,p

1 − cos�qxr�cos�pxr�
DY

2�k,q�DX�k,q,p�

� 2�01 + �02 − �R�r� . �C14�

Both �Z and �Z are very weakly dependent on ek; in fact, it
is a common practice to substitute factors of the kind
1/ �Ed+ek� by 1/Ed in the available calculus of the RKKY
interaction, a notable exception being Ref. 27. In any case,
such an approximation overestimates the RKKY effects. �0i
is the order-Jn

i “one-impurity” correction. �Z can be evalu-
ated by substituting ZA�p� by its first-order approximation
v / �ED+2Ed−ep�; �Z gives a Jn

2 correction to the “connectiv-
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ity” factor of the AF configurations involved in the odd dou-
blet. In the equations above the sums over k , p �q� are over
“symmetrized” hole �electron� excitations. From Eqs. �C5�,
�C13�, and �C14� the last term on the right-hand side of Eq.
�60� immediately follows.

We have analyzed the general situation—i.e., including
the ZS FM-like configurations in the doublet �and the corre-

sponding secondary configurations�—in order to fully certify
Eq. �60�. Our “second-quantization” Mathematica package
does the calculations needed for Eq. �C4� on the fly; a primi-
tive version of this package was used in Refs. 28 and 29. To
bring those equations to ink, instead, will take a considerable
amount of pages and time. The general procedure is similar
to the one we outlined here for the extreme RKKY-AF case.
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